Journal of Algebra and Related Topics

Vol. 9, No 1, (2021), pp 1-19

P-REGULAR AND P-LOCAL RINGS

H. HAKMI*

Abstract

This paper is a continuation of study rings relative to right ideal, where we study the concepts of regular and local rings relative to right ideal. We give some relations between P-local (P-regular) and local (regular) rings. New characterization obtained include necessary and sufficient conditions of a ring R to be regular, local ring in terms P-regular, P-local of matrices ring $M_{2}(R)$. Also, We proved that every ring is local relative to any maximal right ideal of it.

1. Introduction

V. A. Andrunakievich and Yu. M. Ryabukhin in 1987 [2], were the first who introduced the concept of rings relative to right ideal. They studied the concepts of quasi-regularity and primitivity of rings relative to right ideal. Later, V. A. Andrunakievich and A. V. Andrunakievich in 1991 [1], studied the concept of regularity of rings relative to right ideal as generalization of (Von Neumann) regular ring (also known as P-regular rings). A number of interesting papers have been published on this concept in recent years, e.g., [1], [2], [3], [5]. In 2011, P. Dheena and S. Manivasan [3] studied quasi-ideals of a P-regular near-rings. In [5], H. Hakmi continue study P-regular and P-potent rings. In section 2 of this paper, we study idempotent elements relative to right ideal and investigate its properties. We proved that an element e of a $\operatorname{ring} R$ is an idempotent if and only if for every $x, y \in R$ the element

[^0]$\left[\begin{array}{ll}x & y \\ 0 & e\end{array}\right]$ is an idempotent relative to some right ideal in the ring of matrices $M_{2}(R)$. In section 3, we study regular rings relative to right ideal, we proved that an element a of a ring R is regular if and only if for every $x \in R$ the element $\left[\begin{array}{ll}x & 0 \\ 0 & a\end{array}\right]$ is a regular relative to some right ideal. In addition to that we proved that a ring R is regular if and only if the ring S_{0} is regular relative to some right ideal of $M_{2}(R)$. In section 4 , we study semi-potent ring relative to right ideal. we proved that an element a of a ring R is semi-potent if and only if for every $x \in R$ the element $\left[\begin{array}{ll}x & 0 \\ 0 & a\end{array}\right]$ is a semi-potent relative to some right ideal. In addition to that we proved that a ring R is semi-potent and $J(R)=0$ if and only if the ring S_{0} is semi-potent relative to some right ideal of $M_{2}(R)$. Finally, we study in section 4, the concept of local ring relative to right ideal. We proved that a ring R is local relative to right ideal P of R if and only if R contains exactly one maximal right ideal containing P. In addition to that, we proved that every ring R is local relative to any maximal right ideal of it. The connection between the local ring R and the ring of matrices $M_{2}(R)$ is obtained.

Throughout in this article, rings R, are associative with identity unless otherwise indicated. We denote the Jacobson radical of a ring R by $J(R)$. Also, for any ring R, we use the dotation: $R_{2}=M_{2}(R)$ the ring of 2×2 matrices over a ring R. Then

$$
P=\left\{\left[\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right]: a, b \in R\right\}, \quad Q=\left\{\left[\begin{array}{ll}
0 & 0 \\
a & b
\end{array}\right]: a, b \in R\right\}
$$

are right ideals in R_{2} such that $P \neq R_{2}$ and $Q \neq R_{2}$.
Let R be a ring and $P \neq R$ be a right ideal of R. Recall that an element $e \in R$ is an idempotent relative to right ideal P or (P-idempotent for short)[1], if

$$
\begin{gathered}
e^{2}-e \in P \\
e P \subseteq P
\end{gathered}
$$

Note that in any ring R, elements $0,1 \in R$ are idempotents relative to every right ideal $P \neq R$ of R. Also, if $P=0$, then an element $e \in R$ is P-idempotent if and only if e is idempotent.

An element a in a ring R is called regular if there exists $b \in R$ such that $a=a b a$. A ring R is called regular if every element of R is regular, [4]. Let R be a ring and $P \neq R$ be a right ideal in R. An element $a \in R$ is called regular relative to right ideal P, or P-regular
for short, if there exists $b \in R$ such that

$$
\begin{gathered}
a b a-a \in P \\
a b P \subseteq P
\end{gathered}
$$

A ring R is called P-regular if every element $a \in R$ is P-regular, [1].
Note that in previous definition, it is easy to see that every P - idempotent is an P-regular element. In particular, $0,1 \in R$ are P-regular elements. In addition to that, in previous definition we can see that for $P=0$, a ring R is P-regular if and only if R is regular. A ring R is called a semi-potent ring or an I_{0}-ring, if for every $a \in R, a \notin J(R)$ there exists $b \in R$ such that $b a b=b,[6]$. It easy to see that any regular ring R is a semi-potent ring with $J(R)=0$. Also, every π-regular, strongly π-regular ring are semi-potent.

2. Idempotents Relative to Right Ideal

Lemma 2.1. Let R be a ring and $P \neq R$ be a right ideal of R. Then for every P-idempotent $e \in R$ the following hold:
(1) An element $1-e \in R$ is P-idempotent.
(2) An element $e^{2} \in R$ is P-idempotent.
(3) An element $1-e^{2} \in R$ is P-idempotent.
(4) If $e \in J(R)$, then $e \in P$.
(5) If e has a right inverse, then $1-e \in P$.
(6) If $1-e$ has a right inverse, then $e \in P$.

Proof. Suppose that $e \in R$ is P-idempotent, then $e^{2}-e \in P$ and $e P \subseteq P$. So $e^{2}=e+p_{0}$ for some $p_{0} \in P$.
(1) We have

$$
(1-e)^{2}=(1-e)(1-e)=1-2 e+e+p_{0}=1-e+p_{0}
$$

So $(1-e)^{2}-(1-e)=p_{0} \in P$. Also, for every $t \in P,(1-e) t=t-e t \in P$, so $(1-e) P \subseteq P$.
(2) We have

$$
\left(e^{2}\right)^{2}=\left(e+p_{0}\right)\left(e+p_{0}\right)=e^{2}+e p_{0}+p_{0} e+p_{0}^{2}
$$

Thus

$$
\left(e^{2}\right)^{2}-e^{2}=e p_{0}+p_{0} e+p_{0}^{2} \in e P+P R+P \subseteq P
$$

So $e^{2} P=e(e P) \subseteq e P \subseteq P$. (3) Obvious by (1) and (2).
(4) Suppose that $e \in J(R)$, then $1-e$ has an inverse in R, so $(1-e) a=1$ for some $a \in R$ and so $e=\left(e-e^{2}\right) a \in P R \subseteq P$.
(5) Suppose that e has a right inverse in R. Then $e a=1$ for some $a \in R$ and

$$
e=e^{2} a=\left(e+p_{0}\right) a=e a+p_{0} a=1+p_{0} a \in 1+P
$$

Thus $1-e \in P$.
(6) Suppose that $1-e$ has a right inverse in R. Then $(1-e) b=1$ for some $b \in R$ and $e=\left(e-e^{2}\right) b \in P R \subseteq P$.

From Lemma 2.1 and for $P=0$ we obtain the following:
Corollary 2.2. Let R be a ring and $e \in R$ be an idempotent. Then:
(1) Elements $e^{2}, 1-e$ are idempotents in R.
(2) If $e \in J(R)$, then $e=0$.
(3) If e has a right inverse in R, then $e=1$.
(4) If $1-e$ has a right inverse in R, then $e=0$.

Proposition 2.3. Let R be a ring and $P \neq R$ be a right ideal of R.
For every P - idempotent $e \in R$ the following statements hold:
(1) For every integer $k \geq 1$, an element e^{k} is P-idempotent.
(2) For every integer $k \geq 1$, an element $1-e^{k}$ is P-idempotent.
(3) For every integer $k \geq 1$, an element $(1-e)^{k}$ is P-idempotent.

Proof. (1) Suppose that e is an P-idempotent, then $e^{2}-e \in P$ and $e P \subseteq P$, so $e^{2}=e+p_{0}$ for some $p_{0} \in P$. Proof by induction on k. For $k=1,2$ the assertion holds by assumption and Lemma 2.1. Suppose that e^{k-1} is an P-idempotent, then

$$
\begin{gathered}
\left(e^{k-1}\right)^{2}-e^{k-1} \in P \\
e^{k-1} P \subseteq P
\end{gathered}
$$

So $\left(e^{k-1}\right)^{2}=e^{k-1}+p_{1}$ for some $p_{1} \in P$. Thus

$$
\begin{aligned}
\left(e^{k}\right)^{2}= & \left(e^{k-1}\right)^{2} e^{2}=\left(e^{k-1}+p_{1}\right)\left(e+p_{0}\right)= \\
& =e^{k}+e^{k-1} p_{0}+p_{1} e+p_{1} p_{0}
\end{aligned}
$$

therefore $\left(e^{k}\right)^{2}-e^{k}=p$, where $p=e^{k-1} p_{0}+p_{1} e+p_{1} p_{0} \in P$. This shows that

$$
\begin{gathered}
\left(e^{k}\right)^{2}-e^{k} \in P \\
e^{k} P=e e^{k-1} P \subseteq e P \subseteq P
\end{gathered}
$$

Thus, e^{k} is an P-idempotent. (2) and (3) By (1) and Lemma 2.1.
Proposition 2.4. Let R be a ring and $P \neq R$ be a right ideal in R. If $e, g \in R$ such that $e-g \in P$, then g is P-idempotent if and only if e is P-idempotent.

Proof. Suppose that $e-g \in P$, then $e=g+p_{1}$ for some $p_{1} \in P$. Assume that g is P-idempotent, then $g^{2}-g \in P, g P \subseteq P$. So $g^{2}=g+p_{0}$ and

$$
\begin{gathered}
e^{2}=\left(g+p_{1}\right)\left(g+p_{1}\right)=g^{2}+g p_{1}+p_{1} g+p_{1} p_{1}= \\
=g+p_{0}+g p_{1}+p_{1} g+p_{1} p_{1}= \\
=g+p_{1}+\left(-p_{1}+p_{0}+g p_{1}+p_{1} g+p_{1} p_{1}\right)
\end{gathered}
$$

For

$$
p^{\prime}=-p_{1}+p_{0}+g p_{1}+p_{1} g+p_{1} p_{1} \in P
$$

We have $e^{2}-e=p^{\prime} \in P$ and $e P \subseteq g P+p_{1} P \subseteq P$. This shows that e is P - idempotent. Similarly, we can prove conversely.

Next, we present an example of an P-idempotent elements.
Example 2.5. Let \mathbb{Z} be the ring of integers and let $R_{2}=M_{2}(\mathbb{Z})$ be the ring of all 2×2 matrices over the ring of integers \mathbb{Z}. Let

$$
e=\left[\begin{array}{cc}
n & m \\
0 & 1
\end{array}\right] \in R_{2}
$$

Where $n, m \in \mathbb{Z}$, then e is P-idempotent in R_{2}, but not idempotent. And,

$$
e^{2}=\left[\begin{array}{cc}
n^{2} & (n+1) m \\
0 & 1
\end{array}\right]
$$

is P-idempotent in R_{2}. Also, for every positive integer k the element:

$$
e^{k}=\left[\begin{array}{cc}
n^{k} & m \Sigma_{t=0}^{k-1} n^{t} \\
0 & 1
\end{array}\right]
$$

is P-idempotent in R_{2}. In addition to that the element:

$$
1-e=\left[\begin{array}{cc}
1-n & -m \\
0 & 0
\end{array}\right]
$$

is P-idempotent in R_{2} and the element:

$$
1-e^{2}=\left[\begin{array}{cc}
1-n^{2} & -(n+1) m \\
0 & 0
\end{array}\right]
$$

is P-idempotent in R_{2}. Also, for every positive integer k the element:

$$
1-e^{k}=\left[\begin{array}{cc}
1-n^{k} & -m \Sigma_{t=0}^{k-1} n^{t} \\
0 & 0
\end{array}\right]
$$

is P-idempotent in R_{2} and the element:

$$
(1-e)^{2}=\left[\begin{array}{cc}
(1-n)^{2} & -(1-n) m \\
0 & 0
\end{array}\right]
$$

is P-idempotent in R_{2}. Also, for every positive integer k the element:

$$
(1-e)^{k}=\left[\begin{array}{cc}
(1-n)^{k} & -m(1-n)^{k-1} \\
0 & 0
\end{array}\right]
$$

is P-idempotent in R_{2}.
The connection between the idempotent elements in a ring R and P-idempotent (Q-idempotent) elements in R_{2} we provide in the following:

Theorem 2.6. For any element $e \in R$ the following hold:
(1) If e is idempotent in R, then for every $x, y \in R$, the element $e_{0}=$ $\left[\begin{array}{ll}x & y \\ 0 & e\end{array}\right]$ is P-idempotent in R_{2}.
(2) If for some $x, y \in R$, the element $e_{0}=\left[\begin{array}{ll}x & y \\ 0 & e\end{array}\right]$ is P-idempotent in R_{2}, then e is idempotent in R.
(3) If e is idempotent in R, then for every $x, y \in R$, the element $e_{0}=$ $\left[\begin{array}{ll}e & 0 \\ x & y\end{array}\right]$ is Q-idempotent in R_{2}.
(4) If for some $x, y \in R$, the element $e_{0}=\left[\begin{array}{ll}e & 0 \\ x & y\end{array}\right]$ is Q-idempotent in R_{2}, then e is an idempotent in R.

Proof. (1) Suppose that e is an idempotent in R, then for every $x, y \in$ R,

$$
e_{0}^{2}-e_{0}=\left[\begin{array}{cc}
x^{2} & x y+y e \\
0 & e^{2}
\end{array}\right]-\left[\begin{array}{ll}
x & y \\
0 & e
\end{array}\right]=\left[\begin{array}{cc}
x^{2}-x & x y+y e-y \\
0 & e^{2}-e
\end{array}\right] \in P
$$

For every $p=\left[\begin{array}{ll}a & b \\ 0 & 0\end{array}\right] \in P$, where $a, b \in R, e_{0} p=\left[\begin{array}{cc}x a & x b \\ 0 & 0\end{array}\right] \in P$. So $e_{0} P \subseteq P$, this shows that e_{0} is P-idempotent in R_{2}.
(2) Let $x, y \in R$ such that $e_{0}=\left[\begin{array}{ll}x & y \\ 0 & e\end{array}\right]$ is P-idempotent in R_{2}. Since $e_{0}^{2}-e_{0} \in P$,

$$
\left[\begin{array}{cc}
x^{2}-x & x y+y e-y \\
0 & e^{2}-e
\end{array}\right]=\left[\begin{array}{cc}
a^{\prime} & b^{\prime} \\
0 & 0
\end{array}\right]
$$

for some $a^{\prime}, b^{\prime} \in R$, so $e^{2}=e$. This shows that e is idempotent in R.
(3) Similarly as in (1). (4) Similarly as in (2).

From Theorem 2.6 we can obtain the following:
Corollary 2.7. For any ring R the following hold:
(1) An element $e \in R$ is idempotent in R if and only if there exists $x, y \in R$ such that the element $\left[\begin{array}{ll}x & y \\ 0 & e\end{array}\right]$ is P-idempotent in R_{2}.
(2) An element $e \in R$ is idempotent in R if and only if there exists $x \in R$ such that the element $\left[\begin{array}{ll}x & 0 \\ 0 & e\end{array}\right]$ is P-idempotent in R_{2}.
(3) An element $e \in R$ is idempotent in R if and only if there exists $x, y \in R$ such that the element $\left[\begin{array}{ll}e & 0 \\ x & y\end{array}\right]$ is Q-idempotent in R_{2}.
(4) An element $e \in R$ is idempotent in R if and only if there exists $x \in R$ such that the element $\left[\begin{array}{ll}e & 0 \\ 0 & x\end{array}\right]$ is Q-idempotent in R_{2}.

3. Regular Rings Relative to Right Ideal

We start this section with the following:
Lemma 3.1. Let R be a ring and $P \neq R$ be a right ideal in R. If $a, b \in R$ such that $b-a \in P$, then a is P-regular if and only if b is P-regular.
Proof. Suppose that $b-a \in P$, then $b=a+p_{0}$ for some $p_{0} \in P$.
(\Rightarrow) If a is P-regular, then there exists $x \in R$ such that $a x a-a \in P$ and $a x P \subseteq P$. So

$$
\begin{gathered}
b x b-b=\left(a+p_{0}\right) x\left(a+p_{0}\right)-\left(a+p_{0}\right)= \\
=\left(a x+p_{0} x\right)\left(a+p_{0}\right)-\left(a+p_{0}\right)= \\
=(a x a-a)+a x p_{0}+p_{0} x a+p_{0} x p_{0}-p_{0} \in P
\end{gathered}
$$

and $b x P=\left(a+p_{0}\right) x P \subseteq a x P+p_{0} x P \subseteq P$ this shows that b is $P-$ idempotent. Similarly, we can prove conversely.

The connection between the regular elements in R and P-regular (Q-regular) elements in R_{2} we provide in the following:

Proposition 3.2. For any element $a \in R$ the following hold:
(1) If a is a regular element in R, then for every $x \in R$, the elements:

$$
\alpha=\left[\begin{array}{ll}
x & 0 \\
0 & a
\end{array}\right], \alpha^{\prime}=\left[\begin{array}{ll}
0 & x \\
a & 0
\end{array}\right]
$$

are P-regular elements in R_{2}.
(2) If for some $x \in R$, the element $\alpha=\left[\begin{array}{ll}x & 0 \\ 0 & a\end{array}\right]$ is P-regular in R_{2}, then a is regular in R.
(3) If for some $x \in R$, the element $\alpha=\left[\begin{array}{ll}0 & x \\ a & 0\end{array}\right]$ is P-regular in R_{2}, then a is regular in R.
(4) If a is a regular element in R, then for every $x \in R$, the elements:

$$
\alpha=\left[\begin{array}{cc}
a & 0 \\
0 & x
\end{array}\right], \alpha^{\prime}=\left[\begin{array}{ll}
0 & a \\
x & 0
\end{array}\right]
$$

are Q-regular elements in R_{2}.
(5) If for some $x \in R$, the element $\alpha=\left[\begin{array}{ll}a & 0 \\ 0 & x\end{array}\right]$ is Q-regular in R_{2}, then a is regular in R.
(6) If for some $x \in R$, the element $\alpha=\left[\begin{array}{ll}0 & a \\ x & 0\end{array}\right]$ is $Q-$ regular in R_{2}, then a is regular in R.

Proof. (1) Suppose that a is a regular element in R, then $a=a b a$ for some $b \in R$. For every $x_{1}, y_{1} \in R$,

$$
\beta=\left[\begin{array}{cc}
x_{1} & y_{1} \\
0 & b
\end{array}\right] \in R_{2}
$$

such that

$$
\alpha \beta \alpha-\alpha=\left[\begin{array}{cc}
x x_{1} x & x y_{1} a \\
0 & a b a
\end{array}\right]-\left[\begin{array}{cc}
x & 0 \\
0 & a
\end{array}\right]=\left[\begin{array}{cc}
x x_{1} x-x & x y_{1} a \\
0 & a b a-a
\end{array}\right] \in P
$$

and for every $t=\left[\begin{array}{cc}a^{\prime} & b^{\prime} \\ 0 & 0\end{array}\right] \in P$ where $a^{\prime}, b^{\prime} \in R$

$$
\alpha \beta t=\left[\begin{array}{cc}
x x_{1} & x y_{1} \\
0 & a b
\end{array}\right]\left[\begin{array}{cc}
a^{\prime} & b^{\prime} \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
x x_{1} a^{\prime} & x x_{1} b^{\prime} \\
0 & 0
\end{array}\right] \in P
$$

this shows that $\alpha \beta P \subseteq P$. Thus, α is an P-regular element in R_{2}. Similarly, we can prove that for every $x^{\prime}, y^{\prime} \in R$, the element:

$$
\beta^{\prime}=\left[\begin{array}{cc}
0 & b \\
x_{1} & y_{1}
\end{array}\right] \in R_{2}
$$

such that $\alpha^{\prime} \beta^{\prime} \alpha^{\prime}-\alpha^{\prime} \in P$ and $\alpha^{\prime} \beta^{\prime} P \subseteq P$. i.e., α^{\prime} is an P-regular element in R_{2}.
(2) Suppose that α is P-regular in R_{2}, then there exists

$$
\beta=\left[\begin{array}{ll}
y & z \\
r & b
\end{array}\right] \in R_{2}
$$

where $y, z, r, b \in R$ such that $\alpha \beta \alpha-\alpha \in P$, so

$$
\left[\begin{array}{ll}
x y x & x z a \\
\text { arx } & a b a
\end{array}\right]-\left[\begin{array}{cc}
x & 0 \\
0 & a
\end{array}\right]=\left[\begin{array}{cc}
x y x-x & x z a \\
a r x & a b a-a
\end{array}\right] \in P
$$

This shows that $a b a=a$. i.e., An element a is regular. (3) Similarly, as in (2). (4) Similarly, as in (1). (5) and (6) Similarly, as in (2) and (3).

From Proposition 3.2 we can obtain of the following:
Corollary 3.3. For any ring R the following conditions are equivalent:
(1) A ring R is regular.
(2) For every $a \in R$ there exists $x \in R$ such that the element $\left[\begin{array}{ll}x & 0 \\ 0 & a\end{array}\right]$ is P-regular in R_{2}.
(3) For every $a \in R$ there exists $x \in R$ such that the element $\left[\begin{array}{ll}0 & x \\ a & 0\end{array}\right]$ is P-regular in R_{2}.
(4) For every $a \in R$ there exists $x \in R$ such that the element $\left[\begin{array}{ll}a & 0 \\ 0 & x\end{array}\right]$ is Q-regular R_{2}.
(5) For every $a \in R$ there exists $x \in R$ such that the element $\left[\begin{array}{ll}0 & a \\ x & 0\end{array}\right]$ is Q-regular in R_{2}.

We again use the notation, let R be a ring and $R_{2}=M_{2}(R)$ be the ring of all 2×2 matrices over a ring R. It is clear that the set:

$$
S_{0}=\left\{\left[\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right]: x, y \in R\right\}
$$

is a subring in R_{2} with identity element. Also, the sets:

$$
P_{0}=\left\{\left[\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right]: a \in R\right\}, \quad Q_{0}=\left\{\left[\begin{array}{ll}
0 & 0 \\
0 & a
\end{array}\right]: a \in R\right\}
$$

are right ideals in S_{0} and $P_{0} \neq S_{0}, Q_{0} \neq S_{0}$. Then we have the following:

Theorem 3.4. For any ring R the following hold:
(1) A ring R is regular if and only if the ring S_{0} is P_{0}-regular.
(2) A ring R is regular if and only if the ring S_{0} is Q_{0}-regular.

Proof. (1) Suppose that a ring R is regular. Let $\left[\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right] \in S_{0}$, where $x, y \in R$. Since y is regular in R, by Lemma 3.1 the element $\left[\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right]$ is P_{0}-regular. Conversely, let $a \in R$, then for every $x \in R$ the element $\left[\begin{array}{ll}x & 0 \\ 0 & a\end{array}\right]$ is P_{0}-regular in S_{0}, so a is regular in R. Similarly, we can proof (2).

4. Semi-potent Rings Relative to Right Ideal

Definition 4.1. Let R be a ring and $P \neq R$ be a right ideal in R. We say that an element $a \in R$ is semi-potent relative to right ideal P or P-semi-potent for short, if there exists $x \in R$ such that

$$
\begin{gathered}
b x b-b \in P \\
b x P \subseteq P
\end{gathered}
$$

Also, we say that a ring R is a semi-potent ring relative to right ideal P or an P-semi-potent ring for short, if every element $a \in R$ is P-semipotent.

From previous definition, it is easy to see that $0,1 \in R$ are P-semipotent elements. In addition to that, we have the following:

Lemma 4.2. Let R be a ring and $P \neq R$ be a right ideal in R. Every P-idempotent element is P-semi-potent.

Proof. Let $e \in R$ is an P-idempotent, then $e^{2}-e \in P$ and $e P \subseteq P$, so $e^{2}=e+p_{0}$ for some $p_{0} \in P$. For $b=e$ we have

$$
\begin{gathered}
e^{3}-e=e e^{2}-e=e\left(e+p_{0}\right)-e=\left(e^{2}-e\right)+e p_{0} \in P+e P \subseteq P \\
e^{2} P=e(e P) \subseteq e P \subseteq P
\end{gathered}
$$

Next, we present an example of an P-semi-potent elements:
Example 4.3. Let \mathbb{Z} be the ring of integers and let $R_{2}=M_{2}(\mathbb{Z})$ be the ring of all 2×2 matrices over the ring of integers \mathbb{Z}. For every $n \in \mathbb{Z}$ the element $a=\left[\begin{array}{ll}n & 0 \\ 0 & 1\end{array}\right]$ is P-semi-potent in R_{2}, hence for $b=\left[\begin{array}{ll}x & y \\ 0 & 1\end{array}\right]$, where $x, y \in \mathbb{Z}$ such that $b a b-b \in P$ and $b a P \subseteq P$. Also, the element $a^{\prime}=\left[\begin{array}{ll}0 & 1 \\ n & 0\end{array}\right]$, where $n \in \mathbb{Z}$ is an P-semi-potent element in R, hence for $b^{\prime}=\left[\begin{array}{ll}x & y \\ 1 & 0\end{array}\right]$, where $x, y \in \mathbb{Z}$ such that $b^{\prime} a^{\prime} b^{\prime}-b^{\prime} \in P$ and $b^{\prime} a^{\prime} P \subseteq P$. In addition to that, for every $n, m \in \mathbb{Z}$ the element $\alpha=\left[\begin{array}{cc}n & m \\ 0 & 1\end{array}\right]$ is P-semi-potent, hence for every $x, y \in \mathbb{Z}$ the element $\beta=\left[\begin{array}{ll}x & y \\ 0 & 1\end{array}\right] \in R_{2}$ such that

$$
\begin{gathered}
\beta \alpha \beta-\beta=\left[\begin{array}{cc}
x n x & x n y+x m y \\
0 & 1
\end{array}\right]-\left[\begin{array}{ll}
x & y \\
0 & 1
\end{array}\right]= \\
=\left[\begin{array}{cc}
x n x-x & x n y+x m y-y \\
0 & 0
\end{array}\right] \in P
\end{gathered}
$$

For every $p=\left[\begin{array}{ll}a & b \\ 0 & 0\end{array}\right] \in P$, where $a, b \in \mathbb{Z}$. We have:

$$
\beta \alpha p=\left[\begin{array}{cc}
x n & x m+y \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
x n a & x n b \\
0 & 0
\end{array}\right] \in P
$$

i.e., $\beta \alpha P \subseteq P$. On the other hand, for every $n \in \mathbb{Z}$ the element $a=\left[\begin{array}{ll}1 & 0 \\ 0 & n\end{array}\right]$ is Q-semi-potent in R_{2}, hence for $b=\left[\begin{array}{ll}1 & 0 \\ x & y\end{array}\right] \in R_{2}$, where $x, y \in \mathbb{Z}$ such that $b a b-b \in Q$ and $b a Q \subseteq Q$. Also, the element $a^{\prime}=\left[\begin{array}{cc}0 & n \\ 1 & 0\end{array}\right]$, where $n \in \mathbb{Z}$ is Q-semi-potent element in R, hence for $b^{\prime}=\left[\begin{array}{ll}0 & 1 \\ x & y\end{array}\right] \in R_{2}$, where $x, y \in \mathbb{Z}$ such that $b^{\prime} a^{\prime} b^{\prime}-b^{\prime} \in Q$ and $b^{\prime} a^{\prime} Q \subseteq Q$. In addition to that, for every $n, m \in \mathbb{Z}$ the element $\alpha^{\prime}=\left[\begin{array}{cc}1 & \overline{0} \\ m & n\end{array}\right] \in R_{2}$ is Q-semi-potent, hence for every $x, y \in \mathbb{Z}$ the element $\beta^{\prime}=\left[\begin{array}{ll}1 & 0 \\ x & y\end{array}\right] \in R_{2}$ such that

$$
\begin{aligned}
\beta^{\prime} \alpha^{\prime} \beta^{\prime}-\beta^{\prime} & =\left[\begin{array}{cc}
1 & 0 \\
x^{2}+m y+n x y & n y^{2}
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
x & y
\end{array}\right]= \\
& =\left[\begin{array}{cc}
0 & 0 \\
m y+n x y & n y^{2}-y
\end{array}\right] \in Q
\end{aligned}
$$

For every $p=\left[\begin{array}{ll}0 & 0 \\ a & b\end{array}\right] \in Q$, where $a, b \in \mathbb{Z}$. We have:

$$
\beta^{\prime} \alpha^{\prime} p=\left[\begin{array}{cc}
1 & 0 \\
x+m y & n y
\end{array}\right]\left[\begin{array}{cc}
0 & 0 \\
a & b
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
(x+m y) a & n y b
\end{array}\right] \in Q
$$

i.e., $\beta^{\prime} \alpha^{\prime} Q \subseteq Q$.

The connection between the semi-potent elements in R and P-semipotent (Q-semi-potent) elements in R_{2} we provide in the following:
Proposition 4.4. For any element $a \in R$ the following hold:
(1) If a is a semi-potent element in R, then for every $x \in R$, the elements:

$$
\alpha=\left[\begin{array}{ll}
x & 0 \\
0 & a
\end{array}\right], \alpha^{\prime}=\left[\begin{array}{ll}
0 & x \\
a & 0
\end{array}\right]
$$

are P-semi-potent elements in R_{2}.
(2) If for some $x \in R$, the element:

$$
\alpha=\left[\begin{array}{ll}
x & 0 \\
0 & a
\end{array}\right]
$$

is P-semi-potent in R_{2}, then a is semi-potent in R.
(3) If a is a semi-potent element in R, then for every $x \in R$, the elements:

$$
\alpha=\left[\begin{array}{ll}
a & 0 \\
0 & x
\end{array}\right], \alpha^{\prime}=\left[\begin{array}{ll}
0 & a \\
x & 0
\end{array}\right]
$$

are Q-semi-potent elements in R_{2}.
(4) If for some $x \in R$, the element:

$$
\alpha=\left[\begin{array}{ll}
a & 0 \\
0 & x
\end{array}\right]
$$

is Q-semi-potent in R_{2}, then a is semi-potent in R.
Proof. (1) Suppose that a is a semi-potent element in R, then $b=b a b$ for some $b \in R$. For every $x_{1}, y_{1} \in R, \beta=\left[\begin{array}{cc}x_{1} & y_{1} \\ 0 & b\end{array}\right] \in R_{2}$ such that

$$
\begin{gathered}
\beta \alpha \beta-\beta=\left[\begin{array}{cc}
x_{1} x x_{1} & x_{1} x y_{1}+y_{1} a b \\
0 & b a b
\end{array}\right]-\left[\begin{array}{cc}
x_{1} & y_{1} \\
0 & b
\end{array}\right]= \\
=\left[\begin{array}{cc}
x_{1} x x_{1}-x_{1} & x_{1} x y_{1}+y_{1} a b-y_{1} \\
0 & b a b-b
\end{array}\right] \in P
\end{gathered}
$$

For every $t=\left[\begin{array}{cc}a^{\prime} & b^{\prime} \\ 0 & 0\end{array}\right] \in P$, where $a^{\prime}, b^{\prime} \in R$

$$
\beta \alpha t=\left[\begin{array}{cc}
x_{1} x & y_{1} a \\
0 & b a
\end{array}\right]\left[\begin{array}{cc}
a^{\prime} & b^{\prime} \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
x_{1} x a^{\prime} & x_{1} x b^{\prime} \\
0 & 0
\end{array}\right] \in P
$$

This shows that $\beta \alpha P \subseteq P$. Thus, α is an P-semi-potent element in R_{2}. Similarly, we can prove that for every $x^{\prime}, y^{\prime} \in R$, the element $\beta^{\prime}=\left[\begin{array}{cc}0 & b \\ x_{1} & y_{1}\end{array}\right] \in R_{2}$ such that $\beta^{\prime} \alpha^{\prime} \beta^{\prime}-\beta^{\prime} \in P$ and $\beta^{\prime} \alpha^{\prime} P \subseteq P$. i.e., α^{\prime} is an P-semi-potent element in R_{2}.
(2) Suppose that α is P-semi-potent in S, then there exists $\beta=$ $\left[\begin{array}{ll}y & z \\ r & b\end{array}\right] \in R_{2}$ where $y, z, r, b \in R$ such that $\beta \alpha \beta-\beta \in P$. Since $\beta \alpha P \subseteq P$, implies that $r=0$, so

$$
\begin{gathered}
\beta \alpha \beta-\beta=\left[\begin{array}{cc}
y x y & y x z+z a b \\
0 & b a b
\end{array}\right]-\left[\begin{array}{ll}
y & z \\
0 & b
\end{array}\right]= \\
=\left[\begin{array}{cc}
y x y-y & y x z+z a b-z \\
0 & b a b-b
\end{array}\right] \in P
\end{gathered}
$$

This shows that $b a b=b$. i.e., an element a is semi-potent. (3) Similarly, as in (1). (4) Similarly, as in (2).

From Proposition 4.4 we can obtain of the following:
Corollary 4.5. For any ring R the following conditions are equivalent:
(1) A ring R is semi-potent with $J(R)=0$.
(2) For every $a \in R$ there exists $x \in R$ such that the element $\left[\begin{array}{ll}x & 0 \\ 0 & a\end{array}\right]$ is
P-semi-potent in R_{2}.
(3) For every $a \in R$ there exists $x \in R$ such that the element $\left[\begin{array}{ll}0 & x \\ a & 0\end{array}\right]$ is P-semi-potent in R_{2}.
(4) For every $a \in R$ there exists $x \in R$ such that the element $\left[\begin{array}{ll}a & 0 \\ 0 & x\end{array}\right]$ is Q-semi-potent in R_{2}.
(5) For every $a \in R$ there exists $x \in R$ such that the element $\left[\begin{array}{ll}0 & a \\ x & 0\end{array}\right]$ is Q-semi-potent in R_{2}.

Also, in view of the hypothesis of Proposition 4.4 we can obtain the following:

Theorem 4.6. For any element $a \in R$ the following hold:
(1) If a is a semi-potent element in R, then for every $n, m \in R$, the elements $\alpha=\left[\begin{array}{cc}n & m \\ 0 & a\end{array}\right]$ is an P-semi-potent elements in R_{2}.
(2) If for some $n, m \in R$, the element $\alpha=\left[\begin{array}{cc}n & m \\ 0 & a\end{array}\right]$ is P-semi-potent in R_{2}, then the element a is a semi-potent in R.
(3) If a is a semi-potent element in R, then for every $n, m \in R$, the elements $\alpha=\left[\begin{array}{cc}n & m \\ 0 & a\end{array}\right]$ is Q-semi-potent elements in R_{2}.
(4) If for some $n, m \in R$, the element $\alpha=\left[\begin{array}{cc}a & 0 \\ n & m\end{array}\right]$ is Q-semi-potent in R_{2}, then the element a is semi-potent in R.

Proof. (1) Suppose that a is a semi-potent element in R, then there exists $b \in R$ such that $b a b=b$. So for every $x, y \in R$ the element $\beta=\left[\begin{array}{ll}x & y \\ 0 & b\end{array}\right] \in R_{2}$ such that:

$$
\begin{gathered}
\beta \alpha \beta-\beta=\left[\begin{array}{cc}
x n x & x n y+(x m+y a) b \\
0 & b a b
\end{array}\right]-\left[\begin{array}{ll}
x & y \\
0 & b
\end{array}\right]= \\
=\left[\begin{array}{cc}
x n x-x & x n y+(x m+y a) b-y \\
0 & b a b-b
\end{array}\right] \in P
\end{gathered}
$$

For every $p=\left[\begin{array}{cc}a^{\prime} & b^{\prime} \\ 0 & 0\end{array}\right] \in P$, where $a^{\prime}, b^{\prime} \in R, \beta \alpha p=\left[\begin{array}{cc}x n a^{\prime} & x n b^{\prime} \\ 0 & 0\end{array}\right] \in P$ this shows that $\beta \alpha P \subseteq P$,i.e., the element α is P-semi-potent in R_{2}. (2) Suppose that α is an P-semi-potent in R_{2}, then there exists $\beta=$ $\left[\begin{array}{ll}x & y \\ z & r\end{array}\right] \in R_{2}$, where $x, y, z, r \in R$ such that $\beta \alpha \beta-\beta \in P$ and $\beta \alpha P \subseteq P$.

Since $\beta \alpha P \subseteq P$ implies that $z=0$. Also, since $\beta \alpha P \subseteq P$,

$$
\beta \alpha \beta-\beta=\left[\begin{array}{cc}
x n x-x & x n y+(x m+y a) b-y \\
0 & b a b-b
\end{array}\right] \in P
$$

so $b a b-b=0$. Thus a is semi-potent in R. (3) Similarly, as in (1). (4) Similarly, as in (2).

Theorem 4.7. For any ring R the following hold:
(1) A ring R is semi-potent with $J(R)=0$ if and only if the ring S_{0} is P-semi-potent relative to right ideal P_{0}.
(2) A ring R is semi-potent with $J(R)=0$ if and only if the ring S_{0} is P-semi-potent relative to right ideal Q_{0}.
Proof. (1) Suppose that a ring R is P-semi-potent. Let $\alpha=\left[\begin{array}{cc}x & 0 \\ 0 & a\end{array}\right] \in$ S_{0} where $x, a \in R$. Since a is P-semi-potent in R, there exists $b \in R$ such that $b a b=b$. Let $\beta=\left[\begin{array}{ll}x & 0 \\ 0 & b\end{array}\right]$, then $\beta \in S_{0}$ such that

$$
\beta \alpha \beta-\beta=\left[\begin{array}{cc}
x^{3} & 0 \\
0 & b a b
\end{array}\right]-\left[\begin{array}{cc}
x & 0 \\
0 & b
\end{array}\right]=\left[\begin{array}{cc}
x^{3}-x & 0 \\
0 & b a b-b
\end{array}\right] \in P_{0}
$$

and for every $p_{0}=\left[\begin{array}{cc}a_{0} & 0 \\ 0 & 0\end{array}\right] \in P_{0}$ we have

$$
\beta \alpha p_{0}=\left[\begin{array}{cc}
x^{2} & 0 \\
0 & b a
\end{array}\right]\left[\begin{array}{cc}
a_{0} & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
x^{2} a_{0} & 0 \\
0 & 0
\end{array}\right] \in P_{0}
$$

this shows that $\beta \alpha P_{0} \subseteq P_{0}$. Thus, the ring S_{0} is P_{0}-semi-potent. Conversely, let $a \in R$, then by assumption for every $x \in R$ the element $\gamma=\left[\begin{array}{ll}x & 0 \\ 0 & a\end{array}\right]$ is P-semi-potent relative to right ideal P_{0} in S_{0}, so there exists $\delta=\left[\begin{array}{ll}y & 0 \\ 0 & b\end{array}\right] \in S_{0}$ such that $\delta \gamma \delta-\delta \in P_{0}$. Thus

$$
\delta \gamma \delta-\delta=\left[\begin{array}{cc}
y x y & 0 \\
0 & b a b
\end{array}\right]-\left[\begin{array}{cc}
y & 0 \\
0 & b
\end{array}\right]=\left[\begin{array}{cc}
y x y & 0 \\
0 & b a b-b
\end{array}\right] \in P_{0}
$$

This shows that $b a b=b$,i.e, R is a semi-potent ring and $J(R)=0$. Similarly, we can proof (2).

5. Local Rings Relative to Right Ideal

Lemma 5.1. [7, Proposition 1. P.75]. Let $R \neq 0$ be a ring. The following conditions are equivalent:
(1) A ring R has exactly one maximal right ideal.
(2) The nonunit elements in R form a proper right ideal.
(3) For every element $r \in R$, either r or $1-r$ has a right inverse in R.

Recall that a ring R is local if R satisfies the equivalent conditions in Lemma 5.1, [7].
Definition 5.2. Let R be a ring and $P \neq R$ be a right ideal of R. We say that an element $a \in R$ has a right inverse relative to right ideal P or has a right P-inverse if $R=a R+P$.

From previous definition, it is easy to see that, for every $a \in R$, $R=a R+P$ if and only if there exists $x \in R$ such that $1-a x \in P$.

Next, we present an example of elements have a right P-inverse. In view hypothesis of Example 2.5 we can obtain the following:
Example 5.3. Let \mathbb{Z} be the ring of integers and let $R_{2}=M_{2}(Z)$ be the ring of all 2×2 matrices over the ring of integers \mathbb{Z}.
(1) For every $n, m \in \mathbb{Z}$, the element $\alpha=\left[\begin{array}{cc}n & m \\ 0 & 1\end{array}\right]$ has a right P-inverse. Because for $\beta=\left[\begin{array}{ll}u & v \\ 0 & 1\end{array}\right] \in R_{2}$, where $u, v \in \mathbb{Z}$,

$$
1-\alpha \beta=\left[\begin{array}{cc}
1-n u & -(n v+m) \\
0 & 0
\end{array}\right] \in P
$$

(2) For every $n, m \in \mathbb{Z}$, the element $\alpha^{\prime}=\left[\begin{array}{cc}n & m \\ 1 & 0\end{array}\right]$ has a right P-inverse.

Because for $\beta^{\prime}=\left[\begin{array}{ll}0 & 1 \\ 1 & u\end{array}\right] \in R_{2}$, where $u \in \mathbb{Z}$,

$$
1-\alpha^{\prime} \beta^{\prime}=\left[\begin{array}{cc}
1-m & -(n+m u) \\
0 & 0
\end{array}\right] \in P
$$

(3) For every $n \in \mathbb{Z}$, the element $\gamma=\left[\begin{array}{ll}n & 0 \\ 1 & 0\end{array}\right]$ has a right P-inverse.

Because for $\lambda=\left[\begin{array}{ll}0 & 1 \\ u & v\end{array}\right] \in R_{2}$, where $u, v \in \mathbb{Z}, 1-\gamma \lambda=\left[\begin{array}{cc}1 & -n \\ 0 & 0\end{array}\right] \in P$.
(4) For every $n \in \mathbb{Z}$, the element $\gamma^{\prime}=\left[\begin{array}{ll}0 & n \\ 0 & 1\end{array}\right]$ has a right P-inverse.

Because for $\lambda^{\prime}=\left[\begin{array}{ll}u & v \\ 0 & 1\end{array}\right] \in R_{2}$, where $u, v \in \mathbb{Z}, 1-\gamma^{\prime} \lambda^{\prime}=\left[\begin{array}{cc}1 & -n \\ 0 & 0\end{array}\right] \in P$.
Lemma 5.4. Let R be a ring and $P \neq R$ be a right ideal of R. The set

$$
K=\{a: a \in R ; R \neq a R+P\}
$$

satisfies the following:
(1) $K \neq \phi$ and $K \neq R$.
(2) $P \subseteq K$.

Proof. (1) It is clare that $K \neq \phi$, hence $R \neq P=0 R+P$, so $0 \in K$. Since $R=R+P$, then $1 \notin K$, so $K \neq R$.
(2) Since for every $p \in P, p R+P=P \neq R$, so $P \subseteq K$.

Lemma 5.5. Let R be a ring and $P \neq R$ be a right ideal of R. Then for every right ideal A of R such that $R \neq A+P$ there exists a maximal right M of R such that $A+P \subseteq M$.
Proof. It is clear, hence $A+P$ is a right ideal in R and $R \neq A+P$.
Theorem 5.6. Let R be a ring and $P \neq R$ be a right ideal of R. Suppose that

$$
K=\{a: a \in R ; R \neq a R+P\}
$$

Then the following conditions are equivalent:
(1) K is closed under addition.
(2) K is a right ideal in R such that $K \neq R$.
(3) K is a largest right ideal in R.
(4) In R there exists a largest right ideal N such that $N \neq R$ and $P \subseteq N$.
(5) For every $r \in R$, either r or $1-r$ has a right P-inverse.
(6) R has exactly one maximal right ideal M such that $P \subseteq M$.

Proof. (1) \Rightarrow (2) Let $a \in K$, then $R \neq a R+P$. So for every $x \in R$, $R \neq a x R+P$, hence if $R=a x R+P \subseteq a R+P \subseteq R$ implies that $R=a R+P$ a contradiction, so $a x \in K$, thus K is a right ideal in R. $(2) \Rightarrow(3)$ Let B be a right ideal in R such that $B \neq R$ and $P \subseteq B$, then for every $b \in B, R \neq b R+P$, because if for some $b \in B, R=b R+P$, then $R=b R+P \subseteq B+P \subseteq B \subseteq R$, so $B=R$ a contradiction. Thus, $B \subseteq K$. (3) \Rightarrow (4) It is clear.
(4) \Rightarrow (5) Suppose that N be a largest right ideal in R such that $N \neq R$ and $P \subseteq N$. Let $x \in R$, suppose $R \neq x R+P$ and $R \neq(1-x) R+P$, then $x R+P \subseteq N$ and $(1-x) R+P \subseteq N$, this shows that $x \in N$ and $1-x \in N$, since $1=x+(1-x) \in N, N=R$ a contradiction. (5) \Rightarrow (1) Let $a, b \in K$, then $a R+P \neq R$ and $b R+P \neq R$. Assume that $a+b \notin K$, then $(a+b) R+P=R$, so $(a+b) x+p_{0}=1$ for some $x \in R, p_{0} \in P$ and $1-b x=a x+p_{0}$. Is is clear that $1-b x \in K$ because if $1-b x \notin K$ we have

$$
R=(1-b x) R+P=\left(a x+p_{0}\right) R+P \subseteq a x R+P \subseteq a R+P=R
$$

So $R=a R+P$ a contradiction. This shows that $b x \in K$ and $1-b x \in K$, i.e. $b x$ and $1-b x$ has not right P-inverse, a contradiction. Thus, K
is a closed under addition.
$(3) \Rightarrow(6)$ Suppose that K is a largest right ideal in R. Since by Lemma 5.4 $K \neq R$, there a exists maximal right ideal M in R such that $K \subseteq M$. Since K is largest, $K=M$. This shows that R has exactly one maximal right ideal M such that $P \subseteq M$. (6) \Rightarrow (3) It is clear.
Definition 5.7. Let R be a ring and $P \neq R$ be a right ideal of R. We say that a ring R is local relative to right ideal P or P-local for short, if R satisfies the equivalent condition in Theorem 5.6.

Next, we present an example of P-local elements. In view hypothesis of Example 2.5 we can obtain the following:
Example 5.8. Let \mathbb{Z} be the ring of integers and let $R_{2}=M_{2}(Z)$ be the ring of all 2×2 matrices over the ring of integers \mathbb{Z}.
(1) Let $\gamma=\left[\begin{array}{ll}3 & 4 \\ 2 & 2\end{array}\right] \in R_{2}$. It is easy to see that the element γ has no a right P-inverse in R_{2}. But $1-\gamma=\left[\begin{array}{ll}-2 & -4 \\ -2 & -1\end{array}\right] \in R_{2}$ has a right P-inverse. Because for $\beta=\left[\begin{array}{cc}u & 0 \\ -2 u & -1\end{array}\right] \in R_{2}$, where $u \in \mathbb{Z}$, $(1-\gamma) \beta=\left[\begin{array}{cc}6 u & 4 \\ 0 & 1\end{array}\right]$. Thus, $1-(1-\gamma) \beta=\left[\begin{array}{cc}1-6 u & -4 \\ 0 & 0\end{array}\right] \in P$. This shows that the element $\gamma \in R_{2}$ is P-local in R_{2}.
(2) It is easy to see that for every $n, m \in \mathbb{Z}$, then element $\alpha=$ $\left[\begin{array}{cc}1-n & -m \\ 0 & 0\end{array}\right] \in R_{2}$ has no a right P-inverse in R_{2}. But $1-\alpha=$ $\left[\begin{array}{cc}n & m \\ 0 & 1\end{array}\right] \in R_{2}$ has a right P-inverse by Example 5.3. This shows that the element α ia P-local.

We again use the notation, let R be a ring and $R_{2}=M_{2}(R)$ be the ring of all 2×2 matrices over a ring R. Let

$$
P=\left\{\left[\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right]: a, b \in R\right\}, \quad Q=\left\{\left[\begin{array}{ll}
0 & 0 \\
a & b
\end{array}\right]: a, b \in R\right\}
$$

are right ideals in R_{2} such that $P \neq R_{2}, Q \neq R_{2}$. The connection between the local rings and P-local (Q-local) rings we provide in the following:
Theorem 5.9. Let R be a ring and $a \in R$. Then the following hold: (1) If a has a right inverse in R, then for every $x \in R$ the element $\alpha=\left[\begin{array}{ll}x & 0 \\ 0 & a\end{array}\right]$ has a right P-inverse in R_{2}.
(2) If for some element $x \in R$, the element $\alpha=\left[\begin{array}{ll}x & 0 \\ 0 & a\end{array}\right]$ has a right P-inverse in R_{2}, then a has a right inverse in R.
(3) If a has a right inverse in R, then for every $x \in R$ the element $\alpha=\left[\begin{array}{ll}a & 0 \\ 0 & x\end{array}\right]$ has a right Q-inverse in R_{2}.
(4) If for some element $x \in R$, the element $\alpha=\left[\begin{array}{ll}a & 0 \\ 0 & x\end{array}\right]$ has a right Q-inverse in R_{2}, the a has a right inverse in R.

Proof. (1) Assume that a has a right inverse in R, then $a b=1$ for some $b \in R$. Let $u, v \in R$, then $\beta=\left[\begin{array}{ll}u & v \\ 0 & b\end{array}\right] \in R_{2}$ such that for every $x \in R$

$$
1-\alpha \beta=\left[\begin{array}{cc}
1-x u & -x v \\
0 & 1-a b
\end{array}\right]=\left[\begin{array}{cc}
1-x u & -x v \\
0 & 0
\end{array}\right] \in P
$$

so α has a right P-inverse.
(2) Let $x \in R$ such that $\alpha=\left[\begin{array}{ll}x & 0 \\ 0 & a\end{array}\right]$ has a right P-inverse in R_{2}, then there exists $\beta=\left[\begin{array}{ll}u & v \\ w & r\end{array}\right] \in R_{2}$ where $u, v, w, r \in R$ such that $1-\alpha \beta \in P$. Thus,

$$
1-\alpha \beta=\left[\begin{array}{cc}
1-x u & -x v \\
-a w & 1-a r
\end{array}\right] \in P
$$

this shows that $a r=1$, i.e., a has a right inverse in R. (3) Similarly, as in (1). (4) Similarly, as in (2).

In view hypothesis of Theorem 3.4 and Theorem 5.9 we can obtain the following:

Corollary 5.10. For any ring R the following hold:
(1) A ring R is local if and only if the ring S_{0} is P-local relative to right ideal P_{0}.
(2) A ring R is local if and only if the ring S_{0} is P-local relative to right ideal Q_{0}.
Theorem 5.11. Every ring is local relative to any maximal right ideal of it.
Proof. Let R be a ring and M be a maximal right ideal of R. Let $a \in R$, we discus two cases $a \in M$ and $a \notin M$.
I- If $a \in M$, then $1-a \notin M$, so $R=(1-a) R+M$. This shows that $1-a$ has a right M-inverse.

II- If $a \notin M$, then $R=a R+M$, so a has a right M-inverse. Thus, R is M-local ring.

Acknowledgments

The author would like to thank the referee for careful reading the manuscript. The valuable suggestions have simplified and clarified the paper.

References

1. A. V. Andrunakievich and V. A. Andrunakievich, Rings that are regular relative to right ideal, Mat. Zametki. 49, (3) (1991), 3-11.
2. V. A. Andrunakievich and Yu. M. Ryabukhin, Quasiregularity and Pimitivity Relative to Right Ideals of a Ring, Mat. Sb. 134, (4) (1987), 451-471.
3. P. Deena and S. Manivasan, uas-ideal of a regular rings, International Journal of Algebra, 5 (20) (2011), 1005-1010.
4. K. R. Goodearl, Von Neumann regular rings, Pitman. London. (1979).
5. H. Hamza, On Some Characterizations of Regular and Potent Rings Relative to Right Ideals, Novi Sad J. Math. 48, (1) (2018), 1-7.
6. H. Hamza, I_{0}-Rings and I_{0}-Modules, Okayama Math. J. 40 (1998), 91-97.
7. J. Lambek, Lectures on Rings and Modules, Blaisdell, Mass. 1966.

H. Hakmi

Department of Mathematics, Faculty of Science, Damascus University, Damascus, Syria. E-mail:hhakmi-64@hotmail.com

[^0]: MSC(2020): Primary: 16E50, 16E70; Secondary: 16D40, 16D50.
 Keywords: P-idempotent, $(P-)$ Regular ring, $(P-)$ Local ring. Received: 9 September 2020, Accepted: 28 February 2021.
 $*$ Corresponding author .

