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d—Fibonacci and d—Lucas polynomials
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Abstract. Riordan arrays give us an intuitive method of solving combinatorial problems. They
also help to apprehend number patterns and to prove many theorems. In this paper, we con-
sider the Pascal matrix, define a new generalization of Fibonacci and Lucas polynomials called
d—Fibonacci and d—Lucas polynomials (respectively) and provide their properties. Combina-
torial identities are obtained for the defined polynomials and by using Riordan method we get
factorizations of Pascal matrix involving d—Fibonacci polynomials.
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1 Introduction

The Fibonacci numbers F,, are defined by the recurrence sequence F,, = F,,_1 + F,,_o, for all
n > 1 with the initial conditions Fy = 0 and F; = 1. This famous sequence appears in many
areas of mathematics and it has been generalized in many research fields. We recall here the
generalization of Falcon and Plaza [1], where a general Fibonacci sequence was introduced.
It generalizes, among others, both the classical Fibonacci sequence and Pell sequence. These
general k—Fibonacci numbers Fj, , are defined by Fj, = kFj,—1 + Fppn—2,n > 2, with the
initial values Fy = 0 and F} = 1. We note that the Pell numbers are 2—Fibonacci numbers.
It should be reminded that the k—Fibonacci numbers were found by studying the recursive
application of two geometrical transformations used in the well-known 4-triangle longest-edge
partition. Besides that, the k—Fibonacci numbers were given in an explicit way and many
properties were proven in [12]. They were related with the so-called Pascal 2—triangle. In fact,
the Fibonacci polynomials are defined by using the Fibonacci-like recursion relations. They
were studied in 1883 by the Belgian mathematician Catalan and Jacobsthal. In what follows we
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present polynomials the Fj,(x) studied by Catalan, defined by the recurrence relation
Fo(z) =2xF,—1(x) + Fh—2(x),n > 3, where Fj(z) =1 and Fy(z) = x.
And the Fibonacci polynomials studied by Jacobsthal are defined by
Jn(x) = xvJp_1(x) + Jp—2(z),n > 3, where Ji(z) = Ja(z) = 1.

Finally, the Lucas polynomials studied in 1970 by Bicknell are given by the following recurrence
relation

L, (z) = xLyp—1(x) + Lp—2(z),n > 2, where Lo(z) =2 and Ly (z) = x.

In [13], Nalli and Haukkanen introduced h(z)—Fibonacci polynomials that generalize both
Catalans Fibonacci polynomials F'(z) and Byrds Fibonacci polynomials ¢, (x) and also the
k—Fibonacci numbers Fj.,. The h (x) —Fibonacci polynomial sequence, denoted by {F}, ,, (z)}
is defined by the following recurrence relation

n>0’

Fro(z) =0, Fpi(z)=1, )
Fppt1(x) =h(x) Fpp () + Fhpo1(x), n> 1.

Lee and Asci [6] generalized the h(x)—Fibonacci polynomial to the (p, ¢)—Fibonacci polynomial
Fp qn (z), which is defined by

Fpgnt1 () =p (@) Fpgn (@) +q(2) Fpgn-1(z), n>1. (2)

They obtained combinatorial identities and by using Riordan method they gave tow factoriza-
tions of Pascal matrix involving (p, ¢)—Fibonacci polynomials.
Brawer and Pirovino [1] defined the nxn lower triangular Pascal as matrix P, = [P ;]

i—1
, . ifi >,
b= <J—1> /

0, otherwise.

i,j=1,2,...n

The Pascal matrix is particularly important in studying combinatorial identities and it has many
applications in numerical analysis, probability, surface reconstruction and combinatorics. In [9],
Lee et al. factorized the Pascal matrix involving the Fibonacci matrix defined by
Fi_ iy, it i—j+12>0
=(F: ;) = 1—=J+1 o / =Y
o= (Fij) {0, ifi—j+1<0.

The inverse of this matrix is given as follows

10 0 0 .- 0]
1 -1 1 0
-1 _
Fn=10 -1 21
. .
K 0 -1 -1 1
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The Riordan group was introduced by Shapiro et al. [15] as a set of infinite lower-triangular
integer matrices where each matrix is defined by a pair of formal power series g(z) = > > ; gn2"

and f(z) => 02 fn2" with go # 0 and f1 # 0.

An infinite lower triangular matrix D = [d, 4] th

nk>0 18 called a Riordan array, if its ¢~

column generating function is g () [f ()]’ for i > 0 (the first column being indexed by 0). With
little loss of generality, we also assume dypg = go = 1. The matrix corresponding to the pairs g
and f is denoted by (g, f). The group law is then given by

(g, ) * (h,1) = (g (ho f),lof).

The identity of this law is I = (1,2) and the inverse of (g, f) is (g, /)" = (1/ (g o f) , f) where
f is the reversion or compositional inverse of f. The reversion of f is the power series f such
that ( fo f) () = x. It may be written sometimes as f = Revf. This group will be denoted by
R.

In [3], Cheon et al. presented many results, including a generalized Lucas polynomial se-
quence from Riordan arrays and combinatorial interpretation for a pair of generalized Lucas
polynomial sequences.

In this paper, let {p; (x)}f;rll be a polynomial sequence with real coefficients. In the first
section, we introduce d—Fibonacci polynomials that generalize both Catalan’s Fibonacci polyno-
mials F,(z) and Byrd’s Fibonacci polynomials ¢, (z) and also the k—Fibonacci numbers Fj,,,.
Then, we provide properties for the d—Fibonacci polynomials. Next, we introduce d—Lucas
polynomials that generalize the Lucas polynomials and present properties of these polynomials.
In the second section, we introduce the matrix Q4(x) that generalizes the Q—matrix

i)

whose powers generate the Fibonacci numbers. We show some properties of the classical type
for the d—Fibonacci and d—Lucas polynomials and the matrix Q4(x). Finally, we give a new
factorization of Pascal matrix involving d— Fibonacci polynomials by using Riordan method.

2 (Generalization of Fibonacci and Lucas polynomials

In this section, we introduce a new generalization of Fibonacci polynomials. For a real polynomi-
als {p; (:U)}fill , let us define the d—Fibonacci polynomials {F}, (x)} by their recurrence relation
as follows

Fopa (2) = p1(2) B (2) 4+ pa () Foy (2) + -+ + pays (2) Foa (2), n 2 1, (3)

with the initial conditions Fj, () = 0 for n < 0 and F; (x) = 1. We define the d—Lucas
polynomials {L,} in terms of d—Fibonacci as follows

Ly () = Foy1 (@) + p2 (%) Fae1 (@) + -+ + pata (2) Fra (@), n 2 1, (4)

with the initial conditions L, (z) = 0 for n < 0, Lo () = 2 and L; (z) = p1 ().
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Now, the corresponding generating functions of {F,, ()} and {L,, (z)} are, respectively,
oo o0
G(x,t) = Fu(z)t" and H(z,t)=> Ly (z)t". (5)
n=0 n=0

Using the recurrence relation (3), we can easily obtain the explicit form of the generating func-
tions [2, 11]

Gty =t[1=pi (@)t —po () =g (@) 7] (6)

and
1

H (2,8) = [2 = p1 (2) ] [1 = p1 (2) ¢ = p2 (2) 2 = - = pasa (2) 7] (7)

Hence, the polynomials L, may be expressed in terms of F,, as follows
Ln = 2Fn+1 —pan, n 2 0. (8)

Furthermore, using the recurrence formula of {F,} we can prove by induction on n that the
d—Lucas polynomials satisfy in addition the following recurrence relation.

Proposition 1. The d—Lucas polynomials satisfy the following recurrence relation
L1 (z) = p1(x) Ln (x) + p2 (2) Ln—1 (z) + -+ + pas1 (2) Ln—q (z), n > 1. (9)

The Binet formula is well known in the theory of Fibonacci numbers. These formula can
also be carried out for the d—Fibonacci polynomials from the characteristic equation

=1 ()t =+ = paga () = 0. (10)

That is,

d+1
¢ :ZAZ*(%) (11)

1—pi(z)t —pa(a)t® — -+ = pat1 ()t =1—0(2)t

Now, identifying the coefficient of t" in the both sides of (3), we easily obtain the following

Binet’s formula
d+1

P (2) = ZAz' () [oi (2)]"- (12)

More precisely, the multinomial coefficients allow us to give the explicit form of the d—Fibonacci
polynomials. Indeed,

Theorem 1. For n > 0, we have

Py () = > (et ) pit (@)py? () -+ pgy () (13)

N1,M2,Nd+1

1+ni1+2n9+-+(d+1)ngr1=n
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Proof. By developing the right hand side of (11), we get

S 1
F, 1 (X t" =
I O = @ =~ pan
o0
= Zo [p1 (@)t + po(x)t? + - + pd+1($)td+1}n
=
o
- ZO + +Z-:i- (m,nz,-r-L- ,naz+1)prll1 (x)pgz (Z‘) t 'pZiJil ('r) tn1+2n2+m+(d+1)nd+l
n= ni+nN2+:1TNg+1="N
o0
—5 | D CHRIIEE @@ @)
_n1+2n2+---+(d+1)nd+1:"
Whence the desired result. O
In [6], Lee and Asci introduced the matrix

0, — [p<1:c> o(c) }

that plays the Q—Fibonacci matrix with

11
They proved some results which generalized the classical representation of the Fibonacci poly-
nomials as well as the Fibonacci sequence in terms of the matrix (). Indeed, in our case, we

introduce a further generalization of this kind of matrices. To this end, let us define the Qg
matrix as follows

p1(z) p2(x) -+ pay1 (o)
1 0 0
Qa = 0o . . (14)
0 001 o0 |

It follows immediately that, the determinant of the matrix )y is the polynomial (—1)d Pd+1 (T).

Theorem 2. We have the following representation

Fri polbn + -+ pap1Fn_as1 p3bn + -+ pip1bn_ar2 - pat1bn
o — F, poFn1+ -+ piviFn—a  p3Fp_1+ -+ pipiFa_ar1 0 Payi1Fn—
| Fn—dat1 p2Fp-a+ -+ par1Fn_odt1 p3bn-—a+--+pit1Fn—24d+2 -+ Ppat1Fn—a |
(15)

Proof. The formula is easy to prove by induction on n. OJ
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We have the following consequence which is also a generalization of the result presented
in [0].

Corollary 1. For m,n > 0, we have
Fn+m+1 = n+1Fm+1 +p1 (l')FnFm + pz(l‘) (Fnmel + anlFm)
+p3($) (FnFm72 + anlmel + an2Fm) + - (16)
+ pat1(x) (FnFm—ar1 + Foc1F—ayo + - + F—g1 Fm) -

Proof. Writing Q™™™ = Q™Q™ and then by identification we get the result since the first entries
of matrices Q"™ is the production of the first row in Q™ by the first column of Q™. O

We have also the following generalization of the result given in [(], and it is again easily
proved by induction on n.

Theorem 3. For n > d, we have

" = Fpap1t? + (p2(@) Fea + -+ + pagr1 (@) Fr—2q1) t4!

(17)
+ (p3(2) Fpeag +  + Dar1 () Fp—2a42) 972 + -+ - + pas1(2) Fra.

Now, we are able to generalize several properties of the Fibonacci polynomials as well as for
the generalized Fibonacci polynomials. First, we begin with the following

Theorem 4. For d > 2 and n > 0, we have the following expression

nit+nz+-+ng41),,n1 n2 R ! _
Z ( nimg, e nag )P (@)P5* () - gy (@) Fufoy tmatotngss] = Fr(ar)-
ni1,n2, - ,Nd41
(d+1)ni+dna+-+ngr1=n

(18)
Proof. For n =1, we obtain
Fap1 = p1(x)Fy + p2(2) Fa—1 + - -+ + pat1(z) Fo.
Let us denote the right hand side of (18) by RH. Then, for n > 2, we have
RH
_ ni+ns+--+n n n Ngy1 d+1 n—[ni+no+-+ngy1]
B n1,n2§;,nd+1 ( ;u,nzz,m ,ndirl)pll(‘r)p22(x) a 'pdri (2) {Zizl Ajoy T o }
(d4+1)n1+dna+---+ngr1=n
_ nit+ng+-+n n n Ngt1 d+1 4 _dni+(d—1)no+-+ngi1
B n1,n2;,nd+1 ( 1L1,n22,~~ ,ndirl)pll(z)p22(x) o .pd‘lji () {Zizl Aio; }
(d4+1)n1+dno+---+ngr1=n
= A > ("yrnerenan) [ofp(@)] ™ [of T pa(@)]™ - pas (2)] "

Mn1,MN2,...sNd+1
(d+1)ni+dno+---+ngr1=n

+Aat1 2 (et ) logp @] ™ [od p2(@)] ™ - fpaa ()]

N1,M2, . Nd 41 R
(d+1)n1+dno+--+ngy1=n
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that is,
n
RH = Ay |ofp (@) +of ' pa(a) + -+ + paa(@)] + -
n
+Aas |02 (@) + 01 pa(@) + -+ pana ()]

Now, from the characteristic equation, we see that ngl + ngflpg 4+ Pap1 = 0;““1. Using
this last property, we obtain

d+1 "
'M:Z&Wﬂ:nmm
i=1
which completes the proof. OJ
We have also the following generalization of [6].

Theorem 5. Forn >0, we have

n (nlntj;f;,::fjl)p?l (@)py® (x) - - (—pat1 ()" an[n1+n2+---+nd+1}
1,M2,---,Md 41

(d+1)ni+dno+-+ngr1=n

= kZO (%) (—2pa+1 (@) Flas1)(nr)-

) (19)

Proof. Let us denote the right-hand side of (19) by RH. Then, by regarding the proof of the
Theorem 4, we can easily get

n
RH = A [(prl(x) + o py(x) 4+ -+ alpd(l‘)> —pd+1(x)} +e
n
+ Agv1 KU&[HPI(CC) +ogipa(x) + -+ 0d+1pd(9€)) - pd+1($)} :
Using again the characteristic equation, we obtain

RH = A1 |:0’il+1 - 2pd+1($):| +---+ Ad+1 [Ugii - 2pd+1(x)}

n n

= 4135 () C2nan @) ol g 35 () Conan ) o0

Whence the desired result. O

3 The Infinite d—Fibonacci and d—Lucas Polynomials Matrix

In this section, we define a new matrix called d—Fibonacci polynomials matrix. The infinite
d—Fibonacci polynomials matrix

F(:E) = [Fplyp27~~~:pd+l:i:j (m)]
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is defined as follows

1 0 0
p1(x) 1 0
Fz) = e () + pa(z) P21(SE) 1 :
p1(@)° + 2p1(x)p2(2) + p3(x) pi1(x)* + pa(x) p1(w) 1
t1(z) ta() pi(x)? + pa(x)
= (9 @), fra®),
where

t1(z) = pr(x)* + 2p1(2)°pa(x) + p2(x)® + p1(z)ps(x) + pal),
ta(z) = p1(x)* + 2p1(2)pa(z) + p3(2).

The matrix F (z) is an element of the set of Riordan matrices. Since, the first column of f (x)
is (1,p1(z), p1(2)* + p2(), ta(x), t1 (), . . .)T, then it obvious that

[o.¢]
~1
9 O =D Fpipace paan @) 8 = [1=p1 (@)t = p2 (2) 2 = -+ = pasa (@) 7] .
n=0
In the matrix f (z) each entry has a rule with upper two rows, that is,
Fr1y (@) = p1 (@) Foj (2) + p2 () Fpe1j () + -+ - + pag (2) Faj (2)
Then fy(,)(t) = t, that is,
Fx) = (9r @@, frat)

_ ( 1 t>
- 1—pi(x)t—pg ()2 — - — pap (x)tdH177 )"

Hence, F (z) € R.
Similarly, we can define the d—Lucas polynomial matrix. The infinite d—Lucas polynomial
matrix is given by

and it can be written as

X(X) = (gx(x)(t)afx(x)(t))

_ ( 2 —pi(x)t t>
L—pi(z)t—p2(x)t? =+ = pay1 (z) T
In the rest of this section, we give two factorizations of Pascal matrix involving the d—Fibonacci
polynomial matrix. For these factorizations we need to define two matrices. Firstly, we define
an infinite matrix B(z) = (b; j(x)) as follows

bij(z) = (;_D — (@) (;_i) — pa(w) (;_?1’) o= pap () (ij:Z)' (20)
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So, we have

i 1 0 0 0 ]
1—pi(x) 1 0 0
1—pi(z) — pa(x) 2 —pi(x) 1 0
1—=pi(z) —pa2(z) —ps(z) 3—2p1(x) — pa(2) 3—pi(x) 1
B(x) = : : 6 —3p1(x) —pa(z) 4—pi(x) . |
l(z) l2(z) . '
I3(x) l4(x)
' (21)
where
h(z) = 1—pi(z) —p2(z) = = pa(),
lb(z) = d—(d—1)pi(z) — (d = 2)p2(x) — - — 2pa—2(x) — pa—1(z),
I3(x) = 1 —pi(z) —pa(x) — -+ — pay1(z)
la(z) = (d+1) —dpi(x) — (d = 1)pa(z) — -+ — 2pg—1(z) — palz).

Now, we give the first factorization of the infinite Pascal matrix via the infinite d—Fibonacci
polynomials matrix and the infinite matrix B(x) by the following theorem.

Theorem 6. Let B(x) be the infinite matriz as in (21) and F (x) be the infinite d— Fibonacci
polynomial matriz, then

P(xz) =F (z) * B(x)

where P is the Pascal matrix.

Proof. From the definitions of the infinite Pascal matrix and the infinite d—Fibonacci polyno-
mials matrix, we have the following Riordan representing

P=(thrs) Fo- (e mer )

Now, we can find the Riordan representation of the infinite matrix

B(:‘C) = (gB(;t) (t)7 fB(z) (t))

as follows
i 1 0 0 0 T
1—pi(x) 1 0 0
1 —pi(x) — pa(z) 2 —pi(z) 1 0
1L —pi(z) — pa(x) —p3(x) 3 —2pi(z) — pa(x) 3—pi(x) 1
B(z) = : : 6 — 3p1(x) — p2(x) 4—pi(z) |
ll(IIZ) lg(m) ’ ’
l3(.%') l4(l‘)
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where
L(z) =1-pi(z) —p2(x) — - = pala),
la(x) = d = (d = 1)pi(x) = (d = 2)p2() — - = 2pa—2(x) — pa-1(2),
l3(z) = 1=pi(z) —pa(z) — - —pd+1(96)
ly(z) = (d+1) —dpi(z) — (d — V)pa(x) — -+ — 2pg_1(x) — pa(z).
From the first column of the matrix B(x), we obtain
Cl—pi(@)t—pa(@)t? — - = pgya (x) 1
From the rule of the matrix B(z),
t
[B()(t) = -3
Thus,
1L—pi(2)t —p2(2)t* — - —payq () 17!

B(z) = (

which completes the proof.

Now, we define the n x n matrix R(z) =

1-t¢

We have the infinite matrix R(x) as follows

1 0
1 —pi(z) 1
1= 2p1(x) — p2(x) 2 —py(z)
1—3pi(z) —3pa(z) —ps(z) 3 —2p1(x) — pa(a)
R(z) = : :
s1(x) s2(x)
s3(z) s4()
where
si(z) = 1—dpi(x) — d(d2! D pa(z)—
so(x) = d—(d—1)p1(x) — (d — 2)pa(z)—---
(@) = 1 - (@ + Dpr (o) — LD
sa(z) = (d+1) —dpi(z) — (d — 1)pa(z) —

1 —1

R

(ri;(z)) as follows

)= () (1) e

0
0
1

3—pi(z)

t
1t

o O O

1

6 — 3p1(x) — pa(x) 4 —pi(z)

= pa(x),

( >_

= 2pg_1()

— 2pa—2(x)

— Pd+1 (.’IJ),

- pdfl(@"),

— pa().

Krelifa

(23)

Now, we give the second factorization of the infinite Pascal matrix via the infinite d—Fibonacci
polynomials matrix by the following corollary.
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Corollary 2. Let R(x) be the matriz as in (22). Then
P = R(z) % F (z).

We can find easily the inverses of the matrices by using the Riordan representations of the
given matrices.

Corollary 3. One has

Fl @) = (1 =pr (@)t =po (@) = = paga ()T, 1), (24)
1, ()
B l(x) - D ’
where
D = 1+ @ri-pyes (UG ) - mio)
+ (LD - SO 0) - (- 1pale) - ot
o (1= pi(a) — pa(x) — -+ — paya (@) 4,
" iy (1P @)= pr @) = pa (@) £
o= ( 2 i (@) 1), >
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