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P—-REGULAR AND P-LOCAL RINGS
H. HAKMI*

ABSTRACT. This paper is a continuation of study rings relative to
right ideal, where we study the concepts of regular and local rings
relative to right ideal. We give some relations between P—local
(P—regular) and local (regular) rings. New characterization ob-
tained include necessary and sufficient conditions of a ring R to be
regular, local ring in terms P—regular, P—local of matrices ring
M5(R). Also, We proved that every ring is local relative to any
maximal right ideal of it.

1. INTRODUCTION

V. A. Andrunakievich and Yu. M. Ryabukhin in 1987 [2], were the
first who introduced the concept of rings relative to right ideal. They
studied the concepts of quasi-regularity and primitivity of rings relative
to right ideal. Later, V. A. Andrunakievich and A. V. Andrunakievich
in 1991 [1], studied the concept of regularity of rings relative to right
ideal as generalization of (Von Neumann) regular ring (also known as
P—regular rings). A number of interesting papers have been published
on this concept in recent years, e.g., [1], [2], [3], [5]. In 2011, P. Dheena
and S. Manivasan [3] studied quasi-ideals of a P—regular near-rings.
In [5], H. Hakmi continue study P—regular and P—potent rings. In
section 2 of this paper, we study idempotent elements relative to right
ideal and investigate its properties. We proved that an element e of a
ring R is an idempotent if and only if for every x,y € R the element

MSC(2020): Primary: 16E50, 16E70; Secondary: 16D40, 16D50.
Keywords: P—idempotent, (P—)Regular ring, (P—)Local ring.
Received: 9 September 2020, Accepted: 28 February 2021.
*xCorresponding author .

1



2 HAKMI

Ty

0
matrices My(R). In section 3, we study regular rings relative to right
ideal, we proved that an element a of a ring R is regular if and only if

is an idempotent relative to some right ideal in the ring of

for every x € R the element is a regular relative to some right

x
0
ideal. In addition to that we proved that a ring R is regular if and only
if the ring Sy is regular relative to some right ideal of M3(R). In section
4, we study semi-potent ring relative to right ideal. we proved that an

element a of a ring R is semi-potent if and only if for every x € R

0

addition to that we proved that a ring R is semi-potent and J(R) =0
if and only if the ring Sy is semi-potent relative to some right ideal
of My(R). Finally, we study in section 4, the concept of local ring
relative to right ideal. We proved that a ring R is local relative to right
ideal P of R if and only if R contains exactly one maximal right ideal
containing P. In addition to that, we proved that every ring R is local
relative to any maximal right ideal of it. The connection between the
local ring R and the ring of matrices Ms(R) is obtained.

Throughout in this article, rings R, are associative with identity
unless otherwise indicated. We denote the Jacobson radical of a ring
R by J(R). Also, for any ring R, we use the dotation: Ry = My(R)
the ring of 2 x 2 matrices over a ring R. Then

0] . : : : .
the element {x a] is a semi-potent relative to some right ideal. In

P:{[g 8];a,beR}, Q:{B 2]:@,66}%}

are right ideals in Ry such that P # Ry and Q) # R.

Let R be aring and P # R be a right ideal of R. Recall that an ele-
ment e € R is an idempotent relative to right ideal P or (P—idempotent
for short)[1], if

e2—eecP

eP CP

Note that in any ring R, elements 0,1 € R are idempotents relative to
every right ideal P # R of R. Also, if P = 0, then an element e € R is
P—idempotent if and only if e is idempotent.

An element a in a ring R is called regular if there exists b € R
such that a = aba. A ring R is called regular if every element of R
is regular, [4]. Let R be a ring and P # R be a right ideal in R. An
element a € R is called regular relative to right ideal P, or P—regular



P—REGULAR AND P-LOCAL RINGS 3

for short, if there exists b € R such that
aba —a € P

abP C P

A ring R is called P—regular if every element a € R is P—regular, [1].

Note that in previous definition, it is easy to see that every P— idem-
potent is an P—regular element. In particular, 0,1 € R are P—regular
elements. In addition to that, in previous definition we can see that
for P =0, a ring R is P—regular if and only if R is regular. A ring R
is called a semi-potent ring or an Iy—ring, if for every a € R, a € J(R)
there exists b € R such that bab = b, [6]. It easy to see that any regular
ring R is a semi-potent ring with J(R) = 0. Also, every m—regular,
strongly m—regular ring are semi-potent.

2. IDEMPOTENTS RELATIVE TO RIGHT IDEAL

Lemma 2.1. Let R be a ring and P # R be a right ideal of R. Then
for every P—idempotent e € R the following hold:

(1) An element 1 — e € R is P—idempotent.

(2) An element e* € R is P—idempotent.

(3) An element 1 — e* € R is P—idempotent.

(4) If e € J(R), then e € P.

(5) If e has a right inverse, then 1 —e € P.

(6) If 1 — e has a right inverse, then e € P.

Proof. Suppose that e € R is P—idempotent, then e> — e € P and
eP C P. So e* = e+ py for some py € P.

(1) We have

(1—e=(1—-e)(l—e)=1—-2e+e+py=1—e+p
So (1—e)*—(1—e) = pg € P. Also, forevery t € P, (1—e)t =t—et € P,
o(l—e)PCP.
(2) We have
(e%)* = (e + po)(e + po) = € + epo + poe + pg
Thus
(e*)* —e* =epy +poe +p; €EeP+PR+PCP
So 2P = e(eP) C eP C P. (3) Obvious by (1) and (2).
(4) Suppose that e € J(R), then 1—e has an inverse in R, so (1—e)a =1
for some a € R and so e = (¢ — e®*)a € PR C P.

(5) Suppose that e has a right inverse in R. Then ea = 1 for some
a € R and

e=c’a=(e+p)a=catpa=1+pacl+P
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Thus 1 —e € P.
(6) Suppose that 1 — e has a right inverse in R. Then (1 —e)b =1 for
some b € Rand e = (e —e?)b € PR C P. O

From Lemma 2.1 and for P = 0 we obtain the following:

Corollary 2.2. Let R be a ring and e € R be an idempotent. Then:
(1) Elements €%, 1 — e are idempotents in R.

(2) If e € J(R), then e = 0.

(3) If e has a right inverse in R, then e = 1.

(4) If 1 — e has a right inverse in R, then e = 0.

Proposition 2.3. Let R be a ring and P # R be a right ideal of R.
For every P— idempotent e € R the following statements hold:

(1) For every integer k > 1, an element e is P—idempotent.

(2) For every integer k > 1, an element 1 — e* is P—idempotent.

(3) For every integer k > 1, an element (1 — e)* is P—idempotent.

Proof. (1) Suppose that e is an P—idempotent, then ¢ — e € P and
eP C P, so e? = e+ pg for some py € P. Proof by induction on k. For
k = 1,2 the assertion holds by assumption and Lemma 2.1. Suppose
that e*~! is an P—idempotent, then

(ek—l)Q o ek—l cP
e tPCP
So (eF71)2 = k=1 4 p; for some p; € P. Thus
(ek)Z — (ek71>2€2 — (ekfl +p1)(e +p0) _

=" + "'y + pre + pipo
therefore (e¥)? —e* = p, where p = e*~1py+pre+pipo € P. This shows
that

("2 —efep

*P=ceF'PCePCP
Thus, e is an P—idempotent. (2) and (3) By (1) and Lemma 2.1. [J
Proposition 2.4. Let R be a ring and P # R be a right ideal in R. If

e,g € R such that e — g € P, then g is P—idempotent if and only if e
1s P—idempotent.

Proof. Suppose that e—g € P, then e = g+p; for some p; € P. Assume
that g is P—idempotent, then g> —g € P, gP C P. So g*> = g+ py and

e’ = (g+p1)(g+p1) = 9>+ gpi + p1g + pip1 =

=g+po+gp1+p1g+pipr =
=g+ pi+ (=p1 +po+ gp1 + 19 + pipr)
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For
p'=-pi+po+gp+pg+pp €P
We have €2 —e =p' € P and eP C gP + p; P C P. This shows that e
is P— idempotent. Similarly, we can prove conversely. |
Next, we present an example of an P—idempotent elements.

Example 2.5. Let Z be the ring of integers and let Ry = My(Z) be
the ring of all 2 x 2 matrices over the ring of integers Z. Let

=[5 1] en

Where n,m € Z, then e is P—idempotent in R, but not idempotent.
And,

s [n? (n+1)m]
“~lo 1|
is P—idempotent in R,. Also, for every positive integer k the element:
ok [nk m¥iint]
10 1

is P—idempotent in Ry. In addition to that the element:
1—-n —m
L-e= { 0 0 }
is P—idempotent in Ry and the element:

[1—n? —(n+1)m]
0 0

is P—idempotent in Ry. Also, for every positive integer k the element:

1—e? =

1 —nF —m¥FInt]
0 0

is P—idempotent in Ry and the element:

I

is P—idempotent in Ry. Also, for every positive integer k the element:

(1—e) = [(1 —On)k —m(1 - n)’f—l]

is P—idempotent in R,.

1—ef =

The connection between the idempotent elements in a ring R and
P—idempotent (QQ—idempotent) elements in Ry we provide in the fol-
lowing;:
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Theorem 2.6. For any element e € R the following hold:
(1) If e is idempotent in R, then for every x,y € R, the element ey =

{g Z] 1s P—idempotent in R,.

2) If for some x,y € R, the element ey = ToYl s P—idempotent in
0 e

Ry, then e is idempotent in R.
(3) If e is idempotent in R, then for every x,y € R, the element ey =

¢ 0 15 Q—idempotent in Rs.

(4) If for some x,y € R, the element ey = {; 2] is Q—idempotent in
Ry, then e is an idempotent in R.

Proof. (1) Suppose that e is an idempotent in R, then for every z,y €
R,

2 2 _ —
eg—eoz{w a:y+ye}_{a: y}:{x r xy+ye y}GP

0 e? 0 e 0 e?—e
a b xa xb
For every p = 0 0 € P, where a,b € R, egp = 0 0 € P. So

eoP C P, this shows that ey is P—idempotent in Rs.
(2) Let x,y € R such that ey = {g Z} is P—idempotent in Ry. Since

e — ey € P,
P —r zy+ye—y| |d V
0 e —e 100
for some a’, b € R, so €? = e. This shows that e is idempotent in R.
(3) Similarly as in (1). (4) Similarly as in (2). O

From Theorem 2.6 we can obtain the following:

Corollary 2.7. For any ring R the following hold:
(1) An element e € R is idempotent in R if and only if there exists

[‘8 g] 1s P—idempotent in R,.
(2) An element e € R is idempotent in R if and only if there exists
x

0
(3) An element e € R is idempotent in R if and only if there exists

x,y € R such that the element

x € R such that the element [ 21 1s P—idempotent in Rs.

x,y € R such that the element [i 2] 1s Q—1idempotent in Rs.
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(4) An element e € R is idempotent in R if and only if there exists
e

x € R such that the element [O

2} 1s Q—1idempotent in Rs.

3. REGULAR RINGS RELATIVE TO RIGHT IDEAL
We start this section with the following:

Lemma 3.1. Let R be a ring and P # R be a right ideal in R. If
a,b € R such that b — a € P, then a is P—reqular if and only if b is
P—regular.

Proof. Suppose that b —a € P, then b = a + p, for some py € P.
(=) If a is P—regular, then there exists € R such that axa —a € P
and azP C P. So

bab —b = (a+ po)z(a+po) — (a+po) =
= (ax 4+ pox)(a + po) — (a+ po) =
= (axa — a) + axpy + poxa + poxpo — po € P

and bxP = (a + po)xP C axP + ppxP C P this shows that b is P—
idempotent. Similarly, we can prove conversely. O

The connection between the regular elements in R and P—regular
(Q—regular) elements in Ry we provide in the following:

Proposition 3.2. For any element a € R the following hold:
(1) If a is a regular element in R, then for every x € R, the elements:

=z 0 , |0 =
“To |’ T la 0
are P—regular elements in Ry.

(2) If for some v € R, the element o = {x 0

0 &] 1s P—regular in R,
then a is reqular in R.
(3) If for some x € R, the element o = {2 8} is P—regular in R,

then a s reqular in R.
(4) If a is a regular element in R, then for every x € R, the elements:

~la O] , |10 a
Tl 'Y Tz 0
are ()—regular elements in Rs.

(5) If for some x € R, the element ov = [a

0 g} 15 Q—reqular in Rs,

then a is reqular in R.
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(6) If for some x € R, the element o = {2 a} is Q—regular in Ro,

0

then a is reqular in R.

Proof. (1) Suppose that a is a regular element in R, then a = aba for
some b € R. For every x1,1, € R,

_ |1 Y
such that

__|zmx wya| |z 0| _ jzmxr - ayia
afo a—{ 0 aba] [0 a]_[ 0 aba—a}ep

a v
0 0

zxy a2y o V| |zxid xal
O‘ﬁt—{o abHO o]—{o 0o |€F
this shows that afP C P. Thus, a is an P—regular element in R.
Similarly, we can prove that for every z’,3' € R, the element:

= €ER
g {% yl} 2

such that o/’ — o' € P and o/ 'P C P. ie., & is an P—regular
element in R,.
(2) Suppose that a is P—regular in Ry, then there exists

_ |y =
A= [r b} € iy
where y, z,7, b € R such that afa — a € P, so

TYr TZa z 0 TYyr — Tz0
- = cP
arr aba 0 a arx aba — a

and for every t = [ } € P where o/, € R

This shows that aba = a. i.e., An element a is regular. (3) Similarly,
as in (2). (4) Similarly, as in (1). (5) and (6) Similarly, as in (2) and
(3). O

From Proposition 3.2 we can obtain of the following:

Corollary 3.3. For any ring R the following conditions are equivalent:
(1) A ring R is regular.

2) For every a € R there exists x € R such that the element z 0 18
0 a

P—regular in R,.
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(3) For every a € R there exists x € R such that the element 2 18

—

P—regular in R,. ]
(4) For every a € R there exists x € R such that the element is
Q—regular R,.

18

(5) For every a € R there exists © € R such that the element 2

=

Q—reqular in Rs.

We again use the notation, let R be a ring and Ry = Ms(R) be the
ring of all 2 X 2 matrices over a ring R. It is clear that the set:

x 0
Sy = cx,y € R
0 { |:0 y:| Y }
is a subring in Ry with identity element. Also, the sets:
a 0 0 0

are right ideals in Sy and Fy # Sy, Qo # So. Then we have the
following:

Theorem 3.4. For any ring R the following hold:
(1) A ring R is regular if and only if the ring Sy is Py—regular.
(2) A ring R is reqular if and only if the ring Sy is Qo—regular.

Proof. (1) Suppose that a ring R is regular. Let B 2] € Sy, where
z 0

is
0
Py—regular. Conversely, let a € R, then for every z € R the element

x,y € R. Since y is regular in R, by Lemma 3.1 the element [

0
2). O

{x g] is Py—regular in Sy, so a is regular in R. Similarly, we can proof

4. SEMI-POTENT RINGS RELATIVE TO RIGHT IDEAL

Definition 4.1. Let R be a ring and P # R be a right ideal in R. We
say that an element a € R is semi-potent relative to right ideal P or
P—semi-potent for short, if there exists x € R such that

bxb—be P
bxP C P
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Also, we say that a ring R is a semi-potent ring relative to right ideal P
or an P—semi-potent ring for short, if every element a € R is P—semi-
potent.

From previous definition, it is easy to see that 0,1 € R are P—semi-
potent elements. In addition to that, we have the following:

Lemma 4.2. Let R be a ring and P # R be a right ideal in R. FEvery
P—idempotent element is P—semi-potent.

Proof. Let e € R is an P—idempotent, then ¢? —e € P and eP C P,
so €2 = e + py for some py € P. For b = e we have

e —e=ee’ —e=clet+p) —e=(e*—¢€)+ep € P+ePCP
e’P=¢(eP)CePCP

Next, we present an example of an P—semi-potent elements:

Example 4.3. Let Z be the ring of integers and let Ry = My(Z) be the
ring of all 2 x 2 matrices over the ring of integers Z. For every n € Z

n 0 Ty
0 1 0 1|’
where z,y € Z such that bab — b € P and baP C P. Also, the element

the element a = is P—semi-potent in Ry, hence for b =

a = Lg (1)] , where n € Z is an P—semi-potent element in R, hence for

v = ﬁ g], where x,y € Z such that b'a’t/ — b € P and V'a'P C P.

In addition to that, for every n,m € Z the element a = {g T} is

P—semi-potent, hence for every x,y € Z the element § = {g gﬂ € R,

such that
a4 |xTnx rny+amy|  |T Y| _
bof = b = { 0 1 } {o 1] -

_ [azn:c—:c mny +xmy —y

§ oY e

For every p = [8 8] € P, where a,b € Z. We have:

_|lzn axm+y| |a b| _ |rna xnd
Wp_{o 1 Ho o}_{o O]EP
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ie., faP C P. On the other hand, for every n € Z the element

1 0] . . : 10
a = [0 n} is (Q—semi-potent in Ry, hence for b = L:_ y € Ry,
where z,y € Z such that bab — b € () and ba@) C Q. Also, the
element a' = [(1] g], where n € 7Z is (Q—semi-potent element in R,

hence for b’ = {2 ?ﬂ € Ry, where z,y € Z such that b'd't/ =V € Q

and b'a’@Q C Q. In addition to that, for every n,m € Z the element
1 0
/

o= |€ Ry is (Q—semi-potent, hence for every z,y € 7Z the

element ' = L’lﬁ 2] € Ry such that

‘orat 1 0] [1 0]
Bo'f—f _{x2+my+n$y nyQ} {x y}—
0 0
- {my—i—nmy nyQ—y] €@

For every p = [2 2] € @), where a,b € Z. We have:

' 1 0|0 O 0 0
Foip= [af—l—my ny} [a b} - {(x—l—my)a nyb} €Q
ie., f'd/Q C Q.

The connection between the semi-potent elements in R and P—semi-
potent ((Q—semi-potent) elements in Ry we provide in the following:

Proposition 4.4. For any element a € R the following hold:
(1) If a is a semi-potent element in R, then for every x € R, the

elements:
oz 0 , |0 =
=10 o’ T la 0

are P—semi-potent elements in Rs.
(2) If for some x € R, the element:

N

1s P—semi-potent in Ry, then a is semi-potent in R.
(3) If a is a semi-potent element in R, then for every x € R, the

elements:
_la O] , |10 a
=10 2" T |z 0
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are (Q—semi-potent elements in Rs.
(4) If for some x € R, the element:

o— | 0
|10
1s Q—semi-potent in Ry, then a is semi-potent in R.

Proof. (1) Suppose that a is a semi-potent element in R, then b = bab

for some b € R. For every z1,y; € R, f = [961 %1} € R, such that

_|mzzy xzy; +yiab T oy
50‘5_5_[ 0 bab } {o b]_

_ |mrwy — 3 2y +yeb — g
0 bab — b

Jer
Y]

For every t = {% %} € P, where d/,b' € R

|z owpal |d V] (rixd zqab
50"5_{0 baHo 0]_{0 0o | €7
This shows that faP C P. Thus, « is an P—semi-potent element

in Ry,. Similarly, we can prove that for every 2’,3’ € R, the element

B = [0 b} € Ry such that f'd/f' — ' € P and f'o/P C P. ie., o

1 n
is an P—semi-potent element in R,.

(2) Suppose that « is P—semi-potent in S, then there exists f =

7‘7{ z € Ry where y,2z,7,b € R such that faf — [ € P. Since

BSaP C P, implies that r = 0, so
o |yry yrz+4zab| |y z| _
pop 5_[0 bab ] [0 b}_
_|yry—y yxz+zab—z p
a 0 bab — b
This shows that bab = b. i.e., an element a is semi-potent. (3) Similarly,
as in (1). (4) Similarly, as in (2). O
From Proposition 4.4 we can obtain of the following:

Corollary 4.5. For any ring R the following conditions are equivalent:
(1) A ring R is semi-potent with J(R) = 0.

2) For every a € R there exists x € R such that the element z 0 is
0 a
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P—semi-potent in R,.

(3) For every a € R there exists © € R such that the element g 8
P—semi-potent in R,.
(4) For every a € R there exists x € R such that the element 8 g is
Q—semi-potent in Rs.
(5) For every a € R there exists x € R such that the element 8 s

QQ—semi-potent in Rs.

Also, in view of the hypothesis of Proposition 4.4 we can obtain the
following;:

Theorem 4.6. For any element a € R the following hold:
(1) If a is a semi-potent element in R, then for every n,m € R, the

n m| . . .
elements o = 0 ol Ban P—semi-potent elements in Ry.

(2) If for some n,m € R, the element o = g
i Ry, then the element a is a semi-potent in R.
(3) If a is a semi-potent element in R, then for every n,m € R, the
m

T;} 158 P—semi-potent

elements o = 15 QQ—semi-potent elements in Rs.

n

0
a 0] . ,

(4) If for some n,m € R, the element o = [n m} 18 (Q—semi-potent

in Ry, then the element a is semi-potent in R.

Proof. (1) Suppose that a is a semi-potent element in R, then there
exists b € R such that bab = b. So for every z,y € R the element

g = B ?Z] € Ry such that:

_|znx axny + (xm + ya)b r oyl
50‘5_5_{0 bab ]_[o b]_

_lzne —x any + (zm+ya)b —y
{ 0 bab — b €F

xzna  xnb

!/ /
For every p = € P, where d',V/ € R, Bap = { } epP

a

0 0 0 0

this shows that faP C P,i.e., the element « is P—semi-potent in R,.
(2) Suppose that « is an P—semi-potent in Ry, then there exists =

E i{] € Ry, where z,y, z,7 € R such that faf—f € P and faP C P.
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Since faP C P implies that z = 0. Also, since faP C P,
znr —z zny+ (xm+ya)b—y

paf=5=" bab — b €r
so bab—b = 0. Thus a is semi-potent in R. (3) Similarly, as in (1). (4)
Similarly, as in (2). O

Theorem 4.7. For any ring R the following hold:

(1) A ring R is semi-potent with J(R) = 0 if and only if the ring Sy is
P—semi-potent relative to right ideal F.

(2) A ring R is semi-potent with J(R) = 0 if and only if the ring Sy is
P—semi-potent relative to right ideal Q).

0

Proof. (1) Suppose that a ring R is P—semi-potent. Let o = [75 €

0
So where x,a € R. Since a is P—semi-potent in R, there exists b € R

such that bab = b. Let 5 = {:8 21, then g € Sy such that

2 0 x 0 - 0
faf = b= {o bab} B {o b] = { 0 bab—b} € F
Qo 0
0 O} € Py we have

2 0] [ag O z%ay 0

Papo = {o ba] {0 0] _[ 0 o €1
this shows that SaF, C F,. Thus, the ring Sy is Fy—semi-potent.
Conversely, let a € R, then by assumption for every z € R the element

and for every pg = {

0
exists § = {‘g 2} € Sy such that 0v6 — 6 € Fy. Thus

o |yxzy O | |y O] _ |yxy 0
070 5‘{0 bab} {o b}_{o bab—b}ep‘)

This shows that bab = b,.i.e, R is a semi-potent ring and J(R) = 0
Similarly, we can proof (2). O]

v = [:c 2] is P—semi-potent relative to right ideal Py in Sy, so there

5. LocAL RINGS RELATIVE TO RIGHT IDEAL

Lemma 5.1. [7, Proposition 1. P.75]. Let R # 0 be a ring. The
following conditions are equivalent:
(1) A ring R has exactly one maximal right ideal.
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(2) The nonunit elements in R form a proper right ideal.
(3) For every element r € R, either r or 1 —r has a right inverse in R.

Recall that a ring R is local if R satisfies the equivalent conditions
in Lemma 5.1, [7].

Definition 5.2. Let R be a ring and P # R be a right ideal of R. We
say that an element a € R has a right inverse relative to right ideal P
or has a right P—inverse if R = aR + P.

From previous definition, it is easy to see that, for every a € R,
R = aR + P if and only if there exists z € R such that 1 — axz € P.

Next, we present an example of elements have a right P—inverse. In
view hypothesis of Example 2.5 we can obtain the following:

Example 5.3. Let Z be the ring of integers and let Ry = My(Z) be
the ring of all 2 x 2 matrices over the ring of integers Z.

n o m
0 1

(1) For every n,m € Z, the element a = } has a right P—inverse.

v

Because for § = B 1] € Ry, where u,v € 7Z,

1 —nu —(nv+m)

l—aﬁ:{ 0 0 }EP

" m} has a right P—inverse.

(2) For every n,m € Z, the element o = [1 0

Because for g’ = [(1) ﬂ € Ry, where u € Z,

1-dp = {1—0m —(ngmu)} eP
_n
1

(3) For every n € Z, the element v = has a right P—inverse.

1 —n

1—7)\—{0 0} e P.

N oo

Because for A = [2 3}] € Ry, where u,v

o O m

n
(4) For every n € Z, the element ' = 1 has a right P—inverse.
Because for \' = {g ﬂ € Ry, where u,v € Z, 1—+'N = [é _On} e P.

Lemma 5.4. Let R be a ring and P # R be a right ideal of R. The
set

K={a:a€R;R+#aR+ P}
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satisfies the following:
(1) K # ¢ and K # R.
(2) PC K.

Proof. (1) It is clare that K # ¢, hence R # P =0R+ P,s0 0 € K.
Since R = R+ P, then 1 € K, so K # R.
(2) Since for every p € P,pR+ P =P # R,so P C K. O

Lemma 5.5. Let R be a ring and P # R be a right ideal of R. Then
for every right ideal A of R such that R # A+ P there exists a mazrimal
right M of R such that A+ P C M.

Proof. 1t is clear, hence A+ P is a right ideal in Rand R # A+ P. O

Theorem 5.6. Let R be a ring and P # R be a right ideal of R.
Suppose that
K={a:a€ R;R+#aR+ P}
Then the following conditions are equivalent:
(1) K is closed under addition.
(2) K is a right ideal in R such that K # R.
(3) K is a largest right ideal in R.
(4) In R there exists a largest right ideal N such that N # R and
PCN.
(5) For every r € R, either r or 1 —r has a right P—inverse.
(6) R has exactly one maximal right ideal M such that P C M.

Proof. (1) = (2) Let a € K, then R # aR + P. So for every x € R,
R # axR + P, hence if R = axR+ P C aR + P C R implies that
R = aR + P a contradiction, so ax € K, thus K is a right ideal in R.
(2) = (3) Let B be aright ideal in R such that B # R and P C B, then
for every b € B, R # bR + P, because if for some b € B, R = bR + P,
then R=bR+ P C B+ P C B C R, so B= R a contradiction. Thus,
B C K. (3) = (4) It is clear.

(4) = (5) Suppose that N be a largest right ideal in R such that N # R
and P C N. Let z € R, suppose R # xR+ P and R # (1 —x)R+ P,
then zR+ P C N and (1 — z)R+ P C N, this shows that € N and
l—xz € N,sincel =x+ (1—2)€ N, N =R a contradiction.

(5) = (1) Let a,b € K, then aR + P # R and bR+ P # R. Assume
that a +b ¢ K, then (a +b)R+ P = R, so (a+ b)x + py = 1 for some
xr € R,py € Pand 1 —bx = ax+pg. Isis clear that 1 —bx € K because
if 1 —bx ¢ K we have

R=(1-bzx)R+P=(ax+py)R+PCarR+PCaR+P=R

So R = aR+P a contradiction. This shows that bx € K and 1—bx € K,
i.e. br and 1 — bx has not right P—inverse, a contradiction. Thus, K
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is a closed under addition.

(3) = (6) Suppose that K is a largest right ideal in R. Since by
Lemma 5.4 K # R, there a exists maximal right ideal M in R such
that K C M. Since K is largest, K = M. This shows that R has
exactly one maximal right ideal M such that P C M. (6) = (3) It is
clear. 0J

Definition 5.7. Let R be a ring and P # R be a right ideal of R. We
say that a ring R is local relative to right ideal P or P—local for short,
if R satisfies the equivalent condition in Theorem 5.6.

Next, we present an example of P—local elements. In view hypoth-
esis of Example 2.5 we can obtain the following:

Example 5.8. Let Z be the ring of integers and let Ry = My(Z) be
the ring of all 2 x 2 matrices over the ring of integers 7Z.

(1) Let v = [g ;1] € Ry. It is easy to see that the element v has

no a right P—inverse in Ry. But 1 — v = :3 :411 € Ry has a
right P—inverse. Because for § = _z;u _01 € Ry, where u € Z,

== 53] s 1= [P0 e p i

shows that the element v € Ry is P—local in Rs.
(2) It is easy to see that for every n,m € Z, then element a =

8 T € R, has a right P—inverse by Example 5.3. This shows that

the element « ia P—local.

We again use the notation, let R be a ring and Ry = M3(R) be the
ring of all 2 x 2 matrices over a ring R. Let

P:{{g 8]:@,665’}, Q:{B 2]:a,beR}

are right ideals in Ry such that P # Ry, Q # Rs. The connection
between the local rings and P—local (—local) rings we provide in the
following:

Theorem 5.9. Let R be a ring and a € R. Then the following hold:
(1) If a has a right inverse in R, then for every x € R the element

o= B 2] has a right P—inverse in Rs.
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(2) If for some element v € R, the element o = [a:

0 ‘
0 a] has a right

P—inverse in Ry, then a has a right inverse in R.
(3) If a has a right inverse in R, then for every x € R the element
o= g 2} has a right QQ—inverse in R,.

a

(4) If for some element v € R, the element o = lo

0] has a right
x
Q—1inverse in Ry, the a has a right inverse in R.

Proof. (1) Assume that a has a right inverse in R, then ab = 1 for some

be R. Let u,v € R, then = {8 Z] € R, such that for every z € R
l—zu —2av 1l—zu —zv
1_0‘5:{ 0 1—ab]:[ 0 O]EP

so « has a right P—inverse.

(2) Let € R such that o = {g 2} has a right P—inverse in Ry,

then there exists § = Z Z] € Ry where u,v,w,r € R such that
1 —ap € P. Thus,

l—apf = [1

—xu  —xv } cp

—aw 1—ar

this shows that ar = 1, i.e., a has a right inverse in R. (3) Similarly,
as in (1). (4) Similarly, as in (2). O

In view hypothesis of Theorem 3.4 and Theorem 5.9 we can obtain
the following:

Corollary 5.10. For any ring R the following hold:

(1) A ring R is local if and only if the ring Sy is P—local relative to
right ideal Py.

(2) A ring R is local if and only if the ring Sy is P—local relative to
right ideal Q.

Theorem 5.11. Every ring is local relative to any maximal right ideal
of it.

Proof. Let R be a ring and M be a maximal right ideal of R. Let
a € R, we discus two cases a € M and a € M.

I-Ifae M, then 1 —a & M, so R=(1—a)R+ M. This shows that
1 — a has a right M —inverse.
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II- If a ¢ M, then R =aR+ M, so a has a right M—inverse. Thus, R
is M —local ring. 0
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