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Abstract.We present a direct model of beam which takes into consideration the deformation
of the section by effect of orthogonal actions. The variation of size and the distortion of the
transversal sections are taken into account as well as the usual rigid rotation-torsion-warping.
We deduce the equations of motion in terms of the kinematic descriptors. A simple numerical
example is also presented to show the consistence of the proposed model.
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1 Historical framework

The development of the direct (or directed) models of beams derives from the ideas of E. and
F. Cosserat [6]. The motion of a single point of a Cosserat’s continuum is composed by the
usual translation, as in the Cauchy continuum model, as well as a rigid rotation; each element
is so not a “ simple ” point but a “ structured ” point, as a small sphere. The Cosserat model
of beam consists of a line of structured points: the beam is reduced to a representative line,
i.e. its axis, moreover a triad of vectors (named directors) is attached to each point of this line.
The vectors rigid rotation does not depend on the motion of this line. The deformation of a
Cosserat beam is described by a map of a segment (usually the beam length) into the manifold
M = R3×SO(3) , R3 is the Euclidean space with the canonical metric and SO(3) is the Special
Orthogonal Group. If other behaviors of the directors are allowed the manifold M has a different
structure. See the works of Ericksen and Truesdell [8], Antman [2–4], Green and Naghdi [11],
Reissner [17], Simo [18], Simo and Vu-Quok [19] and Villaggio [20] in order to understand the
evolution of direct models of beams. A non linear model for concrete beam with deformable
cross section has been presented by Palacios and Cesnick [16]. Dav̀ı [7] obtained the equations
of motion of a linear, homogeneous, anisotropic beam subject to axial extension, shear, bending,
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torsion and warping using a direct model of beam. All coefficients of the deduced equations are
the geometric and inertial terms of the beam. The central idea of Dav̀ı’s paper is the absolute
kinematic description of the straight beam: the motion of the structural element is represented
by two vectorial functions: the first one describes the motion in the direction of the axis, the
second one belongs to the plane normal to it. Each function includes both the motion of the
axis and of the cross section. The strain tensor is de-coupled in three terms in this frame: one
part belongs to the axis, a second one is normal to it and a third mixed part has a component in
the direction of the axis and a component in the section plane. A similar decomposition is used
for the stress tensor. Dav̀ı shows also that the assumption of thinness of the beam is congruent
and allows the computation of the beam motion. The displacement is not given “ a priori ” but
reckoned “ a posteriori ”. It is clear that the deduced motion equations are an adaptation of the
Navier Stokes equations to direct beam models; this adaptation depends both on the practical
shape of the element and on the chosen kinematic model.

The models of continua with structures are also used in the description of micro-fractured
materials and on the propagation of fractures. Khodadadian, Noii and and others, with a
probabilistic Bayesian approach, used the theory of continuum with structure studying the
propagation of fractures: in their model the fracture surface is modeled through a shape function,
[12]. In a similar framework, Noii, Aldakheel and others did model the phase-field of anisotropic
brittle fracture via a shape function, [15]. The method of the orthogonal decomposition of the
motion has been used by Abbaszadeh, Dehghan and others [1] in the numerical study of Navier
Stokes equations coupled with heat transfer equation in the two dimensional Bussinesq model
of continuum.

2 Presentation of the model

The above cited model proposed by Dav̀ı and all models with axial rigid directors are not suitable
for describing some behaviors that are common in beam dynamics. If the the axis is subject
to a compression (respectively extension) the sections reply with an extension (respectively
contraction). An eventual rectangular mesh drawn in the section remains rectangular after the
deformation, but possibly with a different aspect ratio; we talk about re-sizing of the section. A
part of the section is normally compressed and a second part is normally stretched in the case of
bending; the section replies as in the previous case, but a hypothetic rectangular mesh drawn in
the section does not remain the same after the deformation because the edges assume curvilinear
shape; each rectangle takes a pseudo-trapezoidal shape. We call this kind of deformation re-
shaping of the section. We present a first approach to the description of the modifications of
size and shape of transversal section of a straight linear uniform anisotropic beam. A system of
three unit and mutually orthogonal vectors is attached to each point of the straight line joining
the centers of mass of transversal sections, the beam axis, as in the classical above mentioned
beam theories. One director belongs to the axis, the other two lay in the plane of the section.
The directors rotate rigidly around their origin, this rotation is usually represented by a second
order orthogonal matrix with determinant equal to one. This matrix is approximated with its
first order part in the linearized kinematics; this approximation is done via a skew-symmetric

The part of the strain tensor belonging to the plane of section is identically zero, see Vlasov [21].
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matrix of order three. It is usual, to make easiest the computations, the use of its unique real
eigenvector rather than the whole matrix: this is the rotation vector. Two new directors are
attached to the same point, they are able to describe both the re-sizing and re-shaping of the
section; in this way we dismiss the assumption of thinness of the rod. It is clear that the uniform
re-sizing of the transversal section may be described with an homogeneous strain tensor, on the
contrary the modification of shape cannot be assigned with this kind of tensor, it is therefore
necessary to use a strain tensor field at least linear in the coordinates of the section plane. It is
important to note that the axis of bending is a fixed line of the plane deformation, i.e. no point
belonging to it suffers a strain in the plane of the section but only a deformation in its normal
direction. Unfortunately the direction of bending generally is an unknown of the problem and
it is hard to describe this deformation using a frame with an axis coincident with the bending
direction. Another description which uses two selected axes is possible but approximate, it will
be used in this paper: the selected axes are the main inertia axes of the section. The motion
of the transversal sections in their own plane is assumed to be the same for all sections, but
the deformation size of each section is undertaken as an unknown of the problem; two scalar
functions describe the re-sizing of the section and four scalar functions are able to sketch its re-
shaping. The proposed model holds six degrees of freedom more than usual, thirteen functions
scan the kinematics of the beam: three degrees of freedom are assigned to the axis motion
and three are used to the section rigid rotation, one is assigned to the warping, six are able
to sketch the re-sizing and the re-shaping of the section. An inertial term, a component of
internal action and a component of external loads are associated to each degree of freedom. We
circumscribe our study to linear dynamics, assuming that the balance occurs in the undeformed
and reference configuration. The strain and the stress fields are consequently described by the
Lagrange tensor of small deformations and the Cauchy stress tensor respectively. The motion
equations are deduced using the weak formulation via the Principle of Virtual Power: we obtain
the balance equations in term of resultant over the cross section of internal and external forces
rather than in term of components of stress tensor, as it is usual in the beam theories. All
achieved equations depend on geometric and inertial characteristics of the section; as well as
the usual area, moments of inertia, Vlasov constant and some parameters deduced by warping
shape functions, it is also necessary to introduce the moment of third and fourth order of the
section.

3 Kinematic description and deformability of the beam element

A beam is a three-dimensional body which occupies the cylindrical region R = S × I ⊂ E3 of
the Euclidean three-dimensional linear space E3 equipped with canonical metric, induced by the
standard inner product. S is the cross section, an open, regular planar two dimensional domain
with boundary ∂S and belonging to the plane W whose unit normal vector is e. I = [ 0, L ]
is a closed interval of the real axis R . The decomposition R = S × I also allows to write the
position of a generic point p of the beam as the sum of a vector x belonging to the section and
a vector ζ · e normal to it, both vectors start from a selected point o:

p(x, ζ) = x + e ζ, x · e = 0, ζ ∈ I.
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We shall keep o coincident with the center of mass of the section corresponding to ζ = 0 . The
boundary ∂R of the beam is the disjointed union of three subsets:

∂R = ∂Mq (∂S × {0})q (∂S × {L}) ,

∂M = ∂S × I is the mantle, ∂S × {0} is the initial base and ∂S × {L} is the terminal base.
A deformation of the beam is the vectorial field p ′ : R → E3 , p ′ = p ′(p) = p ′(x, ζ); a

monoparametric family of deformations u : R × [ 0, tf ] → E3 is a motion of the beam, the
parameter t is the time, defined in the interval [ 0, tf ] . We decompose the motion u as a
direct sum of two orthogonal sub-motions: u(x, ζ; t) = u(x, ζ; t) e + û(x, ζ; t) , this assumption
is consistent with the Davi’s work. The motion u1(x, ζ; t) = u1(x, ζ; t) · e is parallel to the
direction e and the motion û(x, ζ; t) belongs to the plane W normal to e.

The symmetric part of the deformation gradient ∇xu furnishes the infinitesimal strain field
E(x, ζ; t) , a second order symmetric tensor, defined in R × [0, tf ] ; ∇x denotes the gradient
operator with respect to x. We introduce the following decomposition of the strain tensor

E(x, ζ, t) = Ê(x, ζ, t) + sym[ γ(x, ζ, t)⊗ e ] + ε(x, ζ, t) e⊗ e , (1)

• Ê(x, ζ, t) = ∇xû is the plain strain field, a second order symmetric tensor with kernel e:
Ê e = 0 ;

• sym[ γ(x, ζ, t)⊗ e ] denotes the symmetric part of the second order tensor γ(x, ζ, t)⊗ e ,
γ ∈ W is the shear deformation field defined as γ = ∇xu+ ∂ζû ;

• ε = ∂ζu is the axial deformation.

We assume that the plain strain field is the sum of two second order tensors Ê = Êe + Êd .
The first one

Êe(x, ζ; t) = α(ζ; t)a⊗ a + β(ζ; t)b⊗ b (2)

represents the plane extension strain tensor ; α(ζ; t) : [ 0, L ]× [ 0, tf [→ R and β(ζ; t) : [ 0, L ]×
[ 0, tf [→ R are the parameters of re-size of the area in the direction of two unit vectors a and b.
These vectors belong to the plane of the section, start from the center of mass and are mutually
orthogonal and normal to e. This deformation is thus defined as a product of two scalings
centered in the center of mass of each section: the first Λa in direction a and ratio α , the
second one Λb in direction b and ratio β . It is clear that if α < 0 it has a contraction of the
section in a-direction, if α > 0 it has an expansion; the same meaning is for β in b-direction.
A representation of a possible deformation of a rectangular section is reported in Figure 1, left
side; we shall write in general terms of re-sizing of transversal section, without specifying the
sign of α and β . The index “ e ” points out this kind of deformation: the extension of the
section without re-shaping. A deeper kinematic description is necessary to sketch the section
re-shaping. If a is the direction of the bending, i.e. the axis folds in direction a, a possible
displacement field able to describe the re-shaping is given by the quadratic form:

ûda(x, ζ; t) = −1

2
[γa(ζ; t)(a⊗ a⊗ b + a⊗ b⊗ a)− δa(ζ; t)(b⊗ a⊗ a− b⊗ b⊗ b)][x⊗ x] (3)
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Figure 1: Left side: the transversal section subject to a contraction only. Right side The
transversal section subject to a re-shaping: left side vertical axis of bending; central side hori-
zontal axis of bending; right side the combination of the previous ones; (dotted line, undeformed
shape; continuous line, deformed shape).

the index “a ” emphasizes that the re-shaping comes from the flexure in a-direction (see Figure
1, right side). It is easy to verify that the gradient of (3) with respect to x is a second order
symmetric tensor. The terms γa(ζ; t) : [ 0, L ]× [ 0, tf [→ R and δa(ζ; t) : [ 0, L ]× [ 0, tf [→ R
furnish the sizes of re-shaping, variable in space and in time. The term γa expresses the am-
plitude of the section re-shaping in a-direction, conversely the term δa furnishes the amplitude
of the section re-shaping in b-direction. A distorted rectangular section for a displacement field
expressed by relation (3) is represented in the right side of Figure 1. Since the direction of
bending is not known a priori, we suppose that the bending has a component due to a bending
in b direction as well, this component of motion causes a field of re-shaping represented in the
central side of Figure 1, right side. The quadratic form able to describe this re-shaping is:

ûdb(x, ζ; t) = −1

2
[γb(ζ; t)(b⊗ b⊗ a + b⊗ a⊗ a)− δ(ζ; t)(a⊗ b⊗ b− a⊗ a⊗ a)][x⊗ x] (4)

with an obvious meaning of symbols; γb(ζ; t) : [ 0, L ] × [ 0, tt [→ R and δb(ζ; t) : [ 0, L ] ×
[ 0, tt [→ R . The combination of (3) and (4) gives a re-shaping field on the cross section,
represented in Figure 1, extreme right side.

The part of strain tensor painting the section re-shaping is given by the plane re-shaping
strain tensor :

Êd(x, ζ; t) = −[γa(ζ; t)(a⊗ a⊗ b + a⊗ b⊗ a)− δa(ζ; t)(b⊗ a⊗ a− b⊗ b⊗ b)]x

−[γb(ζ; t)(b⊗ b⊗ a + b⊗ a⊗ a)− δb(ζ; t)(a⊗ b⊗ b + a⊗ a⊗ a)]x. (5)
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We emphasize here that ∇xû is defined at less of a skew-symmetric part Ψ , representing a
rigid rotation, i.e.,

∇xû = Ê + Ψ. (6)

Supposing that the beam is restrained so as not to allow rigid motions, the explicit expression
of û(x, ζ; t) is deduced by direct integration of (6):

û(x, ζ; t) = v̂(x, ζ; t) + [α(ζ; t)a⊗ a + β(ζ; t)b⊗ b]x

−1

2
[γa(ζ; t)(a⊗ a⊗ b + a⊗ b⊗ a)− δa(ζ; t)(b⊗ a⊗ a− b⊗ b⊗ b)]x⊗ x

−1

2
[γb(ζ; t)(b⊗ b⊗ a + b⊗ a⊗ a)− δb(ζ; t)(a⊗ b⊗ b− a⊗ a⊗ a)]x⊗ x

+ϑ(ζ; t)e× x + [e× ϕ(ζ; t)− ϕ(ζ; t)× e]x .

where v̂ ∈ W is the displacement of a point of the beam axis; ϑ ∈ R describes the torsion
of the section S , an infinitesimal rotation of S around e, ϕ ∈ W denotes the angle of shear
and bending as an infinitesimal rotation of S around one axis normal to e, it is the unique real
eigenvector of the matrix Ψ.

The motion of the beam along the e-axis is given by a sum of two terms, the first one
v(ζ; t) ∈ R furnishes the displacement of a point of the beam axis, it does not depend on the
shape of the transversal section; the second one represents the warping of the section parallel to
the e-axis and is expressed by the product ω(ζ; t)Φ(x) :

u(x, ζ; t) = v(ζ; t) + ω(ζ; t)Φ(x) .

Φ(x) : S → R is the warping shape function and ω(ζ; t) : [ 0L ]× [ 0, tt [→ R is its amplitude,
variable in e-axis and in time. The components of the infinitesimal strain tensor are given by:

Ê(x, ζ; t) = α(ζ; t)a⊗ a + β(ζ; t)b⊗ b

−[γa(ζ; t)(a⊗ a⊗ b + a⊗ b⊗ a)− δa(ζ; t)(b⊗ a⊗ a− b⊗ b⊗ b)]x

−[γb(ζ; t)(b⊗ b⊗ a + b⊗ a⊗ a)− δb(ζ; t)(a⊗ b⊗ b− a⊗ a⊗ a)]x, (7)

γ(x, ζ; t) = ∂ζ v̂(x, ζ; t) + ϕ(ζ; t) + [∂ζα(ζ; t)a⊗ a + ∂ζβ(ζ; t)b⊗ b]x

−1

2
[∂ζγa(ζ; t)(a⊗ a⊗ b + a⊗ b⊗ a)− ∂ζδa(ζ; t)(b⊗ a⊗ a− b⊗ b⊗ b)]x⊗ x

−1

2
[∂ζγb(ζ; t)(b⊗ b⊗ a + b⊗ a⊗ b)− ∂ζδb(ζ; t)(a⊗ b⊗ b− a⊗ a⊗ a)]x⊗ x

+∂ζϑ(ζ; t)e× x+ ω(ζ; t)∇xΦ(x). (8)

ε(x, ζ; t) = ∂ζv(ζ; t) + ∂ζϕ(ζ; t) · x + ∂ζω(ζ; t)Φ(x) . (9)

It is important to emphasize that, in order to avoid a reversal of the section orientation after the
deformation, it is necessary that the product αβ > 0 is strictly positive; this inequality excludes
pathological behaviors for which a contraction in one direction is coupled with an extension in
the other one and therefore ensures the regularity of the motion. Conversely no particular
conditions have to be satisfied by γa , γb , δa and δa .
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4 Dynamics and balance equations

Let S(x, ζ; t) ∈ Sym be the Cauchy stress tensor defined in each point of the beam; we assume
an additive decomposition of the stress tensor likewise for the deformation state:

S(x, ζ; t) = S(x, ζ; t) + sym[τ(x, ζ; t)⊗ e] + σ(x, ζ; t)e⊗ e . (10)

S(x, ζ; t) is the plane stress field, a second order symmetric tensor with kernel e, τ(x, ζ; t) ∈ W
is the shear tension vector and σ(x, ζ; t) ∈ R is the axial tension field. We suppose that the
stress tensor verifies the Cauchy equations of motion, at each point of the beam and in every
time instant {

div S + q = ρ ∂2
ttu, ∀(x; t) ∈ (R \ ∂R)× [ 0, tf [, (a)

Sn = s, ∀(x; t) ∈ ∂R× [ 0, tf [. (b)
(11)

ρ is the mass density, q and s are respectively the external mass and surface body forces and n
is the unit normal field pointing out the beam. We express the equation of motion in terms of
resultants over the cross section rather than in terms of components of stress, as it is usual in
beam theories. To make so, we write the equations (11) in the integral form using the Principle
of Virtual Power. If (u∗,E∗) is an admissible displacement-strain field, the equation (11.a) is
equivalent to ∫

R
S ·E∗ −

∫
R
q · u∗ −

∫
∂R

s · u∗ −
∫
R
∂2
ttu · u∗ = 0 .

The use of both decompositions (1) and (10) and of the representation R = S × [ 0, L ] turns
the previous equality in the following equation

∫ L

0

(∫
S

(
Ŝ · Ê∗ + τ · γ∗ + σε∗

)
−
∫
S
q · u∗ −

∫
∂S

s · u∗ −
∫
S
ρ∂2

ttu · u
)

= 0 . (12)

It is convenient to decompose body and surface forces as the sum of a part belonging to the
section plane W , indicated with a superimposed ( ·̂ ) , and a part orthogonal to it: q = q̂+ e q
and s = ŝ + e s . Usual developments applied to equation (12) lead to the following balance
equations (see also [7]) 

∂ζr + p = ρA∂2
tt v,

∂ζr + p̂ = ρA∂2
tt v,

∂ζm+ c = ρ trJ∗ ∂2
tt ϑ,

e× ∂ζm− r̂ + ĉ = ρJ ∂2
tt ϕ,

∂ζmΦ − rΦ + cΦ = ρD2 ∂
2
tt ω.

(13)

A > 0 is the area of the cross section; the positive definite inertia tensor J, the Euler tensor J∗

and the Vlasov constant D2 (the inertial term related to the section warping) are respectively
defined by:

J =

∫
S
x⊗ x, J∗ =

∫
S

(e× x)⊗ (e× x), D2 =

∫
S

Φ2.
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The external load terms are defined by

p̂ =

∫
S
q̂ +

∫
∂S

ŝ, p =

∫
S
q +

∫
∂S
s, c = e ·

(∫
S
x× q̂ +

∫
∂S

x× ŝ

)
,

cΦ =

∫
S

Φ q +

∫
∂S

Φ s, ĉ =

∫
S
x q +

∫
∂S

x s.

Numerous forces concur, however, to the balance in the plane of the section: the balance of
re-sizing forces is expressed by the following equations{

∂ζA + A− a = ρJ · (a⊗ a) ∂2
ttα,

∂ζB + B− b = ρJ · (b⊗ b) ∂2
ttβ,

(14)

where
A =

∫
S(τ(x, ζ; t) · a)(x · a) =

∫
S(τ(x, ζ; t)⊗ x)(a⊗ a),

B =
∫
S(τ(x, ζ; t) · b)(x · b) =

∫
S(τ(x, ζ; t)⊗ x)(b⊗ b).

A and B are the re-sizing-a-force and the re-sizing-b-force as the resultant over the area of the
“ moment ” of the a-component of the shear vector τ to respect b axis and the resultant over the
area of the “ moment ” of the b-component of the shear vector τ to respect a axis respectively.
The zero-a-force and the zero- b-force are the projection of the resultant of the plane stress field
in a and b directions and are defined respectively by

a =

∫
S
Ŝ(x, ζ; t) · a⊗ a, b =

∫
S
Ŝ(x, ζ; t) · b⊗ b.

The external load terms are

A =

∫
S
q̂ · [(a⊗ a)x] +

∫
∂S

ŝ · [(a⊗ a)x], B =

∫
S
q̂ · [(b⊗ b)x] +

∫
∂S

ŝ · [(b⊗ b)x].

The balance equations of internal actions distorting the section in its own plane are
∂ζGa + Ga − ga = ρ

(
A4 + A2 + 1

2A3r + 1
2B3l

)
· J ∂2

ttγa,
∂ζGb + Gb − gb = ρ

(
B4 + B2 + 1

2A3r + 1
2B3l

)
· J ∂2

ttγb,
∂ζDa + Da − da = ρ

(
A2 − B4 + 1

2A3r − 1
2B3l

)
· J ∂2

ttδa,
∂ζDb + Db − db = ρ

(
B2 − A4 + 1

2A3r − 1
2B3l

)
· J ∂2

ttδb,

(15)

with
Ga =

∫
S(τ(x, ζ; t)⊗ x⊗ x) · (a⊗ a⊗ b + a⊗ b⊗ a),

Gb =
∫
S(τ(x, ζ; t)⊗ x⊗ x) · (b⊗ b⊗ a + b⊗ a⊗ b),

Da =
∫
S(τ(x, ζ; t)⊗ x⊗ x) · (b⊗ a⊗ a− b⊗ b⊗ a),

Db =
∫
S(τ(x, ζ; t)⊗ x⊗ x) · (a⊗ b⊗ b− a⊗ a⊗ b),

being the section re-shaping forces and

ga =
∫
S(Ŝ(x, ζ; t)⊗ x⊗ x) · (a⊗ a⊗ b + a⊗ b⊗ a),

gb =
∫
S(Ŝ(x, ζ; t)⊗ x⊗ x) · (b⊗ b⊗ a + b⊗ a⊗ b),

da =
∫
S(Ŝ(x, ζ; t)⊗ x⊗ x) · (b⊗ a⊗ a− b⊗ b⊗ a),

db =
∫
S(Ŝ(x, ζ; t)⊗ x⊗ x) · (a⊗ b⊗ b− a⊗ a⊗ b),



A linear theory of beams with deformable cross section 473

the zero-re-shaping forces. See the analogy with the balance equations (13). The external load
terms are given by

Ga =
∫
∂S ŝ · [(a⊗ a⊗ b + a⊗ b⊗ a)(x⊗ x)]−

∫
S q̂ · [(a⊗ a⊗ b + a⊗ b⊗ a)(x⊗ x)],

Gb =
∫
∂S ŝ · [(b⊗ b⊗ a + b⊗ a⊗ b)(x⊗ x)]−

∫
S q̂ · [(b⊗ b⊗ a + b⊗ a⊗ b)(x⊗ x)],

Da =
∫
∂S ŝ · [(b⊗ a⊗ a− b⊗ b⊗ b)(x⊗ x)]−

∫
S q̂ · [(b⊗ a⊗ a− b⊗ b⊗ b)(x⊗ x)],

Db =
∫
∂S ŝ · [(a⊗ b⊗ b− a⊗ a⊗ a)(x⊗ x)]−

∫
S q̂ · [(a⊗ b⊗ b− a⊗ a⊗ a)(x⊗ x)].

The fourth order inertial tensor J is defined as

J =

∫
S
x⊗ x⊗ x⊗ x,

and the fourth order tensors related to description of section motion in its own plane are

A4 = a⊗ a⊗ a⊗ a, A2 = a⊗ a⊗ b⊗ b, A3r = a⊗ a⊗ a⊗ b, (16)

and

B2 = b⊗ b⊗ a⊗ a, B4 = b⊗ b⊗ b⊗ b, B3l = a⊗ b⊗ b⊗ b.

The balance equations (13), (14) and (15) are accompanied by the boundary conditions on
{0, L} × [ 0, tf [ :

r · u = 0, m · (ϕ× e + ϑ e) = 0, mϕω = 0,

Aα = 0, Bβ = 0, Gaγa = 0, Gbγb = 0, Daδa = 0, Dbδb = 0. (17)

The balance equations (14), (15) and the boundary conditions (17) are characteristic of the
proposed model and arise from the kinematic behavior of the transversal section.

4.1 Note on the warping shape function

The warping shape function is usually obtained solving the uniform de Saint-Venant torsion
problem for the prismatic body R = S×I . The balance equations and the boundary conditions
on the lateral surface of the beam ∂S × [ 0, L ] bring to the classical Neumann problem for the
function Φ on the section S :{

∆xΦ = 0, x ∈ S \ ∂S,
(∆xΦ + e× x) · n = 0, x ∈ ∂S, (18)

where ∆x is the Laplace-Beltrami operator on the section and n the unit normal to boundary
of S pointing out of it. Standard theorems of calculus assure the existence of the solution Φ
of the problem (18) and its uniqueness up to a constant which defines a rigid translation of the
section S along the e-axis; see, for example, Michajlov [14]. We imposed also that the function
Φ satisfies the following orthogonality conditions (see [19] and [7]):∫

S
Φ = 0,

∫
S

Φx = 0,

∫
S
∇xΦ = 0.
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5 Constitutive relations and equations of motion

The equations (13), (14) and (15) are very general and represent the balance conditions for
a beam without specification of its material constituent, they allow the determination of the
internal actions if the dynamical state is known. The motion under the external loads is however
an unknown of the problem and the equations (13), (14) and (15) are not enough to solve the
beam motion problem. Furthermore, no material specifications have been provided so far. The
relation between the strain and the stress tensors is the constitutive relation of the continuum,
it specifies the type of material and its behavior under external loads. We restrict our attention
to linear homogeneous anisotropic materials for which the stress-strain relation is expressed by
the linear form

S(x, ζ; t) = A[E(x, ζ; t)] . (19)

A is the elasticity tensor, a fourth order tensor mapping Sym into Sym. The assumption of
homogeneity implies that each term of A is constant and it does not depend either on spatial
coordinates or on time variable. We suppose, beside, that the tensorA is positive definite and
symmetric, i.e. ∀ T1,T2 ∈ Sym \ {0} :

T1 · A[T1] > 0, (20)

T1 · A[T2] = T2 · A[T1]. (21)

The assumption (20) enables one to eliminate degenerations of material, the assumption (21)
and the decompositions (1) and (10) allow to write the constitutive law in terms of components
of stress and strain as

Ŝ(x, ζ; t) = C[Ê(x, ζ; t)] + L[γ(x, ζ; t)] + Dε(x, ζ; t)

τ(x, ζ; t) = LT [Ê(x, ζ; t)] + G[γ(x, ζ; t)] + hε(x, ζ; t), (22)

σ(x, ζ; t) = D · [Ê(x, ζ; t)] + h[·γ(x, ζ; t)] + Eε(x, ζ; t),

where C is a fourth order symmetric tensor mapping Sym into Sym, D and G are second order
symmetric tensors with kernel e, E is a scalar, L is a third order tensor mapping W into Sym,
and h ∈ W is a vector belonging to the plane of the section. The positive definitiveness of the
tensor A implies in turn the positive definitiveness of C , G and E.
The symmetry of the tensor A also implies that the linear form (19) is exact and can be
derived from a potential, the stored energy. If external mass and surface body forces constitute
a conservative system, with potential energy

∫
R q·u+

∫
∂S s·u , writing the kinetic energy as usual

as 1
2

∫
R ρ ∂tu · ∂tu we get the total energy (Hamiltonian) H : H2,2(S × [ 0, L ]× [ 0, tf [ ) → R ,

H(u, ∂ζu, ∂tu, ζ, t) =

∫ tf

0

(
1

2

∫
R
S ·E− 1

2

∫
R
ρ∂tu · ∂tu−

∫
R
q · u−

∫
∂S

s · u
)

=
1

2

∫ tf

0

∫ L

0

(∫
S
Ê · C[Ê] + γ ·Gγ + Eε2 + 2Ê ·Dε+ 2γ · hε (23)

−1

2

∫
R
ρ∂tu · ∂tu−

∫
R
q · u−

∫
∂S

s · u
)
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The Hamiltonian (23) is a convex functional because the stored energy is a positive definite
quadratic form, as a consequence it owns a local minimum in the Sobolev space H2,2(S ×
[ 0, L ]× [ 0, tf [ ) , (Lions-Stampacchia theorem, see [13] and Ciarlet [5], p. 290). This minimum
furnishes the dynamical balance positions of the beam. Standard techniques of calculus allow
to get the motion equations of the beam as the Euler-Lagrange equations for the Hamiltonian
(23). These equations are resumed in the linear differential system

A ∂2
ζζv + B ∂ζv + Cv = M ∂2

ttv, (24)

where the matrices A, B, C and M couple all unknown functions and their spatial and temporal
derivatives. We do not report the explicit expressions of each terms of above mentioned matrices
to avoid trivial repetitions; we go to particularize the system (24) to monocline and orhotropic-
rhombic beams in the next developments. The equations (24) form a system of coupled partial
differential equations of the second order, the convexity of the stored energy and the positivity
of the kinetic energy assure the total hyperbolicity of the system and the possibility of waves
propagation and the establishment of vibrations. It is possible to see that all deformations are
coupled by the material anisotropy. The specification of particular anisotropy allows to decouple
the problem of the beam dynamic in sub-problems, it will be shown in the next sections.

6 Monocline and orthotropic beams

The material symmetry allows to split the problem of the bean motion under external loads
in uncoupled sub-problems. For this to happen it is still necessary that the local symmetry
exhibited by the material is reflected to the global symmetry of the beam: i.e. an axis of the
symmetry of the material coincides with the axis of the beam. The properties of the material
crystalline lattice put off the macroscopic behavior of the element via the terms of elasticity
tensor A and its global symmetries. To do this it is necessary to specify the symmetry group
of isometries G that leave unaltered the crystalline lattice. For a detailed exposition on group
theory and its use see e. g. Golubisky and others [10] and Forte and Vianello, [9] in special
reference to elasticity.

6.1 Monocline beams

A material is called monocline with respect to an axis of unit vector z if its symmetry group
G contains all rotations of amplitude π around z and a central reflection, these isometries are
respectively represented by the second order tensors –I and 2z⊗z−I ( I is the identity tensor).
The representation of the symmetry group of monocline materials is given by:

Gm = 〈 2z⊗ z− I,−I 〉.

The axis of anisotropy coincides with the axis of the beam in a monocline beam, i.e. z=e.
Standard computations of group theory get L = 0 and h = 0 . The representations of C , D,
G are more complex; without going into details (for which reference should be made to Xiao [22]),
C is expressed by a linear combination of six fourth order tensors, as in what follows. Let e, a
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and b be three unitary and mutually orthogonal vectors, we define the second order tensors Ωi

by

Ωi = ci1a⊗ a + ci2b⊗ b + ci3e⊗ e + ci4(a⊗ b + b⊗ a), i = 1, 2, 3, 4

Ω5 =
1√
2

(e⊗ a + a⊗ e), Ω6 =
1√
2

(e⊗ b + b⊗ e), (25)

with cij being dimensionless constants such that
∑4

k cikcjk + ci4cj4 = δij ; we have

C =
6∑

k=1

CkΩk ⊗ Ωk, (26)

with Ck being the elastic constants. The tensors D and G are represented by a linear combi-
nation of second order tensors

D = Daa⊗ a +Dbb⊗ b +Dab(a⊗ b + b⊗ a),
G = Gaa⊗ a +Gbb⊗ b +Gab(a⊗ b + b⊗ a).

(27)

The coefficients of the linear combinations are the elastic constants. We obtain the following
constitutive relations for monocline beams putting conditions (27) and (26) into equations (13),
(14) and (15):

r = EA∂ζv +ADaα+ADbβ, (28)

r̂ = A[Gaa⊗ a +Gbb⊗ b +Gab(a⊗ b + b⊗ a)](ϕ+ ∂ζ v̂)

− [GaT1 +GabT2][J]∂ζγa − [GbT3 +GabT4][J ]∂ζγb (29)

+[GbT3 +GabT4][J]∂ζδa + [GaT4 +GabT3][J ]∂ζδb,

m = J∗ · [Gaa⊗ a +Gbb⊗ b +Gab(a⊗ b + b⊗ a)]∂ζϑ

+[Gaa⊗ a +Gbb⊗ b +Gab(a⊗ b + b⊗ a)] · L1ω (30)

+Gaa · [e× Ja]∂ζα+Gbb · [e× Jb]∂ζβ,

e× m̂ = E J ∂ζϕ−Dab[(a⊗ b + b⊗ a)⊗ a]Jγa −Dab[(a⊗ b + b⊗ a)⊗ b]Jγb (31)

+[(Dbb⊗ b⊗ b +Daa⊗ a⊗ b)]Jδa + [(Daa⊗ a⊗ a +Dbb⊗ b⊗ a)]Jδb,

mΦ = ED2∂ζω, (32)

rΦ = [Gaa⊗ a +Gbb⊗ b +Gab(a⊗ b + b⊗ a) ] · [L1∂ζϑ+ L2∂ζω ], (33)

A = (Ga +Gab)a · (e× Ja)∂ζϑ+GaJ · (a⊗ a)∂ζα+GabJ · (a⊗ b)∂ζβ, (34)

a = ADa∂ζv +AC · A4α+AC · (A2 + B2)β, (35)

B = (Gb +Gab)b · (e× Jb)∂ζϑ+GbaJ · (b⊗ a)∂ζα+GbJ · (b⊗ b)∂ζβ, (36)

b = ADb∂ζv +AC · (A2 + B2)α+AC · B4β, (37)

Ga = −[GaT1 +GabT2][J]∂ζ v̂ + [GbA4 +Gab(A3l + A3r) +GaA2] · J∂ζγa
+[Gab(A3r + A2) +Ga(A3r + B3r)] · J∂ζγb (38)

−[Gab(A3r − B3r) + (Ga −Gb)A2 ] · J∂ζδa
−[(Gb −Ga)A3r +Gab(A2 − A4) ] · J∂ζδb −Dab[(a⊗ b + b⊗ a)⊗ a]Jϕ,
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Gb = −[GbT2 +GabT1][J]∂ζ v̂ + [Gab(A3r + A2) +Ga(A3r + B3r) ] · J∂ζγa
+[GaB4 +Gab(B3l + A3l) +GbA2 ] · J∂ζγb (39)

−[Ga(A3r + B3r)−Gab(B4 − A2) ] · J∂ζδa
−[Gab(B3l − A3r) + (Gb −Ga)A2 ] · J∂ζδb −Dab[(a⊗ b + b⊗ a)⊗ b]Jϕ,

ga = 2C[(A2 + B2)(a⊗ a) · Jγa + 2(A2 + B2)(a⊗ b) · Jγb]

+
1

2
C · (A3r − B2r + A2 − B3r)(a⊗ b) · Jδa −

1

2
C · (A3r − B2 + A2 − B3r)(a⊗ a) · Jδb

+
1

2
[Dab(a⊗ b + b⊗ a)]Ja · ∂ζϕ, (40)

gb = 2C[(A2 + B2)(a⊗ b) · Jγa + 2(A2 + B2)(a⊗ a) · Jγb]

+
1

2
C · (A3r − B2r + A2 − B3r)(a⊗ b) · Jδa

−1

2
C · (A3r − B2 + A2 − B3r)(a⊗ a) · Jδb (41)

+
1

2
[Dab(b⊗ a + a⊗ b)]Jb · ∂ζϕ,

4 Da = 2 [Gb(b⊗ a⊗ a− b⊗ b⊗ b) +Gab(a⊗ a⊗ a− a⊗ b⊗ b) ][J ]∂ζ v̂ (42)

−2 [Gab(A3r − B3r) + (Ga −Gb)A2 ] · [ J ]∂ζγa

−2[ (Ga −Gb)B3l −Gab(B4 − A2) ] · [ J ]∂ζγb

+2[GaA2 − 2GabB3l +GbB4 ] · [ J ]∂ζδa + 2[ 2GabA2 −GaA3r −GbB3l ] · [ J ]∂ζδa

+[ (Ga +Gab)J · (a⊗ a)− (Gb +Gab)J · (b⊗ b) ] · ϕ,
4 Db = 2 [Ga(a⊗ b⊗ b− a⊗ a⊗ a) +Gab(b⊗ b⊗ b− b⊗ a⊗ a) ][J ]∂ζ v̂ (43)

−2[(Gb −Ga)A3r +Gab(A2 − A4) ] · [ J ]∂ζγa

−2[Gab(B3l − A3r)− (Ga −Gb)A2] · [ J ]∂ζγb

+2[ 2GabA2 −GaA3r −GbB3l ] · [ J ]∂ζδa + 2[GbA2 +GaA4 − 2GabA3r ] · [ J ]∂ζδb

−[ (Gb +Gab)J · b⊗ b− (Ga +Gab)J · (a⊗ a)] · ϕ,

da =
1

2
C · (A3r − B2 + A2 − B3r)[ (a⊗ a) · Jγa + (a⊗ b) · Jγb ] (44)

−C · (A4 − B2 − A2 + B4)[ (b⊗ b) · Jδa − (a⊗ b) · Jδb ]

+
1

2
[(Dbb⊗ b⊗ b +Daa⊗ a⊗ b)]J · ∂ζϕ,

d3 =
1

2
C · (B3r − A2 + B2 − A3r)[ (a⊗ b) · Jγa + (b⊗ b) · Jγb ] (45)

−C · (B4 − A2 − B2 + A4)[ (a⊗ a) · Jδa − (b⊗ a) · Jδb ]

+
1

2
[(Daa⊗ a⊗ b +Dbb⊗ b⊗ a)]J · ∂ζϕ.

For sake of simplicity, we did mean with C the tensor expressed by relation (26) conditionally
to (25) and (26). The symbology is consistent with the papers of [17] and [7]. The fourth
order tensors related to description of the motion are defined above (see (16)) while the tensors
indicated with B can be easily obtained swapping b with a in the definition of A . The third
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order tensor are

T1 = 1
2(a⊗ a⊗ b + a⊗ b⊗ a), T2 = 1

2(b⊗ b⊗ a + b⊗ a⊗ b),
T3 = 1

2(b⊗ a⊗ a + b⊗ b⊗ b), T4 = 1
2(a⊗ b⊗ b + a⊗ a⊗ a).

(46)

We obtain the balance equations, expressed in term of kinematic descriptors of the beam, sub-
stituting the previous relations (46) in the expressions (13), (14) and (15). It is possible to note
that the equations (28)-(45) exhibit the splitting of the general problem in two uncoupled sub-
problems, as previously announced. The axial extension–re-sizing–torsion–warping is the first
sub-problem, the second one is the connexion between bending-shear and section’s re-shaping.
The re-sizing of transversal section depends both on the axial extension and the twist while
its re-shaping just hinges on the bending. The normal force depends on the re-sizing of the
transversal section as well as on the expected axial deformation. The re-sizing forces A and B are
functions of the torsional deformation ∂ζϑ as well as of the components of the plane deformation
tensor, the zero a and b forces depend on the axial deformation. The torque m depends on the
components of the plane deformation tensor. The bi-shear and the bi-moment are functions of
the warping shape function, as usual. The structure of the bending moment, of the shear and
of the section re-shaping forces does explicit the interaction between bending and re-shaping of
transversal section. We obtain the equations of Dav̀ı’s cited paper neglecting the parameters of
re-sizing and re-shaping of section from equations (28)-(45).

6.2 Orthotropic-rhombic beams

A material is said orthotropic-rhombic if its symmetry group contains the reflections on three
mutually orthogonal directions; in analogy with monocline beams, we define an orthotropic
rhombic beam if its axis coincides with one axis of symmetry of the material. Assuming that e,
a and b are the unit vectors defining the axes of anisotropy, the symmetry group of a orthotropic
material is

Gh = 〈 2e⊗ e− I, 2a⊗ a− I, 2b⊗ b− I,−I 〉 . (47)

The tensors D and G assume the following representation

D = Daa⊗ a +Dbb⊗ b, G = Gaa⊗ a +Gbb⊗ b. (48)

with Da , Db , Ga and Gb being the elastic constants. The tensor C is still represented by
the linear combination

C =

6∑
k=1

Ck Ωh ⊗ Ωk, (49)

but the tensors Ωk are given here by the following expressions

Ωk = ck1a⊗ a + ck2b⊗ b + ck3e⊗ e, k = 1, 2, 3, (50)

Ω4 =
1√
2

(e⊗ a + a⊗ e), Ω5 =
1√
2

(e⊗ b + b⊗ e), Ω6 =
1√
2

(a⊗ b + b⊗ a),

where cij are dimensionless constants such that
∑

k cikckj = δij .
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The equations of motion of a orthotropic-rhombic beams are very similar to that ones of a
monocline beams; they can easily be obtained substituting the expressions of material elastic
constants (48)-(50) in equations (28)-(45). The terms coupling extension and torsion warping
vanish if the cross section is endowed with two axes of symmetry and the axes of anisotropy are
coincident with the inertia principal axes. As a consequence a·G[e×Ja] = b·G[e×Jb] = 0 : the
torsion does not influence the re-sizing and re-shaping of transversal section; this is the reason
why the proposed model is unable to describe the connection between torsion and oval-re-shaping
of the section.

Figure 2: Displacements and internal forces in the first boundary condition.

Figure 3: Displacements and internal forces in the second boundary condition.

7 Compression of prismatic beam with rectangular cross section

Some numerical investigations concerning the phenomenon of coupling between the axial dis-
placement of the beam axis and the variation of size of transversal sections are presented
here. We treat a material for which the dimensionless constants appearing in (50) are given
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by cij =
δij√

3
. We consider a short beam of length L = 3.00m with rectangular cross section

of dimensions B = 0.45m and H = 0.60m . We also suppose that the axes of anisotropy
overlap with the main ones of inertia. The second order inertia tensor has the representation
J = 1

12BH
3a⊗ a + 1

12B
3Hb⊗ b . We reck the beam is in a vertical position and subject to its

own weight and to an axial load of compression of 1.5 . 105N from the terminal to the initial
base. The mechanical characteristics of the constituent material are reported in Table 1 while
boundary conditions are collected in Table 2. The beam is constrained in such a way as to
prevent rigid motions. The axial motion is hindered in the initial base only, we investigate the
behavior of transversal sections in two representative situations for the bases.

Geometric characteristics First boundary conditions

B=0.45 m H =0.60 m L=3.00 m α(0) = 0 α(L) = 0
β(0) = 0 β(L) = 0
v(L) = 0 r(L) = p

Mechanical characteristics
Second boundary conditions

% = 2000 kg/m3 E = 4.00× 1010Pa
C1 = 2.00× 1010Pa C2 = 1.60× 1010Pa α(0) = 0 A(L) = 0
Da = 1.00× 1010Pa Db = 9.15× 1010Pa β(0) = 0 B(L) = 0
Ga = 1.33× 1010Pa Db = 1.07× 1010Pa v(L) = 0 r(L) = p

Normal force p=150 kN

Table 1: Geometric and mechanical Table 2: Boundary conditions
characteristics of the beam for the proposed problems

First condition of compression: both bases are clamped to impede the motion in the plane
of the section. It is possible to see that all the shaft of the beam is subject to a sectional
deformation (Figure 2, left side); this deformation increases in the first third of the length,
is sensibly constant in the second third and decreases in the last third. The same behavior
appears for both measures of the section deformation, their difference is due to material
anisotropy. The state of the zero-forces (Figure 2, central side) is analogous. The diagram
of re-sizing-forces is reported in the same figure, (Figure 2, right side); it is important to
note that the last third has an inversion of sign of both re-sizing forces.

Second condition of compression: the motion in the plane of the cross section is hindered
in the initial base as in the former case but it is allowed in the terminal base. Scanning
the parameters of extension of transversal section we note that a further extension of
the sections is present in a neighborhood of terminal base (Figure 3, left side); a similar
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behavior is exhibited by the zero-forces (Figure 3, central side); conversely the re-sizing-
forces decay to zero in the same neighborhood of the terminal base (Figure 3, right side).

Traction A simple case of traction is scanned reporting only the results for the axial displace-
ment and for the parameters of extension of transversal sections which is subject to a
contraction in this case. As it is possible to see in Figure 4, left side, this event is symmet-
rical to the first one. We note, beside, the analogy with the shape of a thin plate subject
to an axial extension and a subsequent sectional contraction (Figure 4, right side1).

Figure 4: The problem of traction for the same beam, in both bases, the sectional motion is
hindered.

8 Conclusions

The proposed model can easily represent the behavior of a beam subject to a wide range of
deformations. The introduction of deformability of the section in its own plane via the two
functions α and β allows the description of the coupling between the extension of the axis and
the re-sizing of the section, consistent with the experimental study. The use of the functions
γ and δ , associated with a quadratic form in the coordinates of the plane section, allows to
depict the re-shaping of the section, consequent to the bending of the axis. The coefficients of
the motion equations are the geometric and inertial characteristics of the section, referred to a
frame with origin in the section’s center of mass and main axes of inertia coincident with that
ones of anisotropy of the material.

9 Some suggestions for further investigations

A first improvement of this model can be performed considering beams with cross sections
without two axes of symmetry, the center of rotation (twist or shear center) does not coincide

http://www.ems.psu.edu/?ryba/310/proposal%20example.html

http://www.ems.psu.edu/?ryba/310/proposal%20example.html
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with the center of mass in this case, moreover several properties of the warping shape function
vanish in a frame with an origin other than the center of mass. The structure of equations
will be much more complex because various kinds of inertial tensors are present on them. It is
also necessary to extend the theory to beams with curvilinear axis, widening in this manner the
theory to ring-rods and other curvilinear mono-dimensional structures. The linear theory is only
feasible in the ambit of small motions and deformations and does not represent the widest cases
of large deformations which occur in very soft materials. It is necessary to remember that the
beam theory is now used not only in the conventional ambits of civil and mechanical engineering
but also in other frames where the assumptions of linearity may be too strong, it is sufficient to
remind the soft pipes in plastic materials and the studies in bio-mechanical engineering. A more
refined kinematic analysis will also allow the description of the oval-re-shaping of the transversal
section for beams with two axes of symmetry and subject to a torque only.
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