تعداد نشریات | 31 |
تعداد شمارهها | 748 |
تعداد مقالات | 7,112 |
تعداد مشاهده مقاله | 10,246,399 |
تعداد دریافت فایل اصل مقاله | 6,899,996 |
محاسبه آماری مقاومت متوسط لازم طرح اختلاط و ضرائب اطمینان بتنهای ویژه شاتکریت، الیافی ، و ژئوپلیمری و مقایسه با بتن معمولی کارگاهی | ||
تحقیقات بتن | ||
مقاله 4، دوره 14، شماره 1 - شماره پیاپی 33، فروردین 1400، صفحه 57-72 اصل مقاله (1.24 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/jcr.2021.16969.1445 | ||
نویسندگان | ||
محمد کاظم شربتدار* ؛ اسفندیار نادری | ||
دانشگاه سمنان | ||
چکیده | ||
امروزه بررسی شرائط پذیرش بتن های جدید، فواصل اطمینان و ضوابط طرح اختلاط با روش های آماری ضروری است. در این مقاله اطلاعات میدانی و نتایج تحقیقات گذشته بتن های معمولی و ویژه با کمک نرم افزارهای آماری و استفاده از فرمولهای ضرائب و فواصل اطمینان آئیننامه ها و مقاومت فشاری متوسط لازم مورد تجزیه و تحلیل قرار گرفتند و ضریب اطمینان جزئی، فاصله اطمینان و مقاومت فشاری متوسط لازم برای هر بتن بصورت مجزا محاسبه گردید. نتایج تحلیلهای آماری نشان داد که میزان انحراف و ضریب پراکندگی بتنهای ساخته شده معمولی در شرکتهای تولید کننده بتن آماده در بازهی زمانی مرداد و شهریور کمتر از بازهی مشابه اردیبهشت و خردادماه به دلیل دقت بیشتر درکارگاهها و جلب رضایت مشتری بود. ضریب تنوع و ضریب اطمینان جزئی بتن شاتکریت تا 4 برابر و 40 % بتن متناظر معمولی بود که نشان از کیفیت پائین آن است. استفاده همزمان میکروسیلیس و الیافPPS باعث بهبود ضریب اطمینان جزئی، فاصله اطمینان و مقاومت فشاری متوسط لازم بتن شد که نشان از کیفیت بیشتر مطابق معیارهای استاندارد موسسه بتن آمریکا است. استفاده از الیاف باعث افزایش انحراف معیار و ضریب تنوع در بتن های الیافی شد و در نهایت باعث کاهش ضریب اطمینان بتن گردید. ولی انحراف معیار و ضریب تنوع ژئوپلیمرهای معمولی نسبت به نمونه الیافی تا 2 برابر افزایش و ضریب اطمینان جزئی هم تا 15 درصد کاهش داشت که نشان از کیفیت بیشتر ژئوپلیمر الیافی نسبت به نمونه معمولی مطابق معیارهای استاندارد بود. | ||
کلیدواژهها | ||
"بتن ویژه"؛ "مباحث آماری"؛ "ضریب اطمینان"؛ "مقاومت فشاری"؛ "انحراف معیار" | ||
مراجع | ||
[1] Shetty, M.S., (2019). Concrete Technology, Google Books.
[2] عبدالوهاب، وحید (1395). انواع بتن ویژه و کاربرد آن، انتشارات کتابراه. [3] روش ملی طرح مخلوط بتن (1386) ، مرکز تحقیقات ساختمان و مسکن . [4] رمضانیان پور، علی اکبر (1388). بتن نوین، دانشگاه صنعتی امیرکبیر. [5] Skrzypczak, I., Słowik, M. Buda-Ożóg, L. (2019), The Application of Reliability Analysis in Engineering Practice – Reinforced Concrete Foundation, Procedia Engineering 193:144-151.
[6] ضرغامی، مهدی (1391). آﻣﺎر و اﺣﺘﻤﺎل ﺑﺮای ﻣﻬﻨﺪﺳﻲ ﻋﻤﺮان، دانشکده مهندسی عمران، اﻧﺘﺸﺎرات داﻧﺸﮕﺎه ﺗﻬﺮان. [7] کی نیا، امیر مسعود (1387). آنالیز و طراحی سازههای بتن آرمه، انتشارات جهاد دانشگاهی دانشگاه صنعتی اصفهان، چاپ هفدهم. [8] مبحث نهم طرح و اجرای ساختمانهای بتن آرمه (139۹). مقررات ملی ساختمان ایران، وزارت مسکن و شهرسازی، تهران. [9] Steenbergen, R.D.J.M., van Gelder, P.H.A.J.M., (2014). Safety, Reliability and Risk Management, Taylor and Francis Group, London.
[10] ACI 318, 2012. Reliability-based Calibration of Design Code for Concrete Structures.
[11] ASTM C31. (2003). Standard Practice for Making and Curing Concrete Test Specimens in the Field, American Society for Testing and Materials.
[12] ASTM C39. (2003). Standard Practice for Compressive Strength of Cylindrical Concrete Specimens, American Society for Testing and Materials.
[13] Day, Ken W. (2005). Concrete mix design, quality control and specification, Second edition. UK, E and FN Spon.
[14] Montgomery, D.C. (2012). Design and analysis of experiments. 5th ed. Publisher: Wiley.
[15] ACI 214, (2010). Evaluation of Strength Test Results of Concrete.
[16] Day, Ken W. (2006). Concrete mix design, quality control and specification, Third edition. Oxon, Taylor and Francis.
[17] Gu, X. Jin, X. Zhou, Y. (2016). Basic Principles of Concrete Structures. Springer.
[18] ASTM C 1074, (2004). Standard Practice for Estimating Concrete Strength by the Maturity Method, American Society for Testing and Materials.
[19] Kosmatka, S.H. Kerkhoff, B. Panarese, W.C. (2003). Design and control of concrete mixtures, 14th Ed., USA, Portland Cement Association.
[20] Vandegrift, D., Schindler, K.A. (2005). The Effect of Test Cylinder Size on the Compressive Strength of Sulfur Capped Concrete Specimens, Highway Research Center and Department of Civil Engineering at Auburn University.
[21] Mogahzy, Y. E. (2001). Statistics and Quality Control for Engineers and Manufacturers. Auburn University.
[22] Domagała, L., (2020), Size Effect in Compressive Strength Tests of Cored Specimens of Lightweight Aggregate Concrete, Materials 2020, 13(5), 1187.
[23] ACI 214, (2010). Evaluation of Strength Test Results of Concrete, Manual of Concrete Practice
[24] Cevik, A. (2011). Modeling Strength Enhancement of FRP Confined Concrete Cylinders Using Soft Computing, Expert Systems with Applications, 38(5), 5662-5673 p.
[2۵] استاندارد ملی ایران، 6044، (1381)، بتن آماده-ویژگیها، مؤسسه استاندارد و تحقیقات صنعتی ایران، تهران. [26] Brunarski, L., Dohojda, M. (2015). Diagnostics of concrete strength in structures, ITB, Warsaw, 64(4), 687-695 p.
[27] ASTM C94. (2010). Standard specification for ready-mixed concrete, Annual Book of ASTM Standards, Vol 04.02., Philadelphia.
[28] BS-EN 206. (2000). Concrete. Specification, performance, production and conformity, European Committee for Standardization.
[29] Badr, A. (2016). Statistical Analysis of the Variability in Shotcrete Strength, Global Journal of Research in Engineering, 16(4), 13-23 p.
[30] Kepniak, M., Woyciechowski, P. (2016). The Statistical Analysis of Relation between Compressive and Tensile, Flexural Strength of High Performance Concrete, Archives of Civil Engineering, 62(4), 95-108 p.
[31] EN 1992-1-1. (2004). EUROCODE 2: Design of concrete structures. Part 1: General rules and rules for buildings, European Committee for Standardization.
[32] Mutiu, A.A., Samson, O.O., Oladipupo, S.O., Fatima, Z.M. (2017). Investigating the relationship between tensile pulling and compression of self compacting concrete, Department of Civil Engineering, Faculty of Engineering, Kwara State University, Journal of King Saud University.
[33] Akkurt, I., Altindag, R., Basyigit, C., Kilincarslan, S. (2008). The effect of barite rate on the physical and mechanical properties of concretes under F–T cycle, Materials and Design, 29(9), 1793–1795 p.
[34] Yanxia Ye, Jilei Liu, Zhiyin Zhang, Zongbin Wang, Qiongwu Peng, (2020), "Experimental Study of High-Strength Steel Fiber Lightweight Aggregate Concrete on Mechanical Properties and Toughness Index", Advances in Materials Science and Engineering, vol. 2020, Article ID 5915034, 10 pages, 2020.
[35] Babar Ali, Liaqat Ali Qureshi, Sibghat Ullah Khan, (2020), Flexural behavior of glass fiber-reinforced recycled aggregate concrete and its impact on the cost and carbon footprint of concrete pavement, Construction and Building Materials, 10.1016/j.conbuildmat.2020.120820, 262, (120820).
[3۶] دالوند، احمد.(1393). بررسی آزمایشگاهی و تحلیلی خصوصیات مکانیکی و سازهای بتنهای کامپوزیتی سیمانی حاوی پودرهای سیلیس، پایاننامه دکترای تخصصی، دانشکده مهندسی عمران، دانشگاه سمنان. [37] Nikoui, A., Dalvand, A., Sharbatdar, M.K., Kheyroddin, A., (2014). Assessment of statistical variations in experimental impact resistance and mechanical properties of silica fume concrete, Faculty of Civil Engineering, Semnan University, Semnan, 21(5), 1577-1590 p.
[38] Nikoui, A., Dalvand, A., Sharbatdar, M.K., Kheyroddin, A., (2015). Experimental and statistical investigation on mechanical propepties and impact resistance of synthetic fibwr riber reinforced concrete, Transactions of Civil Engineering, Printed in the Islamic Republic of Iran, 39(2), 449-468 p.
[۳۹] دالوند، محمد حسین. (1397). بررسی آزمایشگاهی و آماری خصوصیات مکانیکی و مقاومتی بتن ژئوپلیمری الیافی، پایاننامه کارشناسی ارشد، دانشکده مهندسی عمران، دانشگاه سمنان. | ||
آمار تعداد مشاهده مقاله: 877 تعداد دریافت فایل اصل مقاله: 725 |