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Abstract. As one of the most important tasks in image processing, texture analysis is re-
lated to a class of mathematical models that characterize the spatial variations of an image.
In this paper, in order to extract features of interest, we propose a reaction diffusion based
model which uses the variational approach. In the first place, we describe the mathematical
model, then, aiming to simulate the latter accurately, we suggest an efficient numerical scheme.
Thereafter, we compare our method to literature findings. Finally, we conclude our analysis by
a number of experimental results showing the robustness and the performance of our algorithm.
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1 Introduction

Texture analysis is a branch of image processing that describes the characteristics of an image
by means of its texture features. It is used in many image processing disciplines such as classifi-
cation, segmentation and synthesis. Texture extraction methods are numerous and are divided
into geometrical, statistical, model-based and structural approach. They are widely applied in
biomedical applications in order to differentiate normal from abnormal tissues or to identify hu-
man organs. Readers interested in this fascinating field can be referred to the book [10]. Before
approaching our main contribution, we will provide a brief overview of different methods used in
the literature for the texture analysis of biomedical images. For instance, Brady et al. [3] used
a statistical method to extract texture and to classify mammography images. Their approach
is based on three steps: the first one is the segmentation of the mammogram into three com-
ponents, then the extraction of a set of features from the image and finally the classification of
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parenchymal pattern. In addition, Freedman et al. [12] proposed a method for automatic classi-
fication of mammographic parenchymal patterns, based on the derivation of textons dictionary
from the training set. It uses the density of patterns which incorporates representation of space
features and detects breast cancer risk.

Furthermore, Sayeed et al. [21] used a new technique known as the triple features trace
transform in order to distinguish patients with Alzheimer’s disease from normal controls. This
method was used to extract features that are invariant to scaling, translation and rotation. After
that, Kovalek et al. [15] showed the difference between the brains of schizophrenic and normal
control by using 3D texture analysis for measuring the anisotropy in the employed data at finest
scale. This technique reveals that the features that distinguish between the two populations are
located in the most inferior part of the brain. Moreover, Chabat et al. [5] proposed an automated
technique, which is based on a statistical method and was used to differentiate a large variety
of obstructive lung diseases in computed tomographic images (CT). This approach allows the
extraction of textural information contained within the image and it presents a good result for
texture analysis of similar type of images. Aiming to improve the characterization of brain tumor
by using three dimensional co-occurrence matrix, Ghoneim et al. [13] compared their approach
with 2D and 3D texture analysis and they found that their approach ensures a better separation
of different cerebral tumors. Thus, their method can be used as a new tool in disease’s control.
A standardized technique focused on color correction and texture characteristics analysis was
introduced by Neofytou et al. [17] in order to eliminate significant differences of endoscopic
images. They used statistical methods to analyze the extracted features.

Besides that, a method was used to extract tumor from magnetic resonance imaging scans
of human head [18]. The brain tumor is located through wavelet packet, then the energy
minimization resulting from the level set is updated at each iteration of the process and finally
the tumor is extracted when the stopping criterion is achieved. A fractal analysis procedure for
the processing of visual textures was investigated in the work of Dennis et al. [24]. To calculate
the rate of change of a local estimate of the fractal dimension at different scales and orientations
the authors used second order spatial statistics. It has been shown that the method is able to
test the validity of fractal model for real visual textures. Furthermore, texture information is
extracted via a color space model and nonsubsampled contourlet transform. Then, the extracted
color and texture information are transformed efficiently into the neutrosophic set domain by
the approach proposed by Heshmati et al. [25]. All the aforementioned methods are restricted
to quantify anisotropy of textural information presented in biomedical images. Unfortunately,
this can’t diagnostic certain diseases that require more details on a small scale of the order of
millimeters so as to describe a well-suited treatment. To do so, several researches concerning
texture analysis have been made by involving variational partial differential equation models.
These models aims to decompose a given image u0 defined on a bounded open domain Ω ⊂ R2

into the sum of two components. The key here is to keep the homogeneous regions with sharp
boundaries of u0 in a part which is called cartoon or geometric component, and to put the
repeated patterns of small scale details in a texture part. To separate these components, many
researchers used the total variation (TV) of the image so as to obtain the geometrical part and
they chose different norms of texture in order to keep it small. Among these works, we mention
the model of Rudin et al. [20], which was one of the most popular work in image decomposition.
In their problem, the cartoon part belongs to the space of functions of bounded variation BV (Ω)
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which is defined as follow

BV (Ω) = {u ∈ L1(Ω);

∫
Ω
|Du| <∞}, (1)

where ∫
Ω
|Du| = sup{

∫
Ω
udiv(ϕ)/ϕ ∈ C∞0 (Ω,R2), ||ϕ||L∞(Ω) ≤ 1},

is the total variation of u. This space allows for edges or discontinuities along curves. Hence,
edges and contours are kept in the geometric component u while details of small scale are still
in u0 − u. Their model is given as the following minimization problem

min
u∈BV (Ω)

∫
Ω
|Du|+ λ||u0 − u||2L2(Ω). (2)

For the mathematical study of this model, Chambolle et al. [7] gave results of existence and
uniqueness. Furthermore, Chambolle [6] proposed also a projection algorithm for the numerical
simulation of (2). However, this model fails to separate cartoon from texture components.
Aiming to tackle that issue, Meyer [16] suggested to replace the norm L2 in the problem (2) by
a weaker norm which could be more appropriate for modeling textured or oscillatory patterns.
Meyer proposed the following minimization problem

min
u∈BV (Ω)

∫
Ω
|Du|+ λ||u0 − u||G(Ω), (3)

where G(Ω) is the Banach space composed of distributions v that can be written as

v =
∂g1

∂x1
+
∂g2

∂x2
= div(g), (4)

with g = (g1, g2) ∈ (L∞(Ω))2 and ∂g1
∂x1

, ∂g2
∂x2

are respectively the derivatives of g1 and g2 in the
distributional sense . The space G(Ω) is endowed with the following norm:

||v||G(Ω) = inf{||g||L∞(Ω)/v = div(g)}. (5)

The difficulty with this minimization problem (3) is that it can’t be solved directly due to the
norm of G. To deal with Meyer’s model, Osher et al. [19] presented a model that uses the H−1

norm for oscillatory functions under a total variation minimization framework,

min
u∈BV (Ω)

∫
Ω

|Du|+ λ||u0 − u||2H−1(Ω), (6)

where λ > 0 is a weight parameter and the H−1 norm is defined as follows:

||.||2H−1(Ω) =

∫
Ω

|∇4−1(.)|2dx,
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where (−4−1) is the inverse Laplacian operator. This problem can be solved by following the
formalism of Chambolle [6]. There is another model that replaces the norm L2 of the fidelity
term in (3) by the norm in L1 space. It is known as TV-L1 model [23], namely

min
u∈BV (Ω)

∫
Ω
|Du|+ λ||u0 − u||L1(Ω). (7)

This norm is well suited for cartoon and texture separation since it’s more able to preserves geo-
metric features than the L2 norm and more appropriate for representing textured or oscillatory
patterns. The authors applied to their model the implementation of the primal dual algorithm
proposed by [8]. A generalization of the models of Rudin et al. [20] and Osher et al. [19] was
proposed by Aujol et al. [1]:

min
u∈BV (Ω)

∫
Ω
|Du|+ λ||u0 − u||H(Ω), (8)

where H is a Hilbert space. By an appropriate choice of this space, the authors decomposed
the image into geometrical and textural information by using Gabor wavelets. Furthermore,
they showed the existence and uniqueness of a solution for their model and they also proposed a
modification of Chambolle’s projection algorithm to compute their solution. In 2006, Aujol et al.
[2] proposed a two-part decomposition of an image into both structure and texture components.
Indeed, they proposed a regularization of TV-L1 model, defined as follows:

min
(u,v)

∫
Ω
|Du|+ 1

2α
||u0 − u− v||2L2 + λ||v||L1(Ω). (9)

To speed up the convergence of their algorithm, the authors replaced the total variation of u
by its norm in the usual homogeneous Besov space B1

1,1 because they just needed to iterate
thresholding schemes,

min
(u,v)
||u||B1

1,1
+

1

2α
||u0 − u− v||2L2 + λ||v||L1(Ω). (10)

Besides that, Buades et al. [4] observed that value of λ should be chosen as a local indicator
so that it takes larger values in textured areas and relatively low values in cartoon regions. To
differentiate these regions, they defined a local total variation at each point of the image

LTVσ(u0)(x) = (Gσ ∗ |∇u0|)(x), (11)

where Gσ is a Gaussian kernel with standard deviation σ. The local indicator λσ is defined by
computing the local total variation of the image around the point, and comparing it to the local
total variation after applying a low pass filter to the image

λσ(x) =
LTVσ(u0)(x)− LTVσ(Lσ ∗ u0)(x)

LTVσ(u0)(x)
, (12)

with Lσ is the low pass filter. If λσ(x) = 0, this means that the considered point x is taken
from a cartoon region. Moreover, when λσ(x) = 1, the chosen point x belongs to the texture
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region. Thus, the authors proposed a nonlinear fast low and high pass filter pair for two-parts
decomposition into cartoon and texture, defined as follows:

u(x) = w(λσ(x))(Lσ ∗ u0)(x) + (1− w(λσ(x)))u0(x),

v(x) = u0(x)− u(x),

where w(x) : [0, 1]→ [0, 1] is an increasing function that is constant and equal to zero near zero
and close to 1 near 1.

In the above works, the study of minimization problem is made either by using optimization
techniques or calculus of variations. However, many researchers proposed to consider a system of
partial differential equations instead of one equation. As an example, Elliott et al. [11] proposed
a system of two coupled second order equations. Their model results from the H−1 gradient
flow of the energy consisting of total variation regularization plus the norm H−1 of fidelity term.
Their model is given as follows:

∂u
∂t −∆w = −λ(u− u0), in ΩT =]0, T [×Ω

w = −div
(
Du
|Du|

)
, in ΩT ,

u(0) = u0, in Ω,
∂u
∂n = ∂w

∂n = 0, in ∂ΩT =]0, T [×∂Ω.

A regularization of the function w defined above was suggested by Guo et al. [14]. Their model is
given as a reaction diffusion system applied to image restoration and decomposition into cartoon
and texture, defined as follows:

∂u
∂t − div

(
Du
|Du|

)
= −2λw, in ΩT ,

∂w
∂t −∆w = −(u0 − u), in ΩT ,

u(0) = u0, w(0) = 0, in Ω,
∂u
∂n = 0, ∂w∂ν = 0, in ∂ΩT ,

They proved the following result of existence and uniqueness:

Theorem 1. If u0 ∈ BV (Ω), then there exists a unique entropy solution (u,w) of the previous
system such that:
u ∈ C([0, T ];L2(Ω)) ∩ L∞(0, T ;BV (Ω)), ∂u

∂t ∈ L
2(QT ), with u(0, x) = u0(x)

w ∈ C([0, T ];L2(Ω)) ∩ L∞(0, T ;H1(Ω)), ∂w
∂t ∈ L

2(QT ), with w(0, x) = 0,

there exists z ∈ L∞(QT ,RN ) with ‖z‖L∞(QT ,RN ) ≤ 1, ∂u∂r = div(z)− 2λw in QT and∫
Ω

(u(t)− ϕ)
∂u

∂t
dx ≤

∫
Ω
z(t) · ∇ϕdx− ‖Du(t)‖ − 2λ

∫
Ω
w(u(t)− ϕ)dx, a.e. on t ∈ [0, T ]

for every ψ ∈ C∞
(
Q̄T
)

with ψ(x, 0) = ψ(x, T ) = 0,∫ T

0

∫
Ω

∂w

∂t
ψdxdt+

∫ T

0

∫
Ω
∇w · ∇ψdxdt+

∫ T

0

∫
Ω

(u0 − u)ψdxdt = 0

This paper is organized as follows: In the next section, we examine the originality of our pro-
posed model. Then, we present the experimental results and discussion respectively in Sections
3 and 4. Finally, we conclude our paper with an opening on some future works.
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2 Proposed model

The objective of the proposed method is to modify the model of Osher et al. [19] by considering
a new norm of the fidelity term. In fact, in order to extract texture features from the image,
we use the norm of the space Lq(Ω); with 1 < q < 2 which is weaker than the norm of the L2

space. To this end, we assume that

u0 − u = div(−→g ),

with −→g ∈ Lp(Ω,R2) ( with 1 < p < 2) is a vector field that admits an Lp-Hodge decomposition.

Then, there exists F ∈W 1,p
0 (Ω) and

−→
H ∈ Lp(Ω,R2) such that div

−→
H = 0 and

−→g = ∇F +
−→
H. (13)

Thus, by applying the divergence operator we have

u0 − u = div(−→g ) = ∆F. (14)

Then, F = ∆−1(u0 − u) and we consider the Lp- norm of g instead of L2-norm in Osher and
al. model. Hence, we obtain the following new convex minimization problem (since r 7→ ‖r‖p is
convex):

min
u∈BV (Ω)

∫
Ω
|Du|+ λ

p

∫
Ω
|∇(∆)−1(u0 − u)|p (15)

with 1 < p < 2. Formally minimizing the energy (15) leads to the Euler-Lagrange equation:

− div

(
Du

|Du|

)
= −λ∆−1(div(|∇∆−1(u0 − u)|p−2∇∆−1(u0 − u))), (16)

∂

∂n

(
div

(
Du

|Du|

))
= 0,

∂u

∂n
= 0

which are partial differential equations of fourth order. Inspired by the ideas of Elliott et
al. [11] and Guo et al. [14], we introduce a new model of reaction-diffusion system for image
decomposition into cartoon and texture. Precisely, (16) is equivalent to the following two coupled
second order equations

−div
(
Du
|Du|

)
= −λv, in Ω,

∆v = div(|∇∆−1w|p−2∇∆−1w), in Ω,
−∆w = u0 − u, in Ω,

∂u
∂n = 0, ∂v∂n = 0, in ∂Ω,

which are the steady state of the following system:

ut − div(
Du

|Du|
) = −λv, in ΩT , (17)

vt −∆v = div(|∇w|p−2∇w), in ΩT , (18)

wt −∆w = u0 − u, in ΩT , (19)

u(0) = u0, v(0) = 0, w(0) = 0, in Ω, (20)

∂u

∂n
=

∂v

∂n
=
∂w

∂n
= 0, on ∂ΩT . (21)
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In this model, the function v will contain the oscillating details which is separated from the
smooth image u that contains edges and the homogeneous regions of the original image u0. The
following existence and uniqueness of an entropy solution for the system (22)- (26) is proved by
Alaa et al. [26]:

Theorem 2. If u0 ∈ BV (Ω), then the system (17)-(21) admits one and only one entropy
solution (u, v, w).

In numerical simulation we add ε to the denominator to avoid dividing by zero in (17)-(21).
Then the proposed model is written as follows:

ut − div((|∇u|2 + ε)
−1
2 ∇u) = −λv, in ΩT , (22)

vt −∆v = div((|∇w|2 + ε)
p−2
2 ∇w), in ΩT , (23)

wt −∆w = u0 − u, in ΩT , (24)

u(0) = u0, v(0) = 0, w(0) = 0, in Ω, (25)

∂u

∂n
=

∂v

∂n
=
∂w

∂n
= 0, on ∂ΩT . (26)

By the way in [26] it is proved that, if ε −→ 0, then the solution (uε, vε, wε) of system (22) -
(26) converges to the unique solution of our original system (17) - (21).

3 Numerical Discretization

In general, there are several methods for solving partial differential equations, among others one
can refer to [27–32]. However, in image processing as we deal with pixels, finite differences meth-
ods and explicit schemes are the most appropriate. In this section, we present a discretization
of the proposed model described by (22)-(26). Assuming τ to be the time step size:

t = nτ, n = 0, 1, 2, . . . ,

x = i, 0 ≤ i ≤M,y = j, 0 ≤ j ≤ N ; (x, y) denote a pixel in a image,

where M ×N is the size of original image. Let’s denote by (uni,j , v
n
i,j , w

n
i,j) the approximation of

(u(nτ, i, j), v(nτ, i, j), w(nτ, i, j)). We define the discrete approximation:

∇+
x u

n
i,j = uni+1,j − uni,j , ∇−x uni,j = uni,j − uni−1,j ,

∇+
y u

n
i,j = uni,j+1 − uni,j , ∇−y uni,j = uni,j − uni,j−1.

We define the discrete approximation of the divergence operator by:

div((|∇un|2+ε)
−1
2 ∇un) = ∇−x (

∇+
x u

n
i,j√

(∇+
x uni,j)

2 + (∇+
y uni,j)

2 + ε
)+∇−y (

∇+
y u

n
i,j√

(∇+
x uni,j)

2 + (∇+
y uni,j)

2 + ε
).

The discrete approximation of operator Laplacian for images un and vn is defined by:

∆vni,j = vni+1,j + vni−1,j + vni,j+1 + vni,j−1 − 4vni,j ,

∆wni,j = wni+1,j + wni−1,j + wni,j+1 + wni,j−1 − 4wni,j .
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Then the discrete explicit scheme of our proposed system (22)-(26) can be written as:

un+1
i,j = uni,j + τ

∇−x
 ∇+

x u
n
i,j√

(∇+
x uni,j)

2 + (∇+
y uni,j)

2 + ε


+τ

∇−y
 ∇+

y u
n
i,j√

(∇+
x uni,j)

2 + (∇+
y uni,j)

2 + ε

− τλvni,j ,
vn+1
i,j = vni,j + τ∆vni,j + τ

∇−x
 ∇+

xw
n
i,j

((∇+
xwni,j)

2 + (∇+
y wni,j)

2 + ε)
2−p
2


+τ

∇−y
 ∇+

y w
n
i,j

((∇+
xwni,j)

2 + (∇+
y wni,j)

2 + ε)
2−p
2

 ,
wn+1
i,j = wni,j + τ∆wni,j + τ(u0

i,j − uni,j),

where
w0
i,j = 0, v0

i,j = 0, u0
i,j = u0(ih, jh), 0 ≤ i ≤M, 0 ≤ j ≤ N.

uni,0 = uni,1, un0,j = un1,j , unM,i = unM−1,i, uni,N = uni,N−1

4 Results and discussion

This section is devoted to the numerical experimentations and comparisons. We set the time
step size to τ = 0.1 and the parameter p to 1.5. To prove the effectiveness and robustness of
the proposed algorithm, a number of experiments is designed and conducted. At first, we show
the performance of our model (cf. Figures 1, 2, 3, 5, 7 and 8) in extracting informations from
medical images through decomposition process into cartoon and texture components. Then,
we establish a comparison with the model of Osher and al. [19] (cf. Figures 1, 2, 3, 6 and
8). Glioblastoma is one of the most aggressive cancer of human brain. The disease manifests
itself by headaches, personality changes besides other symptoms. It’s very important to detect
glioblastoma in its early stages in order to save as many patients as possible. In Figure 1, we
consider the decomposition of MRI brain image during different stades of glioblastoma’s disease.
More precisely, the first column represents the sagittal section of MRI Brain image, the second
column illustrates the cartoon component u obtained by Osher and al. model, while the third
one contains the cartoon part obtained by the proposed one. Then, the texture images obtained
by both models are shown in Figure 2. Let’s note that the new model is more efficient in
separating the textured details from larger regions: the small textured details are in the texture
component, while the homogeneous regions are kept in the cartoon component. In the texture
obtained by Osher and al. model, some oscillating details remain on the spinal cord, moreover
the cerebellum is still kept in its cartoon component.

In order to make a difference between these details, we display in Figure 3 the contour lines
of cartoon component for both models. The cartoon part of Osher and al. model highlights the
creation of false edges, around which a large number of contour lines are concentrated. In the
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Figure 1: Left: sagittal section of MRI Brain image; Middle: Cartoon part obtained by Osher
and al. model; Right: Cartoon part obtained by the proposed model.

contrast, an homogeneous distribution of these lines is remarked in the geometric component
obtained by the proposed model. Through this result, we conclude that our method ensure a
better decomposition.

In the case of ophthalmic pathologies, diabetic retinopathy is one of the most common
complications of diabetes disease, which can attack, silently and for many years, the blood
vessels of the retina. Only a regular screening test can diagnose such an abnormality at initial
state. In fact, the ophthalmologist notes the observed results on the eye by using an optical
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Figure 2: First row: Texture part obtained by Osher and al. model; Second row: Texture part
obtained by the proposed model.

Figure 3: (a), (b) and (c) Contour lines of cartoon part by Osher and al. model; (d), (e) and
(f) Contour lines of cartoon part by the proposed model.

camera to see through the eye pupil the rear inner surface of the eyeball. An image is taken
showing the optic nerve, the surrounding vessels and the retinal layer. Then, the ophthalmologist
can reference this image to prescribe an adequate treatment.

It can be easily understood that such a type of examination varies according to the judgement
of the ophthalmologist, and that a great deal of subjectivity persists, especially in case of early
onset.

To process these retinal images, several methods have been proposed in the literature. How-
ever, it seems that methods using fractal analysis are the most consistent and efficient to give
very accurate results. Among these methods, the fractal dimension is one of the parameters
used to characterize the complexity of blood vessels. Based on the estimation of this dimension,
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one can give a very important interpretation of this measure and consequently have a clear idea
about the retina’s health.

We have taken a number of pathological retinopathy images from the database DRIVE:
(see Figure 4) (https://www.isi.uu.nl/Research/Databases/DRIVE/). The evaluation of the

Figure 4: Retinal images.

results is done by comparing the values of fractal dimension (FD) of each abnormal retina with
the referential value of FD which equals 1.5 in the case of a normal retina. Let’s note that these
values are calculated on the texture component of each image by using the ”ImageJ method”
(http://imagej.nih.gov/ij/). The Figure 5 shows the graph of fractal dimension for each
pathological case. One can easily notice the broken form of the curve. This variation is due to
different degrees of deterioration of retinal blood vessels. The clinical indication of this change
is very important because it allows a very precise classification of the alteration stages of the
retina.

Figure 5: Representation of fractal dimension of each texture retinal image obtained by the
proposed model.

In what follows, we illustrate the decomposition of the coronal view of a knee image. In

https://www.isi.uu.nl/Research/Databases/DRIVE/
http://imagej.nih.gov/ij/
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the first, we show the results obtained by Osher and al. model ( see Figure 6) then those of
the proposed model (see Figure 7). The texture features are more intensively present in the

Figure 6: From left to right: original image, cartoon part and texture component obtained by
Osher and al. model.

geometric component of Osher and al. model than in the geometric component of the proposed
model. To evaluate the difference between both methods, we represent in the next figure (see
Figure 8), the profile of line number 100 for both knee image and cartoon component obtained
by both models. Precisely, the green curve corresponds to original image whereas the cartoon
part of Osher and al. model and the proposed one, are respectively represented by blue and
red curves. The smoothness of the proposed model interprets the regular profile shown in the
above figure. The small details kept in the cartoon component of the the Osher and al. model,
explains why this model follows at the same time the details of the original image.
Finally, we specify that the approximate time to perform each of the simulations on a computing
station hp intel(R) Xeon(R) CPU E5-2603 v4 1.70GHz, 6 cores, 6 processors and 20 GB of RAM
is of the order of 2 to 5 minutes.

5 Conclusion

The proposed system obtained from the modification of Osher and al. model, gives better results
in separating biomedical images into two well-defined components. Precisely, the new method is
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Figure 7: From left to right: original image, cartoon part and texture component obtained by
proposed model.

Figure 8: Line profile number 100 of original, cartoon images for both models.

more appropriate to keep the homogeneous regions and boundaries in the geometric component
and to represent textured or oscillatory patterns. In the future work, we will prove the existence
and uniqueness of solution for our system.
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Appendix

All data from human patients were anonymized in consideration of the protection of their intel-
lectual properties, and were free available to browse, download, and use for commercial, scientific
and educational purposes at the RIDER Neuro MRI and TCGA-SARC collections in The Cancer
Imaging Archive TCIA (http://www.cancerimagingarchive.net/).

Data Citation: Barboriak, Daniel. (2015). Data From RIDER NEURO MRI. The Cancer
Imaging Archive. http://doi.org/10.7937/K9/TCIA.2015.VOSN3HN1.

TCIA Citation: [9].

TCGA Attribution: The results published or shown here are in whole or part based upon
data generated by the TCGA Research Network: http://cancergenome.nih.gov/.

Data Citation: Roche, C., Bonaccio, E., Filippini, J. (2016). Radiology Data from The
Cancer Genome Atlas Sarcoma [TCGA-SARC] collection. The Cancer Imaging Archive. http:
//doi.org/10.7937/K9/TCIA.2016.CX6YLSUX.

TCIA Citation: [9]. The retinal images are available at the database DRIVE: (https://www.
isi.uu.nl/Research/Databases/DRIVE/).

Publication Citation: [22].
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