تعداد نشریات | 31 |
تعداد شمارهها | 748 |
تعداد مقالات | 7,112 |
تعداد مشاهده مقاله | 10,246,385 |
تعداد دریافت فایل اصل مقاله | 6,899,991 |
چقرمگی و دوام بتن سنگدانه بازیافتی ساخته شده با آب مغناطیسی | ||
تحقیقات بتن | ||
مقاله 3، دوره 14، شماره 1 - شماره پیاپی 33، فروردین 1400، صفحه 37-55 اصل مقاله (1.09 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/jcr.2021.15207.1412 | ||
نویسندگان | ||
علی عبدالله یوسف1؛ محمدرضا اصفهانی* 2 | ||
1گروه عمران، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران | ||
2گروه مهندسی عمران ،دانشکده مهندسی، دانشگاه فردوسی مشهد ،مشهد | ||
چکیده | ||
چکیده در این تحقیق، چقرمگی و دوام بتن با سنگدانه بازیافتی و آب مغناطیسی در برابر چرخههای ذوب و انجماد و خواص مکانیکی نظیر مقاومتهای فشاری و کششی بررسی میشود. متغیرها شامل تعداد چرخههای مختلف آب در میدان مغناطیسی، مقدارهای مختلف فوق روانکننده، الیاف فولادی و میکروسیلیس میباشند. مجموعا 242 نمونه در 11 طرح مختلف ساخته شد. لازم به ذکر است که نیمی از نمونه های ذکر شده دارای الیاف فولادی میباشند. نتایج اغلب آزمایشات نشان داد که آب مغناطیسی با اینکه تاثیر زیادی در خواص مکانیکی بتن داشته اما نباید از آن به تنهایی به عنوان عامل جبران کنندهی نقصهای ناشی از سنگدانههای بازیافتی استفاده کرد. استفاده از افزودنی معدنی میکروسیلیس به همراه آب مغناطیسی، خواص بتن را به مقدار زیادی بهبود میبخشد. شاخصهای چقرمگی توسط استانداردهایASTM C1018 ، JSCE و روشPCS و آزمایش دوام بتن توسط استانداردBS EN 140:2003 انجام شد. از بین بتنهای دارای سنگدانه بازیافتی، بهترین نتایج چقرمگی مربوط به نمونههای حاوی میکروسیلیس و الیاف فولادی بود. همچنین، ده دور مغناطیسی کردن آب طرح اختلاط منجر به افزایش دوام بتن سنگدانه بازیافتی حدود 25% در مقایسه با یک دور آن شد. | ||
کلیدواژهها | ||
بتن سنگدانههای بازیافتی؛ آب مغناطیسی؛ دوام؛ چقرمگی؛ الیاف فولادی | ||
مراجع | ||
[1] J. De Brito and N. Saikia, Recycled aggregate in concrete: Use of industrial, construction and demolition waste. Springer Science & Business Media, 2012.
[2] F. Debieb, L. Courard, S. Kenai, and R. Degeimbre, "Roller compacted concrete with contaminated recycled aggregates," Construction and Building Materials, vol. 23, no. 11, pp. 3382-3387, 2009.
[3] C. Poon, S. Kou, and L. Lam, "Influence of recycled aggregate on slump and bleeding of fresh concrete," Materials and Structures, vol. 40, no. 9, pp. 981-988, 2007.
[4] K. Eguchi, K. Teranishi, A. Nakagome, H. Kishimoto, K. Shinozaki, and M. Narikawa, "Application of recycled coarse aggregate by mixture to concrete construction," Construction and Building Materials, vol. 21, no. 7, pp. 1542-1551, 2007.
[5] J. Xiao, W. Li, Y. Fan, and X. Huang, "An overview of study on recycled aggregate concrete in China (1996–2011)," Construction and Building Materials, vol. 31, pp. 364-383, 2012.
[6] E. Bormashenko, "Moses effect: Physics and applications," Advances in Colloid and Interface Science, vol. 269, pp. 1-6, 2019.
[7] Y. Wang, H. Wei, and Z. Li, "Effect of magnetic field on the physical properties of water," Results in Physics, vol. 8, pp. 262-267, 2018.
[8] S. Bharath, S. Subraja, and P. A. Kumar, "Influence of magnetized water on concrete by replacing cement partially with copper slag," J. Chem. Pharmaceutical Sci., vol. 9, no. 4, 2016.
[9] N. Su and C.-F. Wu, "Effect of magnetic field treated water on mortar and concrete containing fly ash," Cement and concrete composites, vol. 25, no. 7, pp. 681-688, 2003.
[10] B. E. Jouzdani and M. Reisi, "Effect of magnetized water characteristics on fresh and hardened properties of self-compacting concrete," Construction and Building Materials, vol. 242, p. 118196, 2020.
[11] N. Su, Y.-H. Wu, and C.-Y. Mar, "Effect of magnetic water on the engineering properties of concrete containing granulated blast-furnace slag," Cement and Concrete Research, vol. 30, no. 4, pp. 599-605, 2000.
[12] A. S. Faris, R. Al-Mahaidi, and A. Jadooe, "Implementation of magnetized water to improve the properties of concrete," International Journal Of Civil Engineering and Technology (IJCIET), vol. 5, no. 10, pp. 43-57, 2014.
[13] B. S. K. Reddy, V. G. Ghorpade, and H. S. Rao, "Effect of magnetic field exposure time on workability and compressive strength of magnetic water concrete," Int J Adv Engg Tech/IV/III/July-Sept, vol. 120, p. 122, 2013.
[14] B. S. K. Reddy, V. G. Ghorpade, and H. S. Rao, "Influence of magnetic water on strength properties of concrete," Indian journal of science and technology, vol. 7, no. 1, pp. 14-18, 2014.
[15] A. Shynier et al., "Improving Some of Mechanical Properties of Concrete by Magnetic Water Technology," Ministry of Science and Technology, 2014.
[16] T. Manjupriya and R. Malathy, "Experimental Investigation on Strength and Shrinkage Properties of Concrete Mixed with Magnetically Treated Water," Magnesium, vol. 290, p. 195, 2016.
[17] M. Kawamura and K. Torii, "Reuse of recycled concrete aggregate for pavement," in Proceedings of the 2nd International RILEM Symposium on Demolition and Reuse of Concrete and Masonry, Tokyo, Japan, 1988, pp. 7-11.
[18] Y. Hosokawa, N. Maeda, and T. Hayasaka, "Influence of the time of removing mortar from recycled coarse aggregate on the properties of concrete products using recycled coarse aggregate from waste concrete," Proceedings of CSCE/JSCE International Concference on Engineering Materials, pp. 775-788, 1997.
[19] A. E. Richardson, "Compressive strength of concrete with polypropylene fibre additions," Structural survey, vol. 24, no. 2, pp. 138-153, 2006.
[20] A. Richardson, "Freeze/thaw durability in concrete with fibre additions," Structural Survey, vol. 21, no. 5, pp. 225-233, 2003.
[21] ASTM, "ASTM C150: Standard specification for Portland cement," 2001: ASTM Philadelphia^ ePA PA.
[22] C. ASTM, "1240.(2014). Standard Specification for Silica Fume Used in Cementitious Mixtures," in American Society for Testing and Materials, pp. 1-7.
[23] ASTM, "ASTM C494: Standard specification for chemical admixtures for concrete," ed: ASTM Philadelphia, PA, USA, 2011.
[24] C. ASTM, "Standard test method for slump of hydraulic-cement concrete," 2012.
[25] C. ASTM, "642, Standard test method for density, absorption, and voids in hardened concrete," Annual book of ASTM standards, vol. 4, p. 02, 2006.
[26] B. EN, "12390-3: 2009," Testing hardened concrete. Compressive strength of test specimens, vol. 19, 2009.
[27] C. ASTM, "496/C 496M-04," Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, 2004.
[28] BS-EN, "1340," Concrete kerb units–Requirements and test methods," British Standards Institution, London, 2003.
[29] ASTM, "C1018," Standard Test Method for Flexural Toughness and First-Crack Strength of Reinforced Concrete (Using Beam with Third-Point Loading. ASTM International, West Conshohocken, PA, 1997.
[30] ASTM, "Standard Practice for Making and Curing Concrete Test Specimens in the Field. ," C31 ASTM International, West Conshohocken., 2012.
[31] ASTM, "C192/C192M (2014) Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory," Annual Book of ASTM Standards, vol. 9, 2014.
[32] JSCE, "SF-4, Method of Test for Flexural Strength and flexural Toughness of Fiber Reinforced concet: JCI Standard SF-4," 1984: Japan Society of Civil Engineers Tokyo.
[33] N. Banthia and J.-F. Trottier, "Test methods for flexural toughness characterization of fiber reinforced concrete: some concerns and a proposition," ACI Materials Journal, vol. 92, pp. 48-48, 1995.
[34] N. Banthia and M. Sappakittipakorn, "Toughness enhancement in steel fiber reinforced concrete through fiber hybridization," Cement and concrete research, vol. 37, no. 9, pp. 1366-1372, 2007. | ||
آمار تعداد مشاهده مقاله: 1,080 تعداد دریافت فایل اصل مقاله: 654 |