تعداد نشریات | 31 |
تعداد شمارهها | 748 |
تعداد مقالات | 7,112 |
تعداد مشاهده مقاله | 10,246,517 |
تعداد دریافت فایل اصل مقاله | 6,900,072 |
مطالعه ساختار شیمیایی خار دمی سفرهماهی Hemitrygon bennettii با هدف استخراج هیدروکسی آپاتیت | ||
فیزیولوژی و بیوتکنولوژی آبزیان | ||
دوره 8، شماره 4، اسفند 1399، صفحه 37-54 اصل مقاله (821.12 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/japb.2021.14555.1350 | ||
نویسندگان | ||
حمید ارشادی فر؛ امیر قاضی لو* ؛ کمال الدین کر | ||
استادیار گروه علوم زیستی دریا، پژوهشکده علوم دریایی، پژوهشگاه ملی اقیانوسشناسی و علوم جوی، تهران، ایران | ||
چکیده | ||
مطالعه حاضر با هدف بررسی ساختار شیمیایی خار دمی سفرهماهی Hemitrygon bennettii (Muller and Henle, 1841) به عنوان گزینهای مناسب برای استخراج هیدروکسی آپاتیت صورت پذیرفت. برای این منظور، ساختارسنجی خار دمی ماهیان صید شده از جنگلهای حرا خلیج چابهار در دو حالت کلسینه (پخته شده در حرارت بالا) و غیرکلسینه به انجام رسید. از روشهای طیفسنجی رامان و پلاسمای جفت شده القایی به ترتیب برای سنجش ترکیبات شیمیایی خارها و غلظت عناصر استفاده شد. قویترین قله در طیفهای رامان خارهای کلسینه و غیرکلسینه مربوط به پیک 962 بر سانتیمتر (فسفات آپاتیتی) بود که ناشی از ارتعاش کششی متقارن یونهای فسفات چهاروجهی است. هیدروکسی جذب سطحی شده نیز پیکهایی را در محدوده 3500-3400 بر سانتیمتر در خارهای کلسینه و غیرکلسینه نشان داد. در خارهای غیرکلسینه، پیکهای مربوط به گروههای عمده ترکیبات آلی در محدوده 3050-2700 و 1500-1300 دیده شد که به ترتیب مربوط به ارتعاشات کششی و خمشی گروهای CH، CH2 و CH3 مربوط به ترکیبهای آلی است. در محدوده 1800-1200 نیز پیکهای عمده مربوط به آمین پروتئینها مشاهده شد. وجود مقادیر نسبتا بالای دو عنصر سدیم و منیزیم در ساختار این خار (در مقایسه با اغلب منابع طبیعی دیگر به کار رفته در استخراج هیدروکسی آپاتیت) میتواند زیستسازگاری هیدروکسی آپاتیت استخراج شده از آنها را تقویت کند. | ||
کلیدواژهها | ||
ماهیان غضروفی؛ خار؛ هیدورکسی آپاتیت؛ طیفسنجی رامان | ||
مراجع | ||
جاویدی یونسی م.، بحرالعلوم م. و جوادپور س. 1387. تولید پودر سرامیکی هیدروکسی آپاتیت از خاکستر استخوان گاو به منظور استفاده در کاربردهای ارتوپدی: شناسایی و آنالیز شیمیایی و فیزیکی. دومین همایش مشترک انجمن مهندسین متالورژی و انجمن ریختهگری ایران, دانشگاه آزاد اسلامی واحد کرج. ص: 2۳-11. Adeyeye E.I. 2009. Comparative study on the characteristics of egg shells of some bird species. Bulletin of the Chemical Society of Ethiopia, 32(2): 159–166. Akram M., Ahmed R., Shakir I., Ibrahim W.W. and Hussain R. 2014. Extracting hydroxyapatite and its precursors from natural resources. Journal of Materials Science, 49: 1461–1475. Amr M., Fattah A. and Helal A. 2010. Analysis of trace elements in teeth by ICP-MS: Implications for caries. Zeitschrift fur Naturforschung a. 21: 1–12. Antonakos A., Liarokapis E. and Leventouri T. 2007. Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterials, 28: 3043–3054. Awonusi A., Morris M.D. and Tecklenburg M.M.J. 2007. Carbonate assignment and calibration in the Raman spectrum of apatite. Calcified Tissue International, 81: 46–52. Bahrololoom M.E., Javidi M., Javadpour S. and Ma J. 2009. Characterization of naturalhydroxyapatite extracted from bovine cortical bone ash. Journal of Ceramic Processing Research, 10(2): 129–138. Bee S.L. and Hamid Z.A.A. 2019. Characterization of chicken bone waste-derived hydroxyapatite and its functionality on chitosan membrane for guided bone regeneration. Composites Part B: Engineering, 163: 562–573. Boutinguiza M., Pou J., Comesana R., Lusquinos F., De Carlos A. and Leon B. 2012. Biological hydroxyapatite obtained from fish bones. Materials Science and Engineering, 32: 478–486. Froese R. and Pauly D. 2019. FishBase. Fisheries Centre, University of British Columbia, British Columbia. Retrieved February 22, 2021, from https://www.fishbase.de. Galeano S. and Garcia-Lorenzo M.L. 2014. Bone mineral change during experimental calcination: An X-ray diffraction study. Journal of Forensic Sciences, 59: 1602–1606. Gomez-Morales J., Iafisco M., Delgado-Lopez J.M., Sarda S. and Drouet C. 2013. Progress on the preparation of nanocrystalline apatite and surface characterization: Overview of fundamental and applied aspects. Progress in Crystal Growth and Characterization of Materials, 59: 1–46. Gremlich H. and Yan B. 2000. Infrared and Raman Spectroscopy of Biological Materials, Vol. 24. CRC Press, USA. 600P. Halstead B.W. 1988. Poisonous and Venomous Marine Animals of the World, Vol. 1. Darwin Press, Princeton. 1168P. Heaney R.P. 2006. Role of dietary sodium in osteoporosis. Journal of the American College of Nutrition, 25(sup3): 271–276. Hiller J.C., Thompson T.J.U., Evison M.P., Chamberlain A.T. and Wess T.J. 2003. Bone mineral change during experimental heating: An X-ray scattering investigation. Biomaterials, 24: 5091–5097. Hutmacher D.W., Schantz J.T., Lam C.X.F., Tan K.C. and Lim T.C. 2007. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. Journal of Tissue Engineering and Regenerative Medicine, 1: 245–260. John R., Ashokreddy A., Vijayan C. and Pradeep T. 2011. Single- and few-layer graphene growth on stainless steel substrates by direct thermal chemical vapor deposition. Nanotechnology, 22(16): 1–22 (165701). John A.T. and Mary J. 2016. Chemical composition of the edible oyster Shell Crassostrea madrasensis (Preston 1916). Journal of Marine Biology and Aquaculture, 2(2): 1–4. Kongsri S., Janpradit K., Buapa K., Techawongstien S. and Chanthai S. 2013. Nanocrystalline hydroxyapatite from fish scale waste: Preparation, characterization and application for selenium adsorption in aqueous solution. Chemical Engineering Journal, 215: 522–532. Kusrini E. and Sontang M. 2012. Characterization of x-ray diffraction and electron spin resonance: Effects of sintering time and temperature on bovine hydroxyapatite. Radiation Physics and Chemistry, 81(2): 118–125. Lafuente B., Downs R.T., Yang H. and Stone N. 2015. The power of databases: The RRUFF project. P: 1–30. In: Armbruster T., Danisi R.M. (Eds.). Highlights in Mineralogical Crystallography. De Gruyter, Germany. Landi E., Logroscino G., Proietti L., Tampieri A., Sandri M. and Sprio S. 2008. Biomimetic Mg-substituted hydroxyapatite: From synthesis to in vivo behaviour. Journal of Materials Science: Materials in Medicine, 19(1): 239–247. LeGeros R.Z. 1993. Biodegradation and bioresorption of calcium phosphate ceramics. Clinical Materials, 14: 65–88. Michelot A., Sarda S., Audin C., Deydier E., Manoury E., Poli R. and Rey C. 2015. Spectroscopic characterization of hydroxyapatite and nanocrystalline apatite with grafted aminopropyltriethoxysilane: Nature of silane-surface interaction. Journal of Materials Science, 50: 5746–5757. Mohd-Puad N.A.S., Koshy P., Abdullah H.Z., Idris M.I. and Lee T.C. 2019. Syntheses of hydroxyapatite from natural sources. Heliyon, 5(5): 1–14 (e01588). Mondal S., Hoang G., Manivasagan P., Moorthy M.S., Kim H.H., VyPhan T.T. and Oh J. 2019. Comparative characterization of biogenic and chemical synthesized hydroxyapatite biomaterials for potential biomedical application. Materials Chemistry and Physics, 228: 344–356. Nabavi S.M.B., Shushizadeh M.R., Behfar A. and Ghayem-Ashrafi M. 2017. Persian Gulf corals: A new hydroxyapatite bioceramics in medicine. International Journal of Pharmaceutical and Phytopharmacological Research, 7: 59–64. Nosrat A., Kolahdouzan A., Khatibi A.H., Verma P., Jamshidi D., Nevins A.J. and Torabinejad M. 2019. Clinical, radiographic, and histologic outcome of regenerative endodontic treatment in human teeth using a novel collagen-hydroxyapatite scaffold. Journal of Endodontics, 45: 136–143. Palmer L.C., Newcomb C.J., Kaltz S.R., Spoerke E.D. and Stupp S. I. 2008. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chemical Reviews, 108(11): 4754–4783. Pasteris J.D., Wopenka B., Freeman J.J., Rogers K., Valsami-Jones E., Van Der Houwen J.A.M. and Silva M.J. 2004. Lack of OH in nanocrystalline apatite as a function of degree of atomic order: Implications for bone and biomaterials. Biomaterials, 25: 229–238. Penel G., Leroy G., Rey C. and Bres E. 1998. MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcified Tissue International, 63: 475–481. Rahimzadeh R., Nazem Zomorrodi P. and Tajavanchi M.F. 2014. Nano-hydroxyapatite-coated cancellous bone graft in bone-defect repair (an animal study). Iranian Journal of Orthpaedic Surgery, 12: 132–139. Sanosh K.P., Chu M., Balakrishnan A., Kim T.N. and Cho S. 2009. Utilization of biowaste eggshells to synthesize nanocrystalline hydroxyapatite powders. Materials Letters, 63: 2100–2102. Sivakumar M., Kumar T.S.S., Shantha K.L. and Rao K.P. 1996. Development of hydroxyapatite derived from Indian coral. Biomaterials, 17: 1709–1714. Smith R. and Rehman I. 1994. Fourier transform Raman spectroscopic studies of human bone. Journal of Materials Science: Materials in Medicine, 5: 775–778. Smolen D., Chudoba T., Malka I., Kedzierska A., Lojkowski W., Swieszkowski W. and Lewandowska-Szumiel M. 2013. Highly biocompatible, nanocrystalline hydroxyapatite synthesized in a solvothermal process driven by high energy density microwave radiation. International Journal of Nanomedicine, 8: 653–668. Suchanek W. and Yoshimura M. 1998. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. Journal of Materials Research, 13: 94–117. Swart P.K. 1981. The strontium, magnesium, sodium composition of recent scleractinian coral skeletons as standards for palaeo-environmental analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 34: 115–136. Teruel J.D.D., Alcolea A., Hernandez A. and Ruiz A.J.O. 2015. Comparison of chemical composition of enamel and dentine in human, bovine, porcine and ovine teeth. Archives of Oral Biology, 60: 768–775. Teymouri A., Stuart B.J. and Kumar S. 2018. Hydroxyapatite and dittmarite precipitation from algae hydrolysate. Algal Research, 29: 202–211. Valinassab T., Dehghani R., Kamali E. and Behzadi S. 2011. Biomass estimation of demersal resources in the Persian Gulf and Oman Sea by Swept Area Method. Iranian Fisheries Science Research Institute, Iran. 256P. Venkatesan J., Qian Z.J., Ryu B., Thomas N.V. and Kim S.K. 2011. A comparative study of thermal calcination and an alkaline hydrolysis method in the isolation of hydroxyapatite from Thunnus obesus bone. Biomedical Materials, 6(3): 1–12 (035003). Walsh M.T., Beusse D., Bossart G.D., Young W.G., Odell D.K. and Patton G.W. 1988. Ray encounters as a mortality factor in Atlantic bottlenose dolphins (Tursiops truncatus). Marine Mammal Science, 4: 154–162. Wu S., Hsu H., Wu Y. and Ho W. 2011. Hydroxyapatite synthesized from oyster shell powders by ball milling and heat treatment. Materials Characterization, 62: 1180–1187. Wu S.C., Hsu H.C., Hsu S.K., Tseng C.P. and Ho W.F. 2017. Preparation and characterization of hydroxyapatite synthesized from oyster shell powders. Advanced Powder Technology, 28: 1154–1158. Yan X. 1999. Assessment of calcareous alga Corallina pilulifera as elemental provider. Biomass and Bioenergy, 16(5): 357–360. Zipkin I. 1970. The inorganic composition of bones and teeth. P: 69–103. In: Schraer H. (Ed.). Biological Calcification: Cellular and Molecular Aspects. Springer, Germany. | ||
آمار تعداد مشاهده مقاله: 954 تعداد دریافت فایل اصل مقاله: 756 |