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Abstract.This paper presents a new heuristic algorithm for the following covering problem.
For a set of n demand points in continuous space, locate a given number of facilities or sensors
anywhere on the plane in order to obtain maximum coverage. This means, in this problem an
infinite set of potential locations in continuous space should be explored. We present a heuristic
algorithm that finds a near-optimal solution for large-scale instances of this problem in a reason-
able time. Moreover, we compare our results with previous algorithms on randomly generated
datasets that vary in size and distribution. Our experiments show that in comparison to other
methods in the literature, the proposed algorithm is scalable and can find solutions for large-
scale instances very fast, when previous algorithms unable to handle these instances. Finally,
some results of the tests performed on a real-world dataset are also presented.
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1 Introduction

Covering problems in facility location have received considerable attention due to their appli-
cations in real-world such as wireless sensor networks (WSN) and marketing. These problems
seek to locate some facilities such that one or two objective functions like maximum coverage,
and minimum service distance are satisfied. The total number of facilities to be established
is often limited due to budget constraints. This raises the maximal covering location problem
(MCLP) which seeks to maximize the number of covered demand points by locating a given
number of facilities [5]. Initially, MCLP was studied with the assumption that the searching
domain is a finite discrete set of candidate locations. Therefore, in the standard MCLP, given
a set of n demand points and a set of m candidate locations, we find location of p facilities so
that the number of covered demand points is maximized. This means that there is no need to
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cover all the demand points, and a relatively small and finite set of candidate locations should
be examined. Moreover, each facility is able to provide the service within a coverage radius (or
critical area). We say that a demand point is covered by a facility, if the distance between the
demand point and the facility is less than a constant value of coverage radius. The coverage
radius plays an important role and affects the optimal solution, significantly. The coverage is
an important issue in facility location and wireless sensor networks (WSN) [16]. This simple
form of MCLP was introduced by Church and ReVelle [5], and they modeled it as an Integer
Program. Obviously, MCLP model can be useful for most cases of facility deployment. MCLP
and its extensions are widely used in various real-life location issues such as hierarchical health
systems [13], congested service systems [10]. MCLP is an NP-hard problem [8], and various
approaches, including exact and non-exact methods, have been used to find a solution for it.
The first techniques for solving MCLP were trying to obtain an integer solution for the pro-
posed linear relaxation equation as discussed by Church and ReVelle [5]. Although the exact
solution approach provided by Church and ReVelle [5] based on the integer programming leads
to the optimal solution of MCLP, but this method requires a lot of time to solve medium and
large-scale instances. Hence, various heuristic [7], and meta-heuristic [1] algorithms have been
proposed for the MCLP problem. Two genetic algorithms for finding near optimal solutions for
large-scale MCLP instances of size up to 2500 nodes and 3600 nodes are proposed in [4, 23]. A
bibliography for discrete location problems, including MCLP can be found in [15].

Most MCLP models are based on the assumption that the candidate locations to locate the
new facilities are known in advance. In other words, the facility locations can be selected from
a discrete set of feasible locations. Some researchers [6, 12] have relaxed this assumption and
expanded discrete MCLP to determine location of facilities in a continuous space. This means
that, the facilities are allowed to be placed anywhere on the plane. This problem is known as
planar maximal covering location problem (PMCLP) and was originally defined by Church [6].
For PMCLP, it is possible to obtain a larger demand coverage because more potential places are
available for selection [17]. PMCLP can be used for strategic location-based decision making,
such as infrastructure, because it allows a given number of facilities anywhere on the plane
to maximize coverage. However, due to the difficulty of finding a desirable set of circles in
continuous space, a common approach is to determine a candidate locations set (CLS) on the
plane and then reduce it to an MCLP problem. Therefore, PMCLP can be usually solved in
two phases: I- finding a good CLS, II- solving an MCLP for the given CLS. Usually, a simple
three-step process introduced by Church [6] is considered as a dominant technique for creating
CLS in phase I, which is often referred as the circle intersect points set (CIPS) method in the
literature. CIPS method has been widely used in many studies as a standard approach for
solving PMCLP [3,20,21]. But CIPS method has a high time complexity and is not usually able
to handle large-scale PMCLPs. Recently, He et al. [9] proposed a method based on mean-shift
to reduce the required time for computing a CLS, and provided a near-optimal result in most
cases. Moreover, some complex forms of PMCLP have been considered. Murray and Tong [14]
offer a general representation of demand (including points, lines, and polygons) that should be
optimally covered in one area. Matissiw and Murrary [11] formulated the 1-facility continuous
maximal covering problem (1-CMCP) as siting a single facility to maximize coverage in the case
where both demand points and candidate facility locations can exist anywhere within a region
(convex or non-convex) in a continuous space. Subsequently, Wei [17] studied the multi-facility
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model of the CMCP based on Voronoi diagrams and the geometric properties of the area. Some
research works also considered the generalization of PMCLP for different distance measures as
well as for rectangular demand zones with partial coverage [2, 22]. The authors in [18] studied
polygon overlay for fulfilling continuous space requirements in covering problem. Wei et al. [19]
studied solving the covering location problem, considering that demand points are distributed
along the arcs in a network and facilities can be located anywhere on the arcs.

As many other location models, finding a good solution for large-scale instances in PMCLP
is an interesting research field. Existing methods, such as CIPS algorithm, can ensure that
optimal solutions are obtained [6], but they may take a long time to solve, especially for large-
scale instances. Hence, in this paper, we propose a new deterministic heuristic algorithm which
can find a near-optimal solution for the large-scale PMCLP instances in a reasonable time. The
most important advantage of the proposed algorithm is its simplicity of implementation as well
as its very low running time compared to other existing algorithms for this problem. On the
other hand, this heuristic algorithm is able to find a near-optimal solution for instances with
very large-scale that other algorithms in the literature cannot handle them at all.

The rest of this paper is organized as follows. In Section 2, we present problem definitions
and previous algorithms. In Section 3, we describe our proposed heuristic algorithm. Section 4,
includes our experimental results, and Section 5 concludes the paper.

2 Problem definitions and related works

In this section, we describe the PMCLP problem, and then, we explain two significant algorithms
CIPS [6] and MSMC [9] for solving the PMCLP problem. The PMCLP can be defined as follows.
Given a set of n demand points in the plane, find location of p facilities with coverage radius
R, so that the number of covered demand points is maximized. Unlike the conventional MCLP
which locates the facilities on a discrete network or a discrete location set (or potential locations),
PMCLP seeks to place the facilities anywhere on a plane. In other words, in PMCLP, the number
of potential sites that can be used to locate is infinite. In this case, one can find a candidate
locations set (CLS) of potential locations from the continuous space to reduce PMCLP to an
MCLP. Therefore, we first describe MCLP formulation, from which PMCLP naturally appears.
MCLP is known as an NP-hard problem [8], which is determined by the number of demand
points (N), the number of potential locations (M), the number of facilities to be located (p),
and the coverage radius (R) of every facility. MCLP problem was modeled mathematically as
an Integer Program (IP) by Church and ReVelle [5] as follows:

Maximize C =
∑
i∈N

wixi, (1)

Subject to:
∑
j∈Si

yj > xi, ∀i ∈ N, (2)

∑
j∈M

yj = p, (3)

xi ∈ {0, 1}, ∀i ∈ N, (4)

yj ∈ {0, 1}, ∀j ∈M, (5)
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where:
i ∈ N = {1, 2, . . . , n}, the index of demand points to be covered;
j ∈M = {1, 2, . . . ,m}, the index of candidate locations for locating facilities;
wi = the weight of a demand point i;
R = predefined coverage radius;
dij = the shortest path from the demand point i to the facility j;
Si = {j ∈M |dij 6 R}, set of facilities that cover demand point i;
p = number of facilities to be located;
xi = a decision variable, with xi = 1, if the demand node i is covered,

and xi = 0, otherwise;
yj = a decision variable, with yj = 1, if a facility was established at the

location j, and yj = 0, otherwise.

The objective function (1) maximizes the total weight of the covered demands. Constraint
(2) determines that a demand will be covered, if covered by at least one facility. The condition
(3) limits the number of facilities to be located to exactly p. Constraints (4) and (5) represent
binary conditions on decision variables.

Since a dominant approach for solving the PMCLP is to find a suitable CLS and then
reducing it to an MCLP, so, a sound method for constructing a good CLS is desirable. The
CIPS and MSMC algorithms are two significant approaches to find a CLS, that we are explained
them here. Based on Church [6], solving a PMCLP using CIPS method can be done as follows:
1) Draw the boundary of coverage for each demand point (DP) and determine the intersection
points (IPs) of the boundaries. 2) Combine DPs and IPs as demand and intersection point
set (DIPS). 3) Remove all dominated points from DIPS and generate a final CLS. 4) Solve an
MCLP for the given CLS.

Facility point A is supposed to dominate facility point B, if A covers the same or more than
all demand points that point B can cover. Computing of DIPS in first step of CIPS method takes
quadratic time of O(n2) in the worst case, where n denotes number of demand points [9]. It has
been shown that the reduced DIPS, in other words, the final CLS generated by CIPS method
contains one optimal solution for PMCLP [6], but it has a high complexity and is usually not
able to handle large-scale PMCLPs. The total time needed to modify a DIPS to the final CLS,
not only depends on the number of DPs, but also on the pattern of demand distribution, so,
finding the dominated facility points can be time-consuming, especially for large-scale PMCLPs.

The other approach to find a CLS is the MSMC method. The MSMC is a method based on
mean-shift procedure to find a CLS for reducing PMCLP to MCLP, which is proposed by He et
al. [9]. The mean-shift procedure is a way to converge to the local density maxima (LDM) in
any probability distribution. Based on He et al. [9], solving a PMCLP using MSMC method can
be done as follows. 1) Generate a DIPS. 2) Run the revised mean-shift procedure to identify
LDM as final CLS. 3) Remove duplicate facility points of the same coordinates and then solve
an MCLP for the given CLS. The MSMC method takes O(τn3) time to compute a CLS, where τ
denotes the number of iterations before convergence. So, this algorithm is asymptotically better
than CIPS method, which takes at worst O(n5) time [9], but it does not have any guarantee to
include the optimal solution. Moreover, both CIPS [6] and MSMC [9] algorithms need to solve
an MCLP over the produced CLS, which also takes considerable time for large-scale instances.
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Figure 1: (a) Rounding points to a grid of side length
√

2R. (b) Setting circles with radius R
on central points (p1, p2, p3, p4) of a grid that covers all demand points.

So, both algorithms are still time-consuming and not very efficient for large-scale datasets.

3 The proposed algorithm

Given the above observations, we propose a new deterministic heuristic algorithm for the PM-
CLP. A major contribution of the proposed algorithm comes from its reduced running time,
consequently reaching to near maximal coverage of demand points faster. This advantage is
very important when performance is preferred over the quality of the answers; especially regard-
ing its ability in handling large-scale real-world instances. On the other hand, it should be noted
that our proposed method for this problem is different from two approaches that were presented
in [6] and [9] and it does not need to solve an MCLP in its final step. In fact, our proposed
method has two main phases, in the first phase it uses a grid to find the set of candidate circles,
and in the second phase it finds the near-optimal solution. In the second phase, the final solution
circles can be chosen by integer programming or a greedy approach. Since our goal is to study
problems of very large-scale, we use greedy selection in the second phase, which is both faster
and consumes less memory compared with integer programming.

The main idea of the algorithm is rounding the demand points to a grid, and then use
an iterative greedy approach for finding the maximum covering circle in each iteration of the
algorithm. We call our method as grid-based heuristic (GBH) method. First, this algorithm
rounds demand points to their closest central points on a grid with side length

√
2R. Let

D = {p1, p2, . . . , pm} be the set of rounding points after rounding to the grid that we call
potential circles set (PCS). Then, for each point of the PCS that is generated by rounding to a
grid, we shift it to four directions Up-Left (UL), Up-Right (UR), Down-Left (DL), and Down-
Right (DR) by size γR, for 0 < γ ≤ 1. We do this process for each point pi = (xi, yi) in PCS.
For example, UL 1

4
R(pi) = (xpi − R

4 , ypi + R
4 ) shifts point pi to Up-Left direction by size 1

4R.

It should be noted that by rounding to a grid with side length
√

2R, we can find a PCS of
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circles with radius R that covers all demand points (see Fig. 1). We expand the PCS domain
for having more option to select by shifting rounded points in initial set D to four directions by
sizes 1

2R and 1
4R, and compute the extended PCS (EPCS). Then, for each point pi of the EPCS,

we count the number of demand points inside the circle Cpi(R) with radius R, and center point
pi. Finally, in an iterative process, we find a point of the EPCS with maximum coverage and
remove demand points inside it. We repeat the same process for the remaining demand points.
We can now give this approach in Algorithm 1.

Algorithm 1: Grid-Based Heuristic (GBH)

Input: a set S of n demand points in the plane, number of facilities p, and a coverage radius R.

Output: a solution for PMCLP.

1: Round points of S to central points of a grid with side length
√
2R;

2: Let D = {p1, p2, . . . , pm} be the set of rounding points;

3: for i := 1 to m do

4: D ← D ∪ shifts of point pi to four directions by sizes 1
2
R and 1

4
R ;

5: end for

6: for i := 1 to p do

7: Compute list ϕ = {ϕ1, ϕ2, . . . , ϕ|D|}, where ϕi is the number of demand points inside circle Cpi(R);

8: j ← index of a point pj ∈ D, where ϕj is the maximum of list ϕ;

9: C ← C ∪ {pj};
10: D ← D − {pj};
11: S ← S − all points inside Cpj (R);

12: end for

13: Output C;

In order to better understand the effect of shifting the rounding points to four directions
on the final result, consider the example given in Fig. 2. After rounding to the grid, we have
a circle with center pi and radius R, which cover points inside the grid cell. As it can be seen,
we examine four shifted circles around a rounded circle with center point pi. By using the four
shifted circles, we reach a circle in point DRR

4
(pi) that covers more points than the original

circle in point pi.

The computational complexity of the proposed algorithm could be examined as follows.
We know that rounding a set of n points to a grid, takes O(n) time. After rounding to the
grid, we have m = |D| = O(n) circles, which cover entirely the points set, and by shifting the
circles of D into four directions, its size increases to a constant d = |D| 6 9m. What remains
is to analyze time complexity of the second for loop. There are a set S of n points, and a
set EPCS of size d = |D|. We know that in each iteration of the for loop, a circle which
covers the maximum number of points is found and points inside it left out from the set S.
Let |Si| be the number of demand points remained in S at the beginning of the ith iteration.
Finding a circle that covers maximum number of points in ith iteration takes (d − (i − 1))|Si|
comparisons or lower than d|Si| comparisons. The for loop takes p iterations, so, we have:
T (n) = (d − (p − 1))|Sp| + · · · + (d − 1)|S2| + d|S1| 6 d(|Sp| + · · · + |S2| + |S1|). We know
that d = O(n) in the worst case, and |Si| < |Si−1|, and |Si| < n, for i > 1. Also, we know
that |S1| = n, and |S1| +

∑p
i=2 |Si| < p · n. Since, |Si| 6 n, thus T (n) = O(d · p · n). Since

d 6 9n = O(n), so T (n) = O(p · n · n). Finally, because the number of facilities p is a constant
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Figure 2: (a) Rounding points to a grid and covering points inside the cell grid with a circle
with center pi and radius R. (b) By shifting the circle to four directions, we get four circles. (c)
By examining five circles, we find a circle with center DRR

4
(pi) that covers the largest number

of points.

which is logically lower than number of demand points, the finally complexity of the proposed
algorithm would be O(n2) in the worst case.

4 Experimental results

In this section, we generate some random datasets to test the performance of the proposed algo-
rithm versus CIPS and MSMC algorithms. We implemented CIPS algorithm due to Church [6],
MSMC algorithm due to He et al. [9], and our GBH proposed algorithm. The algorithms were
implemented in MATLAB on an Intel Core i5 3.00 GHz CPU and 4 GB RAM computer under
the 64-bit Windows 10 operating system. We also use IBM ILOG CPLEX Studio 12.6 opti-
mization software as a CPLEX API in MATLAB 2013 for solving MCLP instances in the final
step of CIPS and MSMC algorithms. In Fig. 3, we illustrate the steps for these three algorithms
which are implemented in this section.

We have created datasets in a square [−2, 2] × [−2, 2] of different sizes n = {20, 60, 100,
200, 400, 500} with different distribution random, circles, moons and blobs. First, each instance
is solved by CIPS and MSMC algorithms, then the solutions are compared with the results of the
proposed algorithm. In order to compare three algorithms, we use three metrics Cα, ADα and
Tα which are coverage ratio, average distance of covered demand points to their nearest facility,
and the running time of each algorithm, where the subscript α is used to indicate the three
algorithms (CIPS: α = 1, MSMC: α = 2, GBH: α = 3). We also denoted the number of circles
in DIPS, the number of reduced circles in CLS in CIPS and MSMC algorithms, and the number
of circles in EPCS for GBH algorithm by |DIPS|, |CLS1|, |CLS2|, and |EPCS|, respectively.
The computational results are summarized in Tables 1-3 for coverage radius R = 0.6, number
of facilities p = 5 for random, circles, and moons datasets, and number of facilities p = 3 for
the blobs dataset. We plot our experimental results for n = 100 in Fig. 4, including different
distributions of demand points, the final locations of the facilities (circles), and coverage of the
demand points. In the following, we illustrate the results obtained by running the proposed GBH
algorithm and MSMC algorithm on some large-scale instances of sizes n = {1000, 1500, 2000} in
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Solve 

MCLP 

Solve 

MCLP 
Output 

Figure 3: The steps of three algorithms which are implemented in order to compare their results.

Table 2. Note that for large-scale datasets, we only test MSMC and GBH algorithms, because
CIPS algorithm is unable to solve these datasets in a reasonable time. Finally, we present
the results of running the proposed algorithm (GBH) on very large-scale datasets of sizes n =
{10000, 50000, 100000} in Table 3. All the running times are presented in seconds.

4.1 Results and discussions

The experimental results show that the running time of CIPS algorithm for small instances of
at most n = 400 demand points is tolerable, but for larger instances it requires more than one
hour to solve the problem. This is due to increment in density of the DIPS and also to the
complexity of the final MCLP. The same is true for MSMC algorithm, and the running time of
MSMC algorithm increases to more than one hour for datasets of size larger than n = 2000. In
contrast, regarding our GBH proposed algorithm, the results in Tables 2 and 3 indicate that it
has high efficiency, and even can find a solution to large-scale instances of size n = 100000 in
about two minutes. In addition, in terms of coverage ratio criterion, especially for large-scale
instances, the results of GBH algorithm are close to those of previous algorithms. Based on the
data in Table 1, the worst case gap between the results of GBH algorithm and the results of
CIPS algorithm is Gap = C1 − C3 = 0.15 for a small instance of size n = 20 in circles dataset.
As number of demand points increases, the gap between GBH and CIPS decreases. Thus, GBH
can replace CIPS on medium and large-scale instances without significant reduction in coverage
ratio.

It may be argued that it is not required to use non-exact algorithms, while CIPS algorithm
by using CPLEX reaches best solutions in the most cases. Although this is true for some small
and medium size instances, it should be noted that for large-scale instances, CIPS and MSMC
algorithms take many time to find a solution for a large-scale MCLP problem. Corresponding
integer programming (IP) for MCLP is often solved in optimization tools like CPLEX that create
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Table 1: The experimental results for the datasets with different distribution of sizes n 6 500
on CIPS, MSMC and GBH algorithms. Subscript α in Tα, Cα, ADα indicates three algorithms
(CIPS: α = 1, MSMC: α = 2, GBH: α = 3). Shadow rows show results of the GBH proposed
algorithm.

Index

20 60 100 200 400 500 20 60 100 200 400 500

C1 0.75 0.62 0.67 0.53 0.48 0.47 0.70 0.57 0.54 0.54 0.52 0.51

C2 0.65 0.57 0.61 0.49 0.44 0.44 0.65 0.53 0.51 0.50 0.49 0.49

C3 0.65 0.57 0.59 0.47 0.44 0.43 0.55 0.50 0.48 0.48 0.46 0.46

AD1 0.44 0.45 0.46 0.42 0.42 0.43 0.50 0.49 0.50 0.43 0.39 0.41

AD2 0.24 0.38 0.40 0.41 0.39 0.41 0.42 0.41 0.37 0.37 0.32 0.33

AD3 0.39 0.44 0.45 0.40 0.40 0.41 0.42 0.40 0.40 0.43 0.39 0.41

|DIPS| 86 754 2392 8658 33784 53772 80 770 2156 8662 35612 54932

|CLS1| 15 69 158 572 2160 3318 16 91 178 539 1940 2895

|CLS2| 24 81 141 220 631 621 34 100 145 166 256 294

|EPCS| 126 252 270 288 324 324 162 261 288 288 288 288

T1 0.543 1.902 14.629 183.297 2419.83 6317.56 0.532 2.215 13.481 165.866 2442.51 5173.46

T2 0.552 0.647 0.974 3.011 16.322 30.178 0.549 0.645 0.888 2.471 14.482 26.861

T3 0.017 0.019 0.021 0.022 0.028 0.03 0.018 0.02 0.021 0.026 0.029 0.03

Index

20 60 100 200 400 500 20 60 100 200 400 500

C1 0.65 0.63 0.61 0.63 0.60 0.59 1.00 1.00 1.00 1.00 1.00 0.99

C2 0.65 0.58 0.59 0.60 0.57 0.56 1.00 0.97 0.98 0.99 0.99 0.99

C3 0.60 0.58 0.57 0.59 0.56 0.56 1.00 0.95 0.97 0.98 0.98 0.98

AD1 0.41 0.43 0.40 0.37 0.36 0.35 0.27 0.29 0.29 0.27 0.27 0.27

AD2 0.43 0.36 0.34 0.33 0.33 0.32 0.25 0.27 0.27 0.26 0.25 0.25

AD3 0.41 0.39 0.39 0.37 0.36 0.35 0.31 0.31 0.31 0.30 0.29 0.30

|DIPS| 80 712 2028 8160 32360 50892 134 1204 3400 13512 54242 84580

|CLS1| 16 44 93 203 633 971 5 4 9 17 55 89

|CLS2| 38 56 78 85 87 80 4 6 3 3 3 3

|EPCS| 153 189 180 180 198 216 54 99 99 99 108 126

T1 0.584 1.533 6.131 67.569 862.089 2177.22 0.537 0.947 4.205 35.736 496.442 1179.26

T2 0.543 0.643 0.893 2.711 16.915 33.924 0.56 0.732 1.138 3.611 24.193 49.856

T3 0.018 0.019 0.022 0.02 0.025 0.025 0.017 0.019 0.018 0.018 0.019 0.021

Random Circles

Moons Blobs

a branch and cut tree in the main memory. By increasing the size of n, number of parameters
for IP problem also increases until the memory is full and CPLEX fails. Thus, CIPS and MSMC
cannot solve, such very large-scale instances in practice. In the case of the average distance (AD)
between all the covered demand points to the nearest facility, the experimental results show
that MSMC algorithm produces the smallest service distance. On the other hand, decreasing
the value of AD criterion is not an objective for CIPS and GBH algorithms. However, to reduce
AD criterion, a mean-shift or similar algorithm can be applied to EPCS circles created by the
proposed GBH algorithm. In this study, however, we do not consider such an analysis necessary.
The experimental results also show that in MSMC algorithm, when density of points is high
in some special regions and low in other regions (such as blobs dataset), the algorithm passes
all facilities to the centers of accumulation. When the number of facilities is overly increased,
MSMC algorithm does not use extra facilities to also cover low density regions. In addition, we
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Figure 4: The results of running the proposed GBH algorithm and CIPS and MSMC algorithms
on random datasets of size n = 100 with different distribution and coverage radius R = 0.6.

observed that by increasing the size of the coverage radius from R = 0.6 to R = 0.7, the required
time of CIPS algorithm is increased. This is due to the fact that by increasing coverage radius,
the number of intersections in DIPS increases, and therefore, calculating the reduced CLS takes
more time.
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In order to investigate the effect of the pattern used for point shifts, we compare performance
of three different patterns. These three patterns include the square pattern used in the proposed
algorithm and two triangular and hexagonal patterns shown in Fig. 5. The results of using these
three different patterns in our GBH algorithm are listed in Table 4. In this table, the symbols
CS , CT and CH denote the square, triangular, and hexagonal patterns coverage ratio on GBH
algorithm, respectively; and so on for the symbols ADS , ADT , ADH , TS , TT and TH . It can
be seen from Fig. 5 that applied square pattern, multiplies one candidate point to eight new
points. In contrast, the triangular and hexagonal patterns multiply each candidate point to six
and twelve new points, respectively. As a result, according to Table 4, the hexagonal pattern
requires more time than the others, but also provides highest coverage ratio in most cases. To
achieve a balance between quality and time, we employed a square pattern in our proposed GBH
algorithm.

Table 2: The experimental results for the medium-size datasets of sizes n = {1000, 1500, 2000}
on MSMC and GBH algorithms. Subscript α in Tα, Cα, ADα indicates two algorithms (MSMC:
α = 2, GBH: α = 3). The CIPS method was unable to solve this medium-size instances. Shadow
rows show results of the GBH proposed algorithm.

Index

1000 1500 2000 1000 1500 2000 1000 1500 2000 1000 1500 2000

C2 0.41 0.41 0.41 0.49 0.49 0.49 0.54 0.56 0.54 0.99 0.99 0.99

C3 0.41 0.40 0.40 0.46 0.46 0.46 0.55 0.56 0.55 0.98 0.97 0.97

AD2 0.40 0.40 0.40 0.32 0.32 0.32 0.32 0.32 0.32 0.25 0.25 0.25

AD3 0.41 0.41 0.40 0.38 0.40 0.37 0.34 0.34 0.34 0.29 0.27 0.27

|DIPS| 210644 485542 858034 218964 494292 878448 202966 459130 809808 338342 759764 1346506

|CLS2| 1019 1324 1244 405 506 604 97 118 104 4 3 4

|EPCS| 324 324 324 288 288 288 207 216 216 144 162 162

T2 300.40 1339.72 3975.39 271.28 1128.46 3329.10 335.83 1465.91 4432.62 624.35 3029.15 9051.44

T3 0.05 0.06 0.08 0.04 0.06 0.08 0.04 0.05 0.07 0.03 0.04 0.06

Random Circels Moons Blobs

Table 3: The experimental results for the large-scale datasets of sizes n = {10000, 50000, 100000}
on GBH algorithm. The MSMC method was unable to solve this large-scale instances.

Index

10000 50000 100000 10000 50000 100000 10000 50000 100000 10000 50000 100000

C3 0.68 0.68 0.67 0.71 0.70 0.71 0.90 0.90 0.90 0.97 0.97 0.97

AD3 0.51 0.51 0.52 0.54 0.52 0.53 0.36 0.36 0.36 0.29 0.29 0.29

|EPCS| 324 324 324 288 288 288 243 243 243 180 189 189

T3 1.38 25.27 98.23 1.28 24.39 94.35 1.23 24.75 97.36 1.4 33.06 129.78

Random Circels Moons Blobs

This question may arise that why in the second phase of the GBH algorithm we used a
greedy selection procedure instead of finding final solution circles in the EPCS using integer
programming by CPLEX. To answer this question, we have conducted an experiment where we
attempted to study the sample problems of Tables 1, 2, and 3 by applying both greedy approach
and integer programming by CPLEX in the second phase of the proposed GBH algorithm.
Our experiments show that the integer programming approach cannot be applied to large-scale
instances of Table 3 due to the out of memory problem caused by the large size of the EPCS in
such instances. Hence, Tables 5 and 6 only show the results of applying the integer programming
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(a) (b) (c)

pi pi pi

Figure 5: Different shift patterns. (a) Square. (b) Triangular. (c) Hexagonal.

Table 4: The experimental results for different shift patterns (S=Square, T=Triangle,
H=Hexagonal) applied to the GBH algorithm. Subscript α in Tα, Cα, ADα indicates three
shift patterns (Square: α = S, Triangle: α = T , Hexagonal: α = H).

Index Random Circles

20 100 200 500 1000 2000 20 100 200 500 1000 2000

CS 0.6500 0.5900 0.4700 0.4300 0.4060 0.4015 0.5500 0.4800 0.4800 0.4640 0.4630 0.4620

CT 0.6500 0.6100 0.4550 0.4360 0.4070 0.4055 0.6000 0.4900 0.4700 0.4640 0.4480 0.4560

CH 0.6500 0.6000 0.4900 0.4340 0.4110 0.4070 0.7000 0.4900 0.5000 0.4700 0.4610 0.4635

ADS 0.3939 0.4453 0.3986 0.4089 0.4070 0.4023 0.4165 0.3953 0.4343 0.4056 0.3771 0.3677

ADT 0.4093 0.4267 0.3925 0.4100 0.4144 0.4084 0.4196 0.4444 0.3510 0.3745 0.4028 0.3894

ADH 0.3764 0.4420 0.4096 0.4248 0.3994 0.4008 0.4870 0.4521 0.4181 0.3907 0.4080 0.4053

TS 0.0254 0.0286 0.0281 0.0333 0.0474 0.0788 0.0261 0.0265 0.0279 0.0338 0.0440 0.0795

TT 0.0253 0.0262 0.0268 0.0320 0.0440 0.0745 0.0257 0.0266 0.0265 0.0325 0.0439 0.0688TT 0.0253 0.0262 0.0268 0.0320 0.0440 0.0745 0.0257 0.0266 0.0265 0.0325 0.0439 0.0688

TH 0.0424 0.0322 0.0334 0.0418 0.0562 0.0904 0.0283 0.0335 0.0335 0.0397 0.0535 0.0916

Index Moons Blobs

20 100 200 500 1000 2000 20 100 200 500 1000 2000

CS 0.6000 0.5700 0.5850 0.5560 0.5470 0.5495 1.0000 0.9700 0.9750 0.9760 0.9770 0.9730

CT 0.6000 0.5500 0.5700 0.5440 0.5460 0.5545 1.0000 0.9900 0.9700 0.9680 0.9720 0.9670

CH 0.6000 0.5700 0.5850 0.5580 0.5550 0.5560 1.0000 1.0000 1.0000 0.9880 0.9870 0.9840

ADS 0.4065 0.3905 0.3726 0.3470 0.3386 0.3438 0.3139 0.3056 0.2953 0.2953 0.2890 0.2736

ADT 0.4050 0.3526 0.3554 0.3266 0.3379 0.3315 0.2933 0.3150 0.3053 0.3088 0.2849 0.2863

ADH 0.4053 0.3426 0.3406 0.3290 0.3356 0.3307 0.3190 0.3044 0.2745 0.2822 0.2674 0.2644

TS 0.0255 0.0259 0.0285 0.0321 0.0425 0.0728 0.0249 0.0251 0.0262 0.0291 0.0379 0.0719

TT 0.0251 0.0262 0.0256 0.0297 0.0391 0.0666 0.0251 0.0246 0.0242 0.0281 0.0374 0.0693TT 0.0251 0.0262 0.0256 0.0297 0.0391 0.0666 0.0251 0.0246 0.0242 0.0281 0.0374 0.0693

TH 0.0279 0.0306 0.0312 0.0369 0.0463 0.0778 0.0264 0.0266 0.0276 0.0306 0.0420 0.0750

selection and greedy selection approaches on the instances of Tables 1 and 2. In these tables,
subscript α = 3 refers to GBH algorithm with greedy approach in its second phase and subscript
α = 4 refers to GBH algorithm with integer programming approach by CPLEX in its second
phase. As shown in Tables 5 and 6, as size of the problem increases, difference of coverage ratio
between the greedy approach and integer programming decreases (C3 and C4). On the other
hand, the greedy approach takes less time (T3) compared to CPLEX solutions on all instances.
These experiments show that in order to be able to solve very large-scale instances at the desired
time, we have no choice but to use heuristic approaches such as greedy selection in the second
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Table 5: The experimental results for the datasets with different distribution of sizes n 6 500
after applying two approaches greedy and integer programming in the second phase of the GBH
algorithm. Subscript α in Tα, Cα, ADα indicates applying two approaches in second phase of
GBH algorithm algorithm (using greedy approach: α = 3, using integer programming approach:
α = 4).

Index

20 60 100 200 400 500 20 60 100 200 400 500

C3 0.65 0.57 0.59 0.47 0.44 0.43 0.55 0.50 0.48 0.48 0.46 0.46

C4 0.70 0.57 0.61 0.48 0.44 0.43 0.60 0.53 0.49 0.50 0.48 0.47

AD3 0.39 0.44 0.45 0.40 0.40 0.41 0.42 0.40 0.40 0.43 0.39 0.41

AD4 0.43 0.41 0.42 0.41 0.40 0.41 0.46 0.42 0.43 0.42 0.41 0.41

T3 0.017 0.019 0.021 0.022 0.028 0.03 0.018 0.02 0.021 0.026 0.029 0.03

T4 0.48 0.472 0.502 0.487 0.645 0.778 0.487 0.501 0.483 0.516 0.652 0.778

Index

20 60 100 200 400 500 20 60 100 200 400 500

C3 0.60 0.58 0.57 0.59 0.56 0.56 1.00 0.95 0.97 0.98 0.98 0.98

C4 0.60 0.58 0.57 0.59 0.56 0.57 1.00 0.95 0.97 0.98 0.98 0.98

AD3 0.41 0.39 0.39 0.37 0.36 0.35 0.31 0.31 0.31 0.30 0.29 0.30

AD4 0.42 0.39 0.40 0.37 0.35 0.34 0.35 0.31 0.31 0.30 0.29 0.30

T3 0.018 0.019 0.022 0.02 0.025 0.025 0.017 0.019 0.018 0.018 0.019 0.021

T4 0.488 0.50 0.483 0.517 0.627 0.754 0.486 0.503 0.50 0.50 0.612 0.71

Random Circles

Moons Blobs

phase of the proposed GBH algorithm. On the other hand, comparison of the coverage ratio
between GBH with greedy selection (C3) and GBH with CPLEX integer programming selection
(C4) in Table 6 on medium-scale instances reveals the ability of the greedy approach to produce
same solutions with CPLEX in most cases in very short time.

Table 6: The experimental results for the medium-size datasets of sizes n = {1000, 1500, 2000}
after applying two approaches greedy and integer programming in the second phase of the GBH
algorithms. Subscript α in Tα, Cα, ADα indicates applying tow approaches in second phase of
GBH algorithm (using greedy approach: α = 3, using integer programming approach: α = 4).

Index

1000 1500 2000 1000 1500 2000 1000 1500 2000 1000 1500 2000

C3 0.41 0.40 0.40 0.46 0.46 0.46 0.55 0.56 0.55 0.98 0.97 0.97

C4 0.41 0.40 0.40 0.47 0.47 0.46 0.55 0.56 0.55 0.98 0.97 0.97

AD3 0.41 0.41 0.40 0.38 0.40 0.37 0.34 0.34 0.34 0.29 0.27 0.27

AD4 0.41 0.41 0.41 0.41 0.40 0.37 0.33 0.34 0.34 0.29 0.27 0.27

T3 0.05 0.06 0.08 0.04 0.06 0.08 0.04 0.05 0.07 0.03 0.04 0.06

T4 2.63 7.44 16.55 2.61 7.34 16.17 2.43 6.93 15.67 2.32 7.04 15.05

Random Circels Moons Blobs

4.2 Real-world dataset

In addition to the previously mentioned test problems, we apply GBH to solve a large-scale real-
world challenge. The problem is to determine the location of some police stations in Baltimore
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city, according to location of the past city crimes. Our real-world data are crime data of Balti-
more city obtained from BPD Part 1 Victim Based Crime Data and provided by the Baltimore
Police Department1 . All data is geocoded to the approximate latitude/longitude location of
the incident and includes type of crime, location, neighborhood, date and time, and some other
attributes for each incident. The objective is to locate police stations such that the maximum
number of incidents could be covered instantly by a limited number of police stations. Thus the
locations of past incidents are considered as demand points as shown in Fig. 6, and mapped to
the range of [−2,+2]. The map segments in Fig. 6 show different city neighborhoods. Every
police station observes for crimes in a local neighborhood around it. Police stations are modeled
by 20 facilities with a coverage radius of 0.3.

 

  

 

Figure 6: Location of n = 284000 past city crimes occurred from 2011 to 2016 in Baltimore city.

To examine scalability of GBH, several versions of the real dataset are generated by randomly
sampling from demand points. The dataset includes 284000 incidents occurred from 2011 to

Data from Open Baltimore web resource, https://data.baltimorecity.gov. Accessed 05 Oct 2019.

https://data.baltimorecity.gov
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Table 7: The experimental results for the real large-scale datasets of Baltimore city of sizes
n = {2000, 3000, 5000, 10000, 50000, 100000, 200000, 280000} on GBH algorithm. The CIPS and
MSMC methods were unable to solve these large-scale instances.

Index

2000 3000 5000 10000 50000 100000 200000 280000

C3 0.82 0.81 0.81 0.82 0.82 0.81 0.81 0.81

AD3 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19

|EPCS| 567 594 594 612 639 630 657 657

T3 0.20 0.31 0.51 1.12 14.49 58.59 205.25 405.82

Baltimore instances

2016. The results of GBH for n = {2000, 3000, 5000, 10000, 50000, 100000, 200000, 280000} are
presented in Table 7. For the complete dataset of 280000 demand points, GBH only takes
406 seconds to find a solution for the problem, and achieved a coverage ratio of 0.81 and an
average distance to the nearest facility of 0.19. Distribution of police stations for datasets of
size n = {2000, 3000, 5000, 10000} demand points is illustrated in Fig. 7. As number of demand
points increased, a more accurate set of locations was selected for police stations. Due to the
random sampling strategy, spatial distribution of demand points for all generated datasets of
Baltimore city is almost the same. As a result, the coverage quality was not significantly changed
by increasing the size of dataset.

5 Conclusion

In this paper, we considered PMCLP problem, and proposed a new heuristic algorithm to find a
near-optimal solution for it. The existing algorithms, such as CIPS algorithm, can ensure that
the optimal solutions are obtained in most cases. But in practice, they may take a long time
to solve, especially for large-scale instances. We proposed a new deterministic heuristic algo-
rithm, and compared the results of the proposed algorithm with the results of CIPS and MSMC
algorithms. The results revealed efficiency of the proposed algorithm in finding near-optimal
solutions for large-scale instances in a reasonable time, where CIPS and MSMC algorithms take
more than one hour or even fail. As a research topic for the future, one can use a different
structure such as a hexagonal grid instead of the square grid used by us. In that case, the
computational complexity will certainly increase, but better coverage quality may be obtained.
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Figure 7: The results of running the proposed GBH algorithm on real datasets of size n =
{2000, 3000, 5000, 10000} with coverage radius R = 0.3, and number of facilities p = 20.
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