تعداد نشریات | 31 |
تعداد شمارهها | 748 |
تعداد مقالات | 7,112 |
تعداد مشاهده مقاله | 10,246,272 |
تعداد دریافت فایل اصل مقاله | 6,899,925 |
A fast and efficient Newton-Shultz-type iterative method for computing inverse and Moore-Penrose inverse of tensors | ||
Journal of Mathematical Modeling | ||
دوره 9، شماره 4، اسفند 2021، صفحه 645-664 اصل مقاله (434.04 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22124/jmm.2021.19005.1627 | ||
نویسندگان | ||
Eisa Khosravi Dehdezi* ؛ Saeed Karimi | ||
Department of Mathematics, Persian Gulf University, Bushehr, Iran | ||
چکیده | ||
A fast and efficient Newton-Shultz-type iterative method is presented to compute the inverse of an invertible tensor. Analysis of the convergence error shows that the proposed method has the sixth order convergence. It is shown that the proposed algorithm can be used for finding the Moore-Penrose inverse of tensors. Computational complexities of the algorithm is presented to support the theoretical aspects of the paper. Using the new method, we obtain a new preconditioner to solve the multilinear system $\mathcal{A}\ast_N\mathcal{X}=\mathcal{B}$. The effectiveness and accuracy of this method are re-verified by several numerical examples. Finally, some conclusions are given. | ||
کلیدواژهها | ||
Tensor؛ iterative methods؛ Moore-Penrose inverse؛ outer inverse؛ Einstein product | ||
آمار تعداد مشاهده مقاله: 927 تعداد دریافت فایل اصل مقاله: 1,180 |