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P−REGULAR AND P−LOCAL RINGS

H. HAKMI∗

Abstract. This paper is a continuation of study rings relative to
right ideal, where we study the concepts of regular and local rings
relative to right ideal. We give some relations between P−local
(P−regular) and local (regular) rings. New characterization ob-
tained include necessary and sufficient conditions of a ring R to be
regular, local ring in terms P−regular, P−local of matrices ring
M2(R). Also, We proved that every ring is local relative to any
maximal right ideal of it.

1. Introduction

V. A. Andrunakievich and Yu. M. Ryabukhin in 1987 [2], were the
first who introduced the concept of rings relative to right ideal. They
studied the concepts of quasi-regularity and primitivity of rings relative
to right ideal. Later, V. A. Andrunakievich and A. V. Andrunakievich
in 1991 [1], studied the concept of regularity of rings relative to right
ideal as generalization of (Von Neumann) regular ring (also known as
P−regular rings). A number of interesting papers have been published
on this concept in recent years, e.g., [1], [2], [3], [5]. In 2011, P. Dheena
and S. Manivasan [3] studied quasi-ideals of a P−regular near-rings.
In [5], H. Hakmi continue study P−regular and P−potent rings. In
section 2 of this paper, we study idempotent elements relative to right
ideal and investigate its properties. We proved that an element e of a
ring R is an idempotent if and only if for every x, y ∈ R the element
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x y
0 e

]
is an idempotent relative to some right ideal in the ring of

matrices M2(R). In section 3, we study regular rings relative to right
ideal, we proved that an element a of a ring R is regular if and only if

for every x ∈ R the element

[
x 0
0 a

]
is a regular relative to some right

ideal. In addition to that we proved that a ring R is regular if and only
if the ring S0 is regular relative to some right ideal of M2(R). In section
4, we study semi-potent ring relative to right ideal. we proved that an
element a of a ring R is semi-potent if and only if for every x ∈ R

the element

[
x 0
0 a

]
is a semi-potent relative to some right ideal. In

addition to that we proved that a ring R is semi-potent and J(R) = 0
if and only if the ring S0 is semi-potent relative to some right ideal
of M2(R). Finally, we study in section 4, the concept of local ring
relative to right ideal. We proved that a ring R is local relative to right
ideal P of R if and only if R contains exactly one maximal right ideal
containing P . In addition to that, we proved that every ring R is local
relative to any maximal right ideal of it. The connection between the
local ring R and the ring of matrices M2(R) is obtained.

Throughout in this article, rings R, are associative with identity
unless otherwise indicated. We denote the Jacobson radical of a ring
R by J(R). Also, for any ring R, we use the dotation: R2 = M2(R)
the ring of 2× 2 matrices over a ring R. Then

P = {
[
a b
0 0

]
: a, b ∈ R}, Q = {

[
0 0
a b

]
: a, b ∈ R}

are right ideals in R2 such that P 6= R2 and Q 6= R2.
Let R be a ring and P 6= R be a right ideal of R. Recall that an ele-

ment e ∈ R is an idempotent relative to right ideal P or (P−idempotent
for short)[1], if

e2 − e ∈ P

eP ⊆ P

Note that in any ring R, elements 0, 1 ∈ R are idempotents relative to
every right ideal P 6= R of R. Also, if P = 0, then an element e ∈ R is
P−idempotent if and only if e is idempotent.

An element a in a ring R is called regular if there exists b ∈ R
such that a = aba. A ring R is called regular if every element of R
is regular, [4]. Let R be a ring and P 6= R be a right ideal in R. An
element a ∈ R is called regular relative to right ideal P , or P−regular
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for short, if there exists b ∈ R such that

aba− a ∈ P
abP ⊆ P

A ring R is called P−regular if every element a ∈ R is P−regular, [1].
Note that in previous definition, it is easy to see that every P− idem-

potent is an P−regular element. In particular, 0, 1 ∈ R are P−regular
elements. In addition to that, in previous definition we can see that
for P = 0, a ring R is P−regular if and only if R is regular. A ring R
is called a semi-potent ring or an I0−ring, if for every a ∈ R, a 6∈ J(R)
there exists b ∈ R such that bab = b, [6]. It easy to see that any regular
ring R is a semi-potent ring with J(R) = 0. Also, every π−regular,
strongly π−regular ring are semi-potent.

2. Idempotents Relative to Right Ideal

Lemma 2.1. Let R be a ring and P 6= R be a right ideal of R. Then
for every P−idempotent e ∈ R the following hold:
(1) An element 1− e ∈ R is P−idempotent.
(2) An element e2 ∈ R is P−idempotent.
(3) An element 1− e2 ∈ R is P−idempotent.
(4) If e ∈ J(R), then e ∈ P .
(5) If e has a right inverse, then 1− e ∈ P .
(6) If 1− e has a right inverse, then e ∈ P .

Proof. Suppose that e ∈ R is P−idempotent, then e2 − e ∈ P and
eP ⊆ P . So e2 = e+ p0 for some p0 ∈ P .
(1) We have

(1− e)2 = (1− e)(1− e) = 1− 2e+ e+ p0 = 1− e+ p0

So (1−e)2−(1−e) = p0 ∈ P . Also, for every t ∈ P , (1−e)t = t−et ∈ P ,
so (1− e)P ⊆ P .
(2) We have

(e2)2 = (e+ p0)(e+ p0) = e2 + ep0 + p0e+ p20

Thus
(e2)2 − e2 = ep0 + p0e+ p20 ∈ eP + PR + P ⊆ P

So e2P = e(eP ) ⊆ eP ⊆ P . (3) Obvious by (1) and (2).
(4) Suppose that e ∈ J(R), then 1−e has an inverse in R, so (1−e)a = 1
for some a ∈ R and so e = (e− e2)a ∈ PR ⊆ P .
(5) Suppose that e has a right inverse in R. Then ea = 1 for some
a ∈ R and

e = e2a = (e+ p0)a = ea+ p0a = 1 + p0a ∈ 1 + P
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Thus 1− e ∈ P .
(6) Suppose that 1− e has a right inverse in R. Then (1− e)b = 1 for
some b ∈ R and e = (e− e2)b ∈ PR ⊆ P . �

From Lemma 2.1 and for P = 0 we obtain the following:

Corollary 2.2. Let R be a ring and e ∈ R be an idempotent. Then:
(1) Elements e2, 1− e are idempotents in R.
(2) If e ∈ J(R), then e = 0.
(3) If e has a right inverse in R, then e = 1.
(4) If 1− e has a right inverse in R, then e = 0.

Proposition 2.3. Let R be a ring and P 6= R be a right ideal of R.
For every P− idempotent e ∈ R the following statements hold:
(1) For every integer k ≥ 1, an element ek is P−idempotent.
(2) For every integer k ≥ 1, an element 1− ek is P−idempotent.
(3) For every integer k ≥ 1, an element (1− e)k is P−idempotent.

Proof. (1) Suppose that e is an P−idempotent, then e2 − e ∈ P and
eP ⊆ P , so e2 = e+ p0 for some p0 ∈ P . Proof by induction on k. For
k = 1, 2 the assertion holds by assumption and Lemma 2.1. Suppose
that ek−1 is an P−idempotent, then

(ek−1)2 − ek−1 ∈ P
ek−1P ⊆ P

So (ek−1)2 = ek−1 + p1 for some p1 ∈ P . Thus

(ek)2 = (ek−1)2e2 = (ek−1 + p1)(e+ p0) =

= ek + ek−1p0 + p1e+ p1p0
therefore (ek)2−ek = p, where p = ek−1p0+p1e+p1p0 ∈ P . This shows
that

(ek)2 − ek ∈ P
ekP = eek−1P ⊆ eP ⊆ P

Thus, ek is an P−idempotent. (2) and (3) By (1) and Lemma 2.1. �

Proposition 2.4. Let R be a ring and P 6= R be a right ideal in R. If
e, g ∈ R such that e− g ∈ P , then g is P−idempotent if and only if e
is P−idempotent.

Proof. Suppose that e−g ∈ P , then e = g+p1 for some p1 ∈ P . Assume
that g is P−idempotent, then g2− g ∈ P , gP ⊆ P . So g2 = g+ p0 and

e2 = (g + p1)(g + p1) = g2 + gp1 + p1g + p1p1 =

= g + p0 + gp1 + p1g + p1p1 =

= g + p1 + (−p1 + p0 + gp1 + p1g + p1p1)
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For
p′ = −p1 + p0 + gp1 + p1g + p1p1 ∈ P

We have e2 − e = p′ ∈ P and eP ⊆ gP + p1P ⊆ P . This shows that e
is P− idempotent. Similarly, we can prove conversely. �

Next, we present an example of an P−idempotent elements.

Example 2.5. Let Z be the ring of integers and let R2 = M2(Z) be
the ring of all 2× 2 matrices over the ring of integers Z. Let

e =

[
n m
0 1

]
∈ R2

Where n,m ∈ Z, then e is P−idempotent in R2, but not idempotent.
And,

e2 =

[
n2 (n+ 1)m
0 1

]
is P−idempotent in R2. Also, for every positive integer k the element:

ek =

[
nk mΣk−1

t=0n
t

0 1

]
is P−idempotent in R2. In addition to that the element:

1− e =

[
1− n −m

0 0

]
is P−idempotent in R2 and the element:

1− e2 =

[
1− n2 −(n+ 1)m

0 0

]
is P−idempotent in R2. Also, for every positive integer k the element:

1− ek =

[
1− nk −mΣk−1

t=0n
t

0 0

]
is P−idempotent in R2 and the element:

(1− e)2 =

[
(1− n)2 −(1− n)m

0 0

]
is P−idempotent in R2. Also, for every positive integer k the element:

(1− e)k =

[
(1− n)k −m(1− n)k−1

0 0

]
is P−idempotent in R2.

The connection between the idempotent elements in a ring R and
P−idempotent (Q−idempotent) elements in R2 we provide in the fol-
lowing:



6 HAKMI

Theorem 2.6. For any element e ∈ R the following hold:
(1) If e is idempotent in R, then for every x, y ∈ R, the element e0 =[
x y
0 e

]
is P−idempotent in R2.

(2) If for some x, y ∈ R, the element e0 =

[
x y
0 e

]
is P−idempotent in

R2, then e is idempotent in R.
(3) If e is idempotent in R, then for every x, y ∈ R, the element e0 =[
e 0
x y

]
is Q−idempotent in R2.

(4) If for some x, y ∈ R, the element e0 =

[
e 0
x y

]
is Q−idempotent in

R2, then e is an idempotent in R.

Proof. (1) Suppose that e is an idempotent in R, then for every x, y ∈
R,

e20 − e0 =

[
x2 xy + ye
0 e2

]
−
[
x y
0 e

]
=

[
x2 − x xy + ye− y

0 e2 − e

]
∈ P

For every p =

[
a b
0 0

]
∈ P , where a, b ∈ R, e0p =

[
xa xb
0 0

]
∈ P . So

e0P ⊆ P , this shows that e0 is P−idempotent in R2.

(2) Let x, y ∈ R such that e0 =

[
x y
0 e

]
is P−idempotent in R2. Since

e20 − e0 ∈ P , [
x2 − x xy + ye− y

0 e2 − e

]
=

[
a′ b′

0 0

]
for some a′, b′ ∈ R, so e2 = e. This shows that e is idempotent in R.
(3) Similarly as in (1). (4) Similarly as in (2). �

From Theorem 2.6 we can obtain the following:

Corollary 2.7. For any ring R the following hold:
(1) An element e ∈ R is idempotent in R if and only if there exists

x, y ∈ R such that the element

[
x y
0 e

]
is P−idempotent in R2.

(2) An element e ∈ R is idempotent in R if and only if there exists

x ∈ R such that the element

[
x 0
0 e

]
is P−idempotent in R2.

(3) An element e ∈ R is idempotent in R if and only if there exists

x, y ∈ R such that the element

[
e 0
x y

]
is Q−idempotent in R2.
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(4) An element e ∈ R is idempotent in R if and only if there exists

x ∈ R such that the element

[
e 0
0 x

]
is Q−idempotent in R2.

3. Regular Rings Relative to Right Ideal

We start this section with the following:

Lemma 3.1. Let R be a ring and P 6= R be a right ideal in R. If
a, b ∈ R such that b − a ∈ P , then a is P−regular if and only if b is
P−regular.

Proof. Suppose that b− a ∈ P , then b = a+ p0 for some p0 ∈ P .
(⇒) If a is P−regular, then there exists x ∈ R such that axa− a ∈ P
and axP ⊆ P . So

bxb− b = (a+ p0)x(a+ p0)− (a+ p0) =

= (ax+ p0x)(a+ p0)− (a+ p0) =

= (axa− a) + axp0 + p0xa+ p0xp0 − p0 ∈ P
and bxP = (a + p0)xP ⊆ axP + p0xP ⊆ P this shows that b is P−
idempotent. Similarly, we can prove conversely. �

The connection between the regular elements in R and P−regular
(Q−regular) elements in R2 we provide in the following:

Proposition 3.2. For any element a ∈ R the following hold:
(1) If a is a regular element in R, then for every x ∈ R, the elements:

α =

[
x 0
0 a

]
, α′ =

[
0 x
a 0

]
are P−regular elements in R2.

(2) If for some x ∈ R, the element α =

[
x 0
0 a

]
is P−regular in R2,

then a is regular in R.

(3) If for some x ∈ R, the element α =

[
0 x
a 0

]
is P−regular in R2,

then a is regular in R.
(4) If a is a regular element in R, then for every x ∈ R, the elements:

α =

[
a 0
0 x

]
, α′ =

[
0 a
x 0

]
are Q−regular elements in R2.

(5) If for some x ∈ R, the element α =

[
a 0
0 x

]
is Q−regular in R2,

then a is regular in R.
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(6) If for some x ∈ R, the element α =

[
0 a
x 0

]
is Q−regular in R2,

then a is regular in R.

Proof. (1) Suppose that a is a regular element in R, then a = aba for
some b ∈ R. For every x1, y1 ∈ R,

β =

[
x1 y1
0 b

]
∈ R2

such that

αβα− α =

[
xx1x xy1a

0 aba

]
−
[
x 0
0 a

]
=

[
xx1x− x xy1a

0 aba− a

]
∈ P

and for every t =

[
a′ b′

0 0

]
∈ P where a′, b′ ∈ R

αβt =

[
xx1 xy1
0 ab

] [
a′ b′

0 0

]
=

[
xx1a

′ xx1b
′

0 0

]
∈ P

this shows that αβP ⊆ P . Thus, α is an P−regular element in R2.
Similarly, we can prove that for every x′, y′ ∈ R, the element:

β′ =

[
0 b
x1 y1

]
∈ R2

such that α′β′α′ − α′ ∈ P and α′β′P ⊆ P . i.e., α′ is an P−regular
element in R2.
(2) Suppose that α is P−regular in R2, then there exists

β =

[
y z
r b

]
∈ R2

where y, z, r, b ∈ R such that αβα− α ∈ P , so[
xyx xza
arx aba

]
−
[
x 0
0 a

]
=

[
xyx− x xza
arx aba− a

]
∈ P

This shows that aba = a. i.e., An element a is regular. (3) Similarly,
as in (2). (4) Similarly, as in (1). (5) and (6) Similarly, as in (2) and
(3). �

From Proposition 3.2 we can obtain of the following:

Corollary 3.3. For any ring R the following conditions are equivalent:
(1) A ring R is regular.

(2) For every a ∈ R there exists x ∈ R such that the element

[
x 0
0 a

]
is

P−regular in R2.
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(3) For every a ∈ R there exists x ∈ R such that the element

[
0 x
a 0

]
is

P−regular in R2.

(4) For every a ∈ R there exists x ∈ R such that the element

[
a 0
0 x

]
is

Q−regular R2.

(5) For every a ∈ R there exists x ∈ R such that the element

[
0 a
x 0

]
is

Q−regular in R2.

We again use the notation, let R be a ring and R2 = M2(R) be the
ring of all 2× 2 matrices over a ring R. It is clear that the set:

S0 = {
[
x 0
0 y

]
: x, y ∈ R}

is a subring in R2 with identity element. Also, the sets:

P0 = {
[
a 0
0 0

]
: a ∈ R}, Q0 = {

[
0 0
0 a

]
: a ∈ R}

are right ideals in S0 and P0 6= S0, Q0 6= S0. Then we have the
following:

Theorem 3.4. For any ring R the following hold:
(1) A ring R is regular if and only if the ring S0 is P0−regular.
(2) A ring R is regular if and only if the ring S0 is Q0−regular.

Proof. (1) Suppose that a ring R is regular. Let

[
x 0
0 y

]
∈ S0, where

x, y ∈ R. Since y is regular in R, by Lemma 3.1 the element

[
x 0
0 y

]
is

P0−regular. Conversely, let a ∈ R, then for every x ∈ R the element[
x 0
0 a

]
is P0−regular in S0, so a is regular in R. Similarly, we can proof

(2). �

4. Semi-potent Rings Relative to Right Ideal

Definition 4.1. Let R be a ring and P 6= R be a right ideal in R. We
say that an element a ∈ R is semi-potent relative to right ideal P or
P−semi-potent for short, if there exists x ∈ R such that

bxb− b ∈ P

bxP ⊆ P
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Also, we say that a ring R is a semi-potent ring relative to right ideal P
or an P−semi-potent ring for short, if every element a ∈ R is P−semi-
potent.

From previous definition, it is easy to see that 0, 1 ∈ R are P−semi-
potent elements. In addition to that, we have the following:

Lemma 4.2. Let R be a ring and P 6= R be a right ideal in R. Every
P−idempotent element is P−semi-potent.

Proof. Let e ∈ R is an P−idempotent, then e2 − e ∈ P and eP ⊆ P ,
so e2 = e+ p0 for some p0 ∈ P . For b = e we have

e3 − e = ee2 − e = e(e+ p0)− e = (e2 − e) + ep0 ∈ P + eP ⊆ P

e2P = e(eP ) ⊆ eP ⊆ P

�

Next, we present an example of an P−semi-potent elements:

Example 4.3. Let Z be the ring of integers and let R2 = M2(Z) be the
ring of all 2 × 2 matrices over the ring of integers Z. For every n ∈ Z

the element a =

[
n 0
0 1

]
is P−semi-potent in R2, hence for b =

[
x y
0 1

]
,

where x, y ∈ Z such that bab− b ∈ P and baP ⊆ P . Also, the element

a′ =

[
0 1
n 0

]
, where n ∈ Z is an P−semi-potent element in R, hence for

b′ =

[
x y
1 0

]
, where x, y ∈ Z such that b′a′b′ − b′ ∈ P and b′a′P ⊆ P .

In addition to that, for every n,m ∈ Z the element α =

[
n m
0 1

]
is

P−semi-potent, hence for every x, y ∈ Z the element β =

[
x y
0 1

]
∈ R2

such that

βαβ − β =

[
xnx xny + xmy

0 1

]
−
[
x y
0 1

]
=

=

[
xnx− x xny + xmy − y

0 0

]
∈ P

For every p =

[
a b
0 0

]
∈ P , where a, b ∈ Z. We have:

βαp =

[
xn xm+ y
0 1

] [
a b
0 0

]
=

[
xna xnb

0 0

]
∈ P
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i.e., βαP ⊆ P . On the other hand, for every n ∈ Z the element

a =

[
1 0
0 n

]
is Q−semi-potent in R2, hence for b =

[
1 0
x y

]
∈ R2,

where x, y ∈ Z such that bab − b ∈ Q and baQ ⊆ Q. Also, the

element a′ =

[
0 n
1 0

]
, where n ∈ Z is Q−semi-potent element in R,

hence for b′ =

[
0 1
x y

]
∈ R2, where x, y ∈ Z such that b′a′b′ − b′ ∈ Q

and b′a′Q ⊆ Q. In addition to that, for every n,m ∈ Z the element

α′ =

[
1 0
m n

]
∈ R2 is Q−semi-potent, hence for every x, y ∈ Z the

element β′ =

[
1 0
x y

]
∈ R2 such that

β′α′β′ − β′ =
[

1 0
x2 +my + nxy ny2

]
−
[

1 0
x y

]
=

=

[
0 0

my + nxy ny2 − y

]
∈ Q

For every p =

[
0 0
a b

]
∈ Q, where a, b ∈ Z. We have:

β′α′p =

[
1 0

x+my ny

] [
0 0
a b

]
=

[
0 0

(x+my)a nyb

]
∈ Q

i.e., β′α′Q ⊆ Q.

The connection between the semi-potent elements in R and P−semi-
potent (Q−semi-potent) elements in R2 we provide in the following:

Proposition 4.4. For any element a ∈ R the following hold:
(1) If a is a semi-potent element in R, then for every x ∈ R, the
elements:

α =

[
x 0
0 a

]
, α′ =

[
0 x
a 0

]
are P−semi-potent elements in R2.
(2) If for some x ∈ R, the element:

α =

[
x 0
0 a

]
is P−semi-potent in R2, then a is semi-potent in R.
(3) If a is a semi-potent element in R, then for every x ∈ R, the
elements:

α =

[
a 0
0 x

]
, α′ =

[
0 a
x 0

]
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are Q−semi-potent elements in R2.
(4) If for some x ∈ R, the element:

α =

[
a 0
0 x

]
is Q−semi-potent in R2, then a is semi-potent in R.

Proof. (1) Suppose that a is a semi-potent element in R, then b = bab

for some b ∈ R. For every x1, y1 ∈ R, β =

[
x1 y1
0 b

]
∈ R2 such that

βαβ − β =

[
x1xx1 x1xy1 + y1ab

0 bab

]
−
[
x1 y1
0 b

]
=

=

[
x1xx1 − x1 x1xy1 + y1ab− y1

0 bab− b

]
∈ P

For every t =

[
a′ b′

0 0

]
∈ P , where a′, b′ ∈ R

βαt =

[
x1x y1a
0 ba

] [
a′ b′

0 0

]
=

[
x1xa

′ x1xb
′

0 0

]
∈ P

This shows that βαP ⊆ P . Thus, α is an P−semi-potent element
in R2. Similarly, we can prove that for every x′, y′ ∈ R, the element

β′ =

[
0 b
x1 y1

]
∈ R2 such that β′α′β′ − β′ ∈ P and β′α′P ⊆ P . i.e., α′

is an P−semi-potent element in R2.
(2) Suppose that α is P−semi-potent in S, then there exists β =[
y z
r b

]
∈ R2 where y, z, r, b ∈ R such that βαβ − β ∈ P . Since

βαP ⊆ P , implies that r = 0, so

βαβ − β =

[
yxy yxz + zab

0 bab

]
−

[
y z
0 b

]
=

=

[
yxy − y yxz + zab− z

0 bab− b

]
∈ P

This shows that bab = b. i.e., an element a is semi-potent. (3) Similarly,
as in (1). (4) Similarly, as in (2). �

From Proposition 4.4 we can obtain of the following:

Corollary 4.5. For any ring R the following conditions are equivalent:
(1) A ring R is semi-potent with J(R) = 0.

(2) For every a ∈ R there exists x ∈ R such that the element

[
x 0
0 a

]
is
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P−semi-potent in R2.

(3) For every a ∈ R there exists x ∈ R such that the element

[
0 x
a 0

]
is

P−semi-potent in R2.

(4) For every a ∈ R there exists x ∈ R such that the element

[
a 0
0 x

]
is

Q−semi-potent in R2.

(5) For every a ∈ R there exists x ∈ R such that the element

[
0 a
x 0

]
is

Q−semi-potent in R2.

Also, in view of the hypothesis of Proposition 4.4 we can obtain the
following:

Theorem 4.6. For any element a ∈ R the following hold:
(1) If a is a semi-potent element in R, then for every n,m ∈ R, the

elements α =

[
n m
0 a

]
is an P−semi-potent elements in R2.

(2) If for some n,m ∈ R, the element α =

[
n m
0 a

]
is P−semi-potent

in R2, then the element a is a semi-potent in R.
(3) If a is a semi-potent element in R, then for every n,m ∈ R, the

elements α =

[
n m
0 a

]
is Q−semi-potent elements in R2.

(4) If for some n,m ∈ R, the element α =

[
a 0
n m

]
is Q−semi-potent

in R2, then the element a is semi-potent in R.

Proof. (1) Suppose that a is a semi-potent element in R, then there
exists b ∈ R such that bab = b. So for every x, y ∈ R the element

β =

[
x y
0 b

]
∈ R2 such that:

βαβ − β =

[
xnx xny + (xm+ ya)b

0 bab

]
−

[
x y
0 b

]
=

=

[
xnx− x xny + (xm+ ya)b− y

0 bab− b

]
∈ P

For every p =

[
a′ b′

0 0

]
∈ P , where a′, b′ ∈ R, βαp =

[
xna′ xnb′

0 0

]
∈ P

this shows that βαP ⊆ P ,i.e., the element α is P−semi-potent in R2.
(2) Suppose that α is an P−semi-potent in R2, then there exists β =[
x y
z r

]
∈ R2, where x, y, z, r ∈ R such that βαβ−β ∈ P and βαP ⊆ P .
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Since βαP ⊆ P implies that z = 0. Also, since βαP ⊆ P ,

βαβ − β =

[
xnx− x xny + (xm+ ya)b− y

0 bab− b

]
∈ P

so bab− b = 0. Thus a is semi-potent in R. (3) Similarly, as in (1). (4)
Similarly, as in (2). �

Theorem 4.7. For any ring R the following hold:
(1) A ring R is semi-potent with J(R) = 0 if and only if the ring S0 is
P−semi-potent relative to right ideal P0.
(2) A ring R is semi-potent with J(R) = 0 if and only if the ring S0 is
P−semi-potent relative to right ideal Q0.

Proof. (1) Suppose that a ring R is P−semi-potent. Let α =

[
x 0
0 a

]
∈

S0 where x, a ∈ R. Since a is P−semi-potent in R, there exists b ∈ R

such that bab = b. Let β =

[
x 0
0 b

]
, then β ∈ S0 such that

βαβ − β =

[
x3 0
0 bab

]
−
[
x 0
0 b

]
=

[
x3 − x 0

0 bab− b

]
∈ P0

and for every p0 =

[
a0 0
0 0

]
∈ P0 we have

βαp0 =

[
x2 0
0 ba

] [
a0 0
0 0

]
=

[
x2a0 0

0 0

]
∈ P0

this shows that βαP0 ⊆ P0. Thus, the ring S0 is P0−semi-potent.
Conversely, let a ∈ R, then by assumption for every x ∈ R the element

γ =

[
x 0
0 a

]
is P−semi-potent relative to right ideal P0 in S0, so there

exists δ =

[
y 0
0 b

]
∈ S0 such that δγδ − δ ∈ P0. Thus

δγδ − δ =

[
yxy 0

0 bab

]
−
[
y 0
0 b

]
=

[
yxy 0

0 bab− b

]
∈ P0

This shows that bab = b,.i.e, R is a semi-potent ring and J(R) = 0.
Similarly, we can proof (2). �

5. Local Rings Relative to Right Ideal

Lemma 5.1. [7, Proposition 1. P.75]. Let R 6= 0 be a ring. The
following conditions are equivalent:
(1) A ring R has exactly one maximal right ideal.
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(2) The nonunit elements in R form a proper right ideal.
(3) For every element r ∈ R, either r or 1− r has a right inverse in R.

Recall that a ring R is local if R satisfies the equivalent conditions
in Lemma 5.1, [7].

Definition 5.2. Let R be a ring and P 6= R be a right ideal of R. We
say that an element a ∈ R has a right inverse relative to right ideal P
or has a right P−inverse if R = aR + P .

From previous definition, it is easy to see that, for every a ∈ R,
R = aR + P if and only if there exists x ∈ R such that 1− ax ∈ P .

Next, we present an example of elements have a right P−inverse. In
view hypothesis of Example 2.5 we can obtain the following:

Example 5.3. Let Z be the ring of integers and let R2 = M2(Z) be
the ring of all 2× 2 matrices over the ring of integers Z.

(1) For every n,m ∈ Z, the element α =

[
n m
0 1

]
has a right P−inverse.

Because for β =

[
u v
0 1

]
∈ R2, where u, v ∈ Z,

1− αβ =

[
1− nu −(nv +m)

0 0

]
∈ P

(2) For every n,m ∈ Z, the element α′ =

[
n m
1 0

]
has a right P−inverse.

Because for β′ =

[
0 1
1 u

]
∈ R2, where u ∈ Z,

1− α′β′ =
[
1−m −(n+mu)

0 0

]
∈ P

(3) For every n ∈ Z, the element γ =

[
n 0
1 0

]
has a right P−inverse.

Because for λ =

[
0 1
u v

]
∈ R2, where u, v ∈ Z, 1− γλ =

[
1 −n
0 0

]
∈ P .

(4) For every n ∈ Z, the element γ′ =

[
0 n
0 1

]
has a right P−inverse.

Because for λ′ =

[
u v
0 1

]
∈ R2, where u, v ∈ Z, 1−γ′λ′ =

[
1 −n
0 0

]
∈ P .

Lemma 5.4. Let R be a ring and P 6= R be a right ideal of R. The
set

K = {a : a ∈ R;R 6= aR + P}
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satisfies the following:
(1) K 6= φ and K 6= R.
(2) P ⊆ K.

Proof. (1) It is clare that K 6= φ, hence R 6= P = 0R + P , so 0 ∈ K.
Since R = R + P , then 1 6∈ K, so K 6= R.
(2) Since for every p ∈ P , pR + P = P 6= R, so P ⊆ K. �

Lemma 5.5. Let R be a ring and P 6= R be a right ideal of R. Then
for every right ideal A of R such that R 6= A+P there exists a maximal
right M of R such that A+ P ⊆M .

Proof. It is clear, hence A+P is a right ideal in R and R 6= A+P . �

Theorem 5.6. Let R be a ring and P 6= R be a right ideal of R.
Suppose that

K = {a : a ∈ R;R 6= aR + P}
Then the following conditions are equivalent:
(1) K is closed under addition.
(2) K is a right ideal in R such that K 6= R.
(3) K is a largest right ideal in R.
(4) In R there exists a largest right ideal N such that N 6= R and
P ⊆ N .
(5) For every r ∈ R, either r or 1− r has a right P−inverse.
(6) R has exactly one maximal right ideal M such that P ⊆M .

Proof. (1) ⇒ (2) Let a ∈ K, then R 6= aR + P . So for every x ∈ R,
R 6= axR + P , hence if R = axR + P ⊆ aR + P ⊆ R implies that
R = aR + P a contradiction, so ax ∈ K, thus K is a right ideal in R.
(2)⇒ (3) Let B be a right ideal in R such that B 6= R and P ⊆ B, then
for every b ∈ B, R 6= bR + P , because if for some b ∈ B, R = bR + P ,
then R = bR+P ⊆ B+P ⊆ B ⊆ R, so B = R a contradiction. Thus,
B ⊆ K. (3)⇒ (4) It is clear.
(4)⇒ (5) Suppose that N be a largest right ideal in R such that N 6= R
and P ⊆ N . Let x ∈ R, suppose R 6= xR + P and R 6= (1− x)R + P ,
then xR + P ⊆ N and (1− x)R + P ⊆ N , this shows that x ∈ N and
1− x ∈ N , since 1 = x+ (1− x) ∈ N , N = R a contradiction.
(5) ⇒ (1) Let a, b ∈ K, then aR + P 6= R and bR + P 6= R. Assume
that a+ b 6∈ K, then (a+ b)R + P = R, so (a+ b)x+ p0 = 1 for some
x ∈ R, p0 ∈ P and 1−bx = ax+p0. Is is clear that 1−bx ∈ K because
if 1− bx 6∈ K we have

R = (1− bx)R + P = (ax+ p0)R + P ⊆ axR + P ⊆ aR + P = R

SoR = aR+P a contradiction. This shows that bx ∈ K and 1−bx ∈ K,
i.e. bx and 1 − bx has not right P−inverse, a contradiction. Thus, K
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is a closed under addition.
(3) ⇒ (6) Suppose that K is a largest right ideal in R. Since by
Lemma 5.4 K 6= R, there a exists maximal right ideal M in R such
that K ⊆ M . Since K is largest, K = M . This shows that R has
exactly one maximal right ideal M such that P ⊆ M . (6) ⇒ (3) It is
clear. �

Definition 5.7. Let R be a ring and P 6= R be a right ideal of R. We
say that a ring R is local relative to right ideal P or P−local for short,
if R satisfies the equivalent condition in Theorem 5.6.

Next, we present an example of P−local elements. In view hypoth-
esis of Example 2.5 we can obtain the following:

Example 5.8. Let Z be the ring of integers and let R2 = M2(Z) be
the ring of all 2× 2 matrices over the ring of integers Z.

(1) Let γ =

[
3 4
2 2

]
∈ R2. It is easy to see that the element γ has

no a right P−inverse in R2. But 1 − γ =

[
−2 −4
−2 −1

]
∈ R2 has a

right P−inverse. Because for β =

[
u 0
−2u −1

]
∈ R2, where u ∈ Z,

(1 − γ)β =

[
6u 4
0 1

]
. Thus, 1 − (1 − γ)β =

[
1− 6u −4

0 0

]
∈ P . This

shows that the element γ ∈ R2 is P−local in R2.
(2) It is easy to see that for every n,m ∈ Z, then element α =[
1− n −m

0 0

]
∈ R2 has no a right P−inverse in R2. But 1 − α =[

n m
0 1

]
∈ R2 has a right P−inverse by Example 5.3. This shows that

the element α ia P−local.

We again use the notation, let R be a ring and R2 = M2(R) be the
ring of all 2× 2 matrices over a ring R. Let

P = {
[
a b
0 0

]
: a, b ∈ R}, Q = {

[
0 0
a b

]
: a, b ∈ R}

are right ideals in R2 such that P 6= R2, Q 6= R2. The connection
between the local rings and P−local (Q−local) rings we provide in the
following:

Theorem 5.9. Let R be a ring and a ∈ R. Then the following hold:
(1) If a has a right inverse in R, then for every x ∈ R the element

α =

[
x 0
0 a

]
has a right P−inverse in R2.
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(2) If for some element x ∈ R, the element α =

[
x 0
0 a

]
has a right

P−inverse in R2, then a has a right inverse in R.
(3) If a has a right inverse in R, then for every x ∈ R the element

α =

[
a 0
0 x

]
has a right Q−inverse in R2.

(4) If for some element x ∈ R, the element α =

[
a 0
0 x

]
has a right

Q−inverse in R2, the a has a right inverse in R.

Proof. (1) Assume that a has a right inverse in R, then ab = 1 for some

b ∈ R. Let u, v ∈ R, then β =

[
u v
0 b

]
∈ R2 such that for every x ∈ R

1− αβ =

[
1− xu −xv

0 1− ab

]
=

[
1− xu −xv

0 0

]
∈ P

so α has a right P−inverse.

(2) Let x ∈ R such that α =

[
x 0
0 a

]
has a right P−inverse in R2,

then there exists β =

[
u v
w r

]
∈ R2 where u, v, w, r ∈ R such that

1− αβ ∈ P . Thus,

1− αβ =

[
1− xu −xv
−aw 1− ar

]
∈ P

this shows that ar = 1, i.e., a has a right inverse in R. (3) Similarly,
as in (1). (4) Similarly, as in (2). �

In view hypothesis of Theorem 3.4 and Theorem 5.9 we can obtain
the following:

Corollary 5.10. For any ring R the following hold:
(1) A ring R is local if and only if the ring S0 is P−local relative to
right ideal P0.
(2) A ring R is local if and only if the ring S0 is P−local relative to
right ideal Q0.

Theorem 5.11. Every ring is local relative to any maximal right ideal
of it.

Proof. Let R be a ring and M be a maximal right ideal of R. Let
a ∈ R, we discus two cases a ∈M and a 6∈M .
I- If a ∈ M , then 1 − a 6∈ M , so R = (1 − a)R + M . This shows that
1− a has a right M−inverse.
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II- If a 6∈M , then R = aR+M , so a has a right M−inverse. Thus, R
is M−local ring. �
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