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SOME CLASSES OF PERFECT ANNIHILATOR-IDEAL
GRAPHS ASSOCIATED WITH COMMUTATIVE RINGS

M. ADLIFARD AND SH. PAYROVI∗

Abstract. Let R be a commutative ring and let A(R) be the
set of all ideals of R with nonzero annihilator. The annihilator-
ideal graph of R is defined as the graph AI(R) with the vertex set
A(R)∗ = A(R)\{0} and two distinct vertices I and J are adjacent
if and only if AnnR(IJ) 6= AnnR(I) ∪ AnnR(J). In this paper,
perfectness of AI(R) for some classes of rings is investigated.

1. Introduction

Recently, the assignment of a graph to algebraic structures has been
considered by many researchers. When a graph is assigned to a ring,
many parameters such as the clique number, the chromatic number
and the independence number of the graph, are considered. The rela-
tionship between these parameters and the structural properties of the
ring is very important. For this reason, translating of the structural
properties of the ring with the graph language is very interesting and in
some cases it helps to solve problems in the ring more easily. There are
a lot of papers which apply combinatorial methods to obtain algebraic
results in ring theory; for instance see [2, 4, 5, 9].

We use the standard terminology for graphs following [7, 13]. Let
G = (V,E) be a graph, where V = V (G) is the set of vertices and
E = E(G) is the set of edges. By G, we mean the complement graph
of G. We write u− v, to denote an edge with ends u, v. A graph H =
(V0, E0) is called a subgraph of G if V0 ⊆ V and E0 ⊆ E. Moreover,
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H is called an induced subgraph by V0, denoted by G[V0], if V0 ⊆ V
and E0 = {u − v ∈ E |u, v ∈ V0}. Also G is called a null graph if it
has no edge. A complete graph of n vertices is denoted by Kn. The
join of G1 and G2, denoted by G1 ∨G2, is a graph with the vertex set
V (G1 ∨ G2) = V (G1) ∪ V (G2) and edge set E(G1 ∨ G2) = E(G1) ∪
E(G2) ∪ {u − v |u ∈ V (G1), v ∈ V (G2)}. A clique of G is a complete
subgraph of G and the number of vertices in the largest clique of G,
denoted by ω(G), is called the clique number of G. For a graph G,
let χ(G) denote the vertex chromatic number of G, i.e., the minimal
number of colors which can be assigned to the vertices of G in such a
way that every two adjacent vertices have different colors. Note that for
every graph G, ω(G) ≤ χ(G). A graph G is said to be weakly perfect
if ω(G) = χ(G). A perfect graph G is a graph in which the chromatic
number of every induced subgraph equals the size of the largest clique
of that subgraph.

Let R be a commutative ring with nonzero identity and let A(R) be
the set of all ideals with nonzero annihilator. The annihilator graph of
a ring R is defined as the graph AG(R) with the vertex set Z(R)∗ =
Z(R) \ {0}, and two distinct vertices x and y are adjacent if and only
if AnnR(xy) 6= AnnR(x) ∪ AnnR(y). This graph was first introduced
in [4]. The annihilator-ideal graph of R is defined as the graph AI(R)
with the vertex set A(R)∗ = A(R)\{0} and two distinct vertices I and
J are adjacent if and only if AnnR(IJ) 6= AnnR(I) ∪ AnnR(J). This
graph was first introduced and investigated in [10] and many interesting
properties of annihilator-ideal graph were studied, see for examples
[1, 6, 12]. In this paper, the perfectness of AI(R) for some classes of
rings R is investigated.

Throughout this paper, all rings are assumed to be commutative
with nonzero identity. We denote by Max(R) and Nil(R), the set of
all maximal ideals of R and the set of all nilpotent elements of R,
respectively. For every ideal I of R, we denote the annihilator of I by
AnnR(I). A nonzero ideal I of R is called essential, if it has a nonzero
intersection with any nonzero ideal of R. Some more definitions about
commutative rings can be find in [3, 11, 14].

2. Perfectness of Annihilator-ideal graph of reduced
rings

In this section, we show that if R is a finite direct product of integral
domains, then AI(R) is perfect. In 2004 Chudnovsky et al. [7] settled
a long standing conjecture regarding perfect graphs and provided a
characterization of perfect graphs.
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Theorem 2.1. [7, The Strong Perfect Graph Theorem] A graph G is
perfect if and only if neither G nor G contains an induced odd cycle of
length at least 5.

Example 2.2. (1) Every complete graph and complete bipartite
graph are perfect.

(2) Let G1 be a complete graph and G2 = Cn be a cycle of length
at least 5 and let G = G1∨G2. If n is odd, then ω(G) = |G1|+2
and χ(G) = |G1| + 3, i.e., G is not perfect. If n is even, then
every induced subgraph of G is weakly perfect and thus G is
perfect.

Lemma 2.3. Let I and J be distinct annihilator ideals of R. Then the
following statements are true.

(i) [10, Lemma 2.1(iii)] If I − J is not an edge of AI(R), then
AnnR(I) ⊆ AnnR(J) or AnnR(J) ⊆ AnnR(I).

(ii) [8, Corollary 12] If AnnR(I) 6⊆ AnnR(J) and AnnR(J) 6⊆ AnnR(I),
then I − J is an edge of AI(R). Moreover, if R is a reduced
ring, then the converse is also true.

Theorem 2.4. Let R = F1 × · · · × Fk, where Fi is a field, for all
1 ≤ i ≤ k. Then AI(R) is perfect.

Proof. By Theorem 2.1, it is enough to show that AI(R) and AI(R)
contain no induced odd cycle of length at least 5. Consider the following
claims:

Claim 1. AI(R) contains no induced odd cycle of length at least 5.
Assume to the contrary

I1 − I2 − · · · − In − I1
is an induced odd cycle of length at least 5 in AI(R). By Lemma 2.3,
we have AnnR(I1) ⊆ AnnR(I3) or AnnR(I3) ⊆ AnnR(I1). Without loss
of generality, we may assume that AnnR(I1) ⊆ AnnR(I3). We continue
the proof in the following steps.

Step 1. For every 3 ≤ i ≤ n − 1, AnnR(I1) ⊆ AnnR(Ii). We
know that AnnR(I1) ⊆ AnnR(I3). By Lemma 2.3, we have AnnR(I1) ⊆
AnnR(I4) or AnnR(I4) ⊆ AnnR(I1). If AnnR(I4) ⊆ AnnR(I1), then
AnnR(I4) ⊆ AnnR(I3) as AnnR(I1) ⊆ AnnR(I3) and this is a con-
tradiction . So AnnR(I1) ⊆ AnnR(I4). Again, we have AnnR(I1) ⊆
AnnR(I5) or AnnR(I5) ⊆ AnnR(I1). If AnnR(I5) ⊆ AnnR(I1), then
since AnnR(I1) ⊆ AnnR(I4), we have AnnR(I5) ⊆ AnnR(I4), a contra-
diction. So AnnR(I1) ⊆ AnnR(I5). Similarly, for every 3 ≤ i ≤ n − 1,
AnnR(I1) ⊆ AnnR(Ii).
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Step 2. For every 4 ≤ i ≤ n, AnnR(I2) ⊆ AnnR(Ii). By the Step
1, AnnR(I1) ⊆ AnnR(I4). By Lemma 2.3, AnnR(I2) ⊆ AnnR(I4) or
AnnR(I4) ⊆ AnnR(I2). If AnnR(I4) ⊆ AnnR(I2), then by AnnR(I1) ⊆
AnnR(I4), we have AnnR(I1) ⊆ AnnR(I2), a contradiction. So AnnR(I2) ⊆
AnnR(I4). Now, by a similar argument to that of the Step 1, we can
easily get for every 4 ≤ i ≤ n, AnnR(I2) ⊆ AnnR(Ii).
Step 3. For every 5 ≤ i ≤ n, AnnR(I3) ⊆ AnnR(Ii). By Lemma

2.3, we have AnnR(I3) ⊆ AnnR(I5) or AnnR(I5) ⊆ AnnR(I3). If
AnnR(I5) ⊆ AnnR(I3), then AnnR(I2)
⊆ AnnR(I3), a contradiction since AnnR(I2) ⊆ AnnR(I5). So we have
AnnR(I3) ⊆ AnnR(I5). Similarly, for every 5 ≤ i ≤ n, AnnR(I3) ⊆
AnnR(Ii). Now, in view of AnnR(I1) ⊆ AnnR(I3) and AnnR(I3) ⊆
AnnR(Ii), for every 5 ≤ i ≤ n, we have AnnR(I1) ⊆ AnnR(In), a
contradiction. By a similar argument one can show that AnnR(I3) ⊆
AnnR(I1) leads to a contradiction. So k ≤ 4. Therefore, AI(R) con-
tains no induced odd cycle of length at least 5.

Claim 2. AI(R) contains no induced odd cycle of length at least 5.
Assume to the contrary

I1 − I2 − · · · − In − I1
is an induced odd cycle of length at least 5 in AI(R). By Lemma
2.3, we may assume that AnnR(I1) ⊆ AnnR(I2). Now, if AnnR(I2) ⊆
AnnR(I3), then AnnR(I1) ⊆ AnnR(I3), a contradiction. Thus AnnR(I1) ⊆
AnnR(I2) and AnnR(I3) ⊆ AnnR(I2). If AnnR(I4) ⊆ AnnR(I3), then
AnnR(I4) ⊆ AnnR(I2), a contradiction. So AnnR(I3) ⊆ AnnR(I4).
Since n is odd, if we continue this procedure, then we get AnnR(In−2) ⊆
AnnR(In−1) and AnnR(In) ⊆ AnnR(In−1). If AnnR(I1) ⊆ AnnR(In),
then AnnR(I1) ⊆ AnnR(In−1), a contradiction. Thus AnnR(In) ⊆
AnnR(I1). Now, by AnnR(I1) ⊆ AnnR(I2), we deduce that AnnR(In) ⊆
AnnR(I2), a contradiction. Therefore, AI(R) contains no induced odd
cycle of length at least 5. By the Claims 1,2, AI(R) is perfect. �

Let G be a graph and x ∈ V (G) a vertex, and let G′ be obtained
from G by adding a vertex x′ and joining it to x and all the neighbors
of x. We say that G′ is obtained from G by expanding the vertex x to
an edge x− x′.

Lemma 2.5. [7, Lemma 5.5.5] Any graph obtained from a perfect graph
by expanding a vertex is again perfect.

Remark 2.6. Let G be a graph x ∈ V (G) and A ⊆ V (G). Let for every
y ∈ A, N(x) \ {y} = N(y) \ {x}. Then, according to Lemma 2.5, G is
perfect if and only if G \ {A \ {y}} is perfect.
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Lemma 2.7. Let R be a ring and I, J ∈ V (AI(R)). If AnnR(I) =
AnnR(J), then N(I) = N(J).

Proof. Suppose that K − I is an edge of AI(R). Then AnnR(K) ∪
AnnR(I) ⊂ AnnR(KI). So AnnR(K) ∪ AnnR(J) ⊂ AnnR(KI). By
hypothesis it is easy to see that AnnR(KI) = AnnR(KJ). Hence,
AnnR(K)∪AnnR(J) ⊂ AnnR(KJ). This means that K − J is an edge
of AI(R) and so N(I) ⊆ N(J). Similarly, N(J) ⊆ N(I), as desired. �

Theorem 2.8. Let R ∼= D1×· · ·×Dn, where Di is an integral domain,
for all 1 ≤ i ≤ n. Then AI(R) is perfect.

Proof. Assume that I = I1×· · ·×In and J = J1×· · ·×Jn are vertices of
AI(R). Define the relation ∼ on V (AI(R)) as follows: I ∼ J , whenever
“Ii = 0 if and only if Ji = 0”, for every 1 ≤ i ≤ n. It is easily
seen that ∼ is an equivalence relation on V (AI(R)) thus V (AI(R)) =
∪2n−2i=1 [I]i, where [I]i is the equivalence class of I (note that the number
of equivalence classes is 2n−2). Let [I] be the equivalence class of I and
J ∈ [I]. Then AnnR(I) = AnnR(J) thus by Lemma 2.7, N(I) = N(J).
This fact together with I is not being adjacent to J , implies that AI(R)
is perfect if and only if AI(R) \ {[I] \ {J}} is perfect, by Remark 2.6.
If we continue this procedure for every equivalence class [I] (2n − 2
times), then it concludes that AI(R) is perfect if and only if AI(R)[A]
is perfect, where

A = {I = I1×· · ·× In ∈ V (AI(R))| Ii ∈ {0, Di}, for every 1 ≤ i ≤ n}.
It is straightforward to check that AI(R)[A] ∼= AI(S) where S = F1 ×
· · · × Fn and Fi is a field, for every 1 ≤ i ≤ n. Now, by Theorem 2.4,
AI(S) is perfect and hence AI(R) is perfect. �

3. Perfectness of Annihilator-ideal graph of Artinian
rings

The aim of this section is to show that AI(R) is perfect whenever R
is Artinian.

Lemma 3.1. Let R be a non-reduced ring and I be an ideal of R such
that In = 0, for some positive integer n. Then AnnR(I) is an essential
ideal of R.

Proof. Let J be a nonzero ideal of R. If J ∩ AnnR(I) 6= 0 there is
nothing to prove. Otherwise, we have J ∩AnnR(I) = 0 so IJ 6= 0. Let
s be the least positive integer such that JIs−1 6= 0 and JIs = 0. Then
JIs−1 ⊆ J ∩ AnnR(I) as desired. Hence, AnnR(I) is an essential ideal
of R. �
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Lemma 3.2. Let R be an Artinian ring and I, J ∈ A(R)∗. Then the
following statements are true.

(1) If I ⊆ J(R), then AnnR(I) 6= AnnR(I2).
(2) I − J is an edge of AI(R) if and only if I ∩ AnnR(J) 6= 0 and

J ∩ AnnR(I) 6= 0.
(3) If I 6⊆ J , then I ∩ AnnR(J) 6= 0. In particular, if I 6⊆ J and

J 6⊆ I, then I − J is an edge of AI(R).
(4) If I ⊆ J and I ∩AnnR(J) 6= 0, then I − J is an edge of AI(R).

Proof. (1) By the assumption I ⊆ J(R) there exists a least positive
integer n such that In = 0. If n = 2, then clearly AnnR(I) 6= AnnR(I2).
Let n ≥ 3. Then I2In−2 = 0 so In−2 ⊆ AnnR(I2). If AnnR(I) =
AnnR(I2), then In−2 ⊆ AnnR(I2) = AnnR(I) and so In−2I = In−1 = 0,
a contradiction. Hence, AnnR(I) 6= AnnR(I2).

(2) ⇒ is clear by [8, Lemma 10].
⇐ By [3, Theorem 8.7] we have R ∼= R1 × · · · × Rn, where Ri is

an Artinian local ring, for all 1 ≤ i ≤ n. Let I = I1 × · · · × In and
J = J1 × · · · × Jn, where Ii, Ji ∈ A(Ri) for every 1 ≤ i ≤ n. Suppose
that I∩AnnR(J) 6= 0 and J∩AnnR(I) 6= 0. Then for some 1 ≤ i, j ≤ n,
Ii∩AnnR(Ji) 6= 0 and Jj ∩AnnR(Ij) 6= 0. Consider the following cases:
Case 1. i = j. In this case Ii 6= 0, Ji 6= 0 and Ii, Ji ⊆ J(R).

If Ii 6= Ji, then by [8, Theorem 22], Ii − Ji is an edge of AI(Ri)
and so AnnRi

(IiJi) 6= AnnR(Ii) ∪ AnnR(Ji). This fact implies that
AnnR(IJ) 6= AnnR(I) ∪ AnnR(J). Thus I − J is an edge of AI(R). If
Ii = Ji, then by the Part (1) we can let r ∈ AnnRi

(I2i )\AnnRi
(Ii). Now,

we can easily get (0, . . . , 0, r, 0, . . . , 0) ∈ AnnR(IJ)\AnnR(I)∪AnnR(J).
Hence, I − J is an edge of AI(R).
Case 2. i 6= j. Without loss of generality, we may assume that

i = 1, j = 2. I1 ∩ AnnR(J1) 6= 0 and J2 ∩ AnnR(I2) 6= 0. This implies
that I1 6= 0 and J2 6= 0. We consider the following subcases:
Subcase 1. I1 = R1 and J2 = R2. In this subcase J1 ∈ A(R1) and

I2 ∈ A(R2). This implies that AnnR1(J1) 6= 0 and AnnR2(I2) 6= 0. So if
we pick 0 6= a ∈ AnnR1(J1) and 0 6= b ∈ AnnR2(I2), then we can easily
get (a, b, 0, . . . , 0) ∈ AnnR(IJ) \AnnR(I)∪AnnR(J). Therefore, I − J
is an edge of AI(R).
Subcase 2. I1 ∈ A(R1)

∗ and J2 ∈ A(R2)
∗. In this subcase, we have

J1 ∈ A(R1) and I2 ∈ A(R2). If J1 6= 0 or I2 6= 0, then by the Case 1,
I − J is an edge of AI(R). If J1 = 0 and I2 = 0, then we can easily get
(1, 1, 0, . . . , 0) ∈ AnnR(IJ) \ AnnR(I) ∪ AnnR(J). Therefore, I − J is
an edge of AI(R).
Subcase 3. I1 ∈ A(R1)

∗ and J2 = R2 or I1 = R1 and J1 ∈ A(R2)
∗.

Suppose that I1 ∈ A(R1)
∗ and J2 = R2. If J1 6= 0, then by the
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Case 1, I − J is an edge of AI(R). If J1 = 0, then we can easily
get (1, b, 0, . . . , 0) ∈ AnnR(IJ) \ AnnR(I) ∪ AnnR(J) where 0 6= b ∈
AnnR2(I2). Therefore, I − J is an edge of AI(R).

(3) Let I = I1×· · ·×In and J = J1×· · ·×Jn. Since I 6⊆ J without loss
of generality we may assume that I1 6⊆ J1. This implies that J1 6= R1

and thus Ann(J1) is an essential ideal of R1, by Lemma 3.1. Hence,
I1 ∩ Ann(J1) 6= 0. Let 0 6= a1 ∈ I1 ∩ Ann(J1). Then (a1, 0, . . . , 0) ∈
I ∩ AnnR(J) and so I ∩ AnnR(J) 6= 0. The “in particular” statement
is now clear.

(4) Since I∩AnnR(J) 6= 0 we need only to show that J∩AnnR(I) 6= 0.
Let 0 6= a ∈ I ∩ AnnR(J). Then a ∈ J since I ⊆ J . Also, aJ = 0 and
I ⊆ J imply that aI = 0. Thus a ∈ J ∩ AnnR(I) and so I − J is an
edge of AI(R). �

Theorem 3.3. If R is an Artinian ring, then AI(R) is perfect.

Proof. By [3, Theorem 8.7], R ∼= R1×· · ·×Rk, where Ri is an Artinian
local ring, for all 1 ≤ i ≤ k. The argument here is a refinement of
the proof of Theorem 2.4. By Theorem 2.1, it is enough to show that
AI(R) and AI(R) contains no induced odd cycle of length at least 5.
Consider the following claims:

Claim 1. AI(R) contains no induced odd cycle of length at least 5.
Assume to the contrary

I1 − I2 − · · · − In − I1
is an induced odd cycle of length at least 5 in AI(R). Since I1 is not
adjacent to I3, by Lemma 3.2(3), I1 ⊆ I3 or I3 ⊆ I1. Without loss of
generality, we may assume that I1 ⊆ I3. We have the following facts.
Case 1. I1 ⊆ Ii, for every 3 ≤ i ≤ n− 1. Clearly, I1 ⊆ I3. Since I1

is not adjacent to I4, by Lemma 3.2, I1 ⊆ I4 or I4 ⊆ I1. If I4 ⊆ I1, then
I4 ⊆ I3. Since I4∩Ann(I3) 6= 0 and I4 ⊆ I1 so we have I1∩Ann(I3) 6= 0.
This fact together with Lemma 3.2(4), implies that I1 is adjacent to I3,
a contradiction (note that I1 ⊆ I3). Thus I1 ⊆ I4. Again, by Lemma
3.2 we have I1 ⊆ I5 or I5 ⊆ I1. If I5 ⊆ I1, then by I1 ⊆ I4, we deduce
that I5 ⊆ I4. Since I5 ∩ Ann(I4) 6= 0 and I5 ⊆ I1 so I1 ∩ Ann(I4) 6= 0.
This fact together Lemma 3.2(4), imply that I1 is adjacent to I4, a
contradiction (note that I1 ⊆ I4). Thus I1 ⊆ I5. Similarly, I1 ⊆ Ii, for
every 6 ≤ i ≤ n− 1.
Case 2. I2 ⊆ Ii, for every 4 ≤ i ≤ n. By the Case 1, I1 ⊆ I4 and

by Lemma 3.2 we have I2 ⊆ I4 or I4 ⊆ I2. If I4 ⊆ I2, then we conclude
that I4 ∩ Ann(I2) 6= 0 since I1 ⊆ I4 and I1 ∩ Ann(I2) 6= 0. This fact
together Lemma 3.2(4), imply that I2 is adjacent to I4, a contradiction
(note that I4 ⊆ I2). So I2 ⊆ I4. Next, we show that I2 ⊆ I5. If I5 ⊆ I2,
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then since I5∩Ann(I4) 6= 0, we get I2∩Ann(I4) 6= 0 also since I2 ⊆ I4,
I2 is adjacent to I4, a contradiction. Hence, I2 ⊆ I5. Similarly, I2 ⊆ Ii,
for every 6 ≤ i ≤ n.

Case 3. For every 7 ≤ i ≤ n, I3 ⊆ Ii. By Lemma 3.2, I3 ⊆ I5
or I5 ⊆ I3. If I5 ⊆ I3, then by I2 ∩ Ann(I3) 6= 0 and I2 ⊆ I5 we get
I5 ∩ Ann(I3) 6= 0, a contradiction, by Lemma 3.2(4). Hence, I3 ⊆ I5.
We show that I3 ⊆ I6. If I6 ⊆ I3, then by I2∩Ann(I3) 6= 0 and I2 ⊆ I6
we have I6 ∩ Ann(I3) 6= 0, a contradiction, by Lemma 3.2(4). Hence,
I3 ⊆ I6. Similarly, I3 ⊆ Ii, for every 7 ≤ i ≤ n. Thus I1 ⊆ I3 ⊆ In.
Since I1 ∩ Ann(In) 6= 0, I3 ∩ Ann(In) 6= 0 we get a contradiction, by
Lemma 3.2. By a similar argument one can show that I3 ⊆ I1 leads to
a contradiction. So k ≤ 4. Therefore, AI(R) contains no induced odd
cycle of length at least 5.

Claim 2. AI(R) contains no induced odd cycle of length at least 5.
Assume to the contrary

I1 − I2 − · · · − In − I1

is an induced odd cycle of length at least 5 in AI(R). By Lemma 3.2,
we may assume that I1 ⊆ I2. If I2 ⊆ I3, then since I1 ∩ Ann(I3) 6= 0,
we conclude that I2 ∩ Ann(I3) 6= 0 I2 is adjacent to I3 in AI(R), a
contradiction. Thus I1 ⊆ I2 and I3 ⊆ I2. If I4 ⊆ I3, then I3∩Ann(I2) 6=
0. As I4 ∩ Ann(I2) 6= 0 we deduce I2 is adjacent to I3 in AI(R), a
contradiction. So I3 ⊆ I4. If I4 ⊆ I5, then the facts I3 ⊆ I4 and
I3 ∩ Ann(I5) 6= 0 imply that I4 ∩ Ann(I5) 6= 0 thus I4 is adjacent to
I5 in AI(R), a contradiction. Hence, I3 ⊆ I4 and I5 ⊆ I4. Since n
is odd, by continuing this procedure In−2 ⊆ In−1 and In ⊆ In−1. If
I1 ⊆ In, then I1 ∩ Ann(In−1) 6= 0 implies that In ∩ Ann(In−1) 6= 0. So
In is adjacent to In−1 in AI(R), a contradiction. Hence, In ⊆ I1 and
so In ∩ Ann(I2) 6= 0. Thus I1 ∩ Ann(I2) 6= 0. By Lemma 3.2, I1 is

adjacent to I2 in AI(R), a contradiction. Therefore, AI(R) contains no
induced odd cycle of length at least 5. By the Claims 1,2 the proof is
completed. �
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