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Abstract.Riordan arrays give us an intuitive method of solving combinatorial problems. They
also help to apprehend number patterns and to prove many theorems. In this paper, we con-
sider the Pascal matrix, define a new generalization of Fibonacci and Lucas polynomials called
d−Fibonacci and d−Lucas polynomials (respectively) and provide their properties. Combina-
torial identities are obtained for the defined polynomials and by using Riordan method we get
factorizations of Pascal matrix involving d−Fibonacci polynomials.
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1 Introduction

The Fibonacci numbers Fn are defined by the recurrence sequence Fn = Fn−1 + Fn−2, for all
n ≥ 1 with the initial conditions F0 = 0 and F1 = 1. This famous sequence appears in many
areas of mathematics and it has been generalized in many research fields. We recall here the
generalization of Falcon and Plaza [4], where a general Fibonacci sequence was introduced.
It generalizes, among others, both the classical Fibonacci sequence and Pell sequence. These
general k−Fibonacci numbers Fk,n are defined by Fk,n = kFk,n−1 + Fk,n−2, n ≥ 2, with the
initial values F0 = 0 and F1 = 1. We note that the Pell numbers are 2−Fibonacci numbers.
It should be reminded that the k−Fibonacci numbers were found by studying the recursive
application of two geometrical transformations used in the well-known 4-triangle longest-edge
partition. Besides that, the k−Fibonacci numbers were given in an explicit way and many
properties were proven in [12]. They were related with the so-called Pascal 2−triangle. In fact,
the Fibonacci polynomials are defined by using the Fibonacci-like recursion relations. They
were studied in 1883 by the Belgian mathematician Catalan and Jacobsthal. In what follows we
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present polynomials the Fn(x) studied by Catalan, defined by the recurrence relation

Fn(x) = xFn−1(x) + Fn−2(x), n ≥ 3, where F1(x) = 1 and F2(x) = x.

And the Fibonacci polynomials studied by Jacobsthal are defined by

Jn(x) = xJn−1(x) + Jn−2(x), n ≥ 3, where J1(x) = J2(x) = 1.

Finally, the Lucas polynomials studied in 1970 by Bicknell are given by the following recurrence
relation

Ln(x) = xLn−1(x) + Ln−2(x), n ≥ 2, where L0(x) = 2 and L1(x) = x.

In [13], Nalli and Haukkanen introduced h(x)−Fibonacci polynomials that generalize both
Catalans Fibonacci polynomials F (x) and Byrds Fibonacci polynomials φn(x) and also the
k−Fibonacci numbers Fk;n. The h (x)−Fibonacci polynomial sequence, denoted by {Fh,n (x)}n≥0,
is defined by the following recurrence relation

Fh,0 (x) = 0, Fh,1 (x) = 1,

Fh,n+1 (x) = h (x)Fh,n (x) + Fh,n−1 (x) , n ≥ 1.
(1)

Lee and Asci [6] generalized the h(x)−Fibonacci polynomial to the (p, q)−Fibonacci polynomial
Fp,q,n (x), which is defined by

Fp,q,n+1 (x) = p (x)Fp,q,n (x) + q (x)Fp,q,n−1 (x) , n ≥ 1. (2)

They obtained combinatorial identities and by using Riordan method they gave tow factoriza-
tions of Pascal matrix involving (p, q)−Fibonacci polynomials.

Brawer and Pirovino [1] defined the n×n lower triangular Pascal as matrix Pn = [Pi,j ]i,j=1,2,...,n

Pi,j =


(
i− 1
j − 1

)
, if i ≥ j,

0, otherwise.

The Pascal matrix is particularly important in studying combinatorial identities and it has many
applications in numerical analysis, probability, surface reconstruction and combinatorics. In [9],
Lee et al. factorized the Pascal matrix involving the Fibonacci matrix defined by

zn = (Fi,j) =

{
Fi−j+1, if i− j + 1 ≥ 0,
0, if i− j + 1 < 0.

The inverse of this matrix is given as follows

z−1n =



1 0 0 0 · · · 0
−1 1 0 · · · 0
−1 −1 1 0 · · ·

0 −1 −1
. . .

...
. . .

. . .
. . .

. . . 0
0 · · · 0 −1 −1 1


.



d−Fibonacci and d−Lucas polynomials 427

The Riordan group was introduced by Shapiro et al. [15] as a set of infinite lower-triangular
integer matrices where each matrix is defined by a pair of formal power series g(z) =

∑∞
n=0 gnz

n

and f(z) =
∑∞

n=1 fnz
n with g0 6= 0 and f1 6= 0.

An infinite lower triangular matrix D = [dn,k]n,k≥0 is called a Riordan array, if its i−th

column generating function is g (x) [f (x)]i for i ≥ 0 (the first column being indexed by 0). With
little loss of generality, we also assume d0,0 = g0 = 1. The matrix corresponding to the pairs g
and f is denoted by (g, f). The group law is then given by

(g, f) ∗ (h, l) = (g (h ◦ f) , l ◦ f) .

The identity of this law is I = (1, x) and the inverse of (g, f) is (g, f)−1 =
(
1/
(
g ◦ f̄

)
, f̄
)

where
f̄ is the reversion or compositional inverse of f . The reversion of f is the power series f̄ such
that

(
f ◦ f̄

)
(x) = x. It may be written sometimes as f̄ = Revf . This group will be denoted by

R.
In [3], Cheon et al. presented many results, including a generalized Lucas polynomial se-

quence from Riordan arrays and combinatorial interpretation for a pair of generalized Lucas
polynomial sequences.

In this paper, let {pi (x)}d+1
i=1 be a polynomial sequence with real coefficients. In the first

section, we introduce d−Fibonacci polynomials that generalize both Catalan’s Fibonacci polyno-
mials Fn(x) and Byrd’s Fibonacci polynomials ϕn(x) and also the k−Fibonacci numbers Fk,n.
Then, we provide properties for the d−Fibonacci polynomials. Next, we introduce d−Lucas
polynomials that generalize the Lucas polynomials and present properties of these polynomials.
In the second section, we introduce the matrix Qd(x) that generalizes the Q−matrix[

1 1
1 0

]
,

whose powers generate the Fibonacci numbers. We show some properties of the classical type
for the d−Fibonacci and d−Lucas polynomials and the matrix Qd(x). Finally, we give a new
factorization of Pascal matrix involving d− Fibonacci polynomials by using Riordan method.

2 Generalization of Fibonacci and Lucas polynomials

In this section, we introduce a new generalization of Fibonacci polynomials. For a real polynomi-
als {pi (x)}d+1

i=1 , let us define the d−Fibonacci polynomials {Fn (x)} by their recurrence relation
as follows

Fn+1 (x) = p1 (x)Fn (x) + p2 (x)Fn−1 (x) + · · ·+ pd+1 (x)Fn−d (x) , n ≥ 1, (3)

with the initial conditions Fn (x) = 0 for n ≤ 0 and F1 (x) = 1. We define the d−Lucas
polynomials {Ln} in terms of d−Fibonacci as follows

Ln (x) = Fn+1 (x) + p2 (x)Fn−1 (x) + · · ·+ pd+1 (x)Fn−d (x) , n ≥ 1, (4)

with the initial conditions Ln (x) = 0 for n < 0, L0 (x) = 2 and L1 (x) = p1 (x).
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Now, the corresponding generating functions of {Fn (x)} and {Ln (x)} are, respectively,

G (x, t) =
∞∑
n=0

Fn (x) tn and H (x, t) =
∞∑
n=0

Ln (x) tn. (5)

Using the recurrence relation (3), we can easily obtain the explicit form of the generating func-
tions [2, 14]

G (x, t) = t
[
1− p1 (x) t− p2 (x) t2 − · · · − pd+1 (x) td+1

]−1
, (6)

and

H (x, t) = [2− p1 (x) t]
[
1− p1 (x) t− p2 (x) t2 − · · · − pd+1 (x) td+1

]−1
. (7)

Hence, the polynomials Ln may be expressed in terms of Fn as follows

Ln = 2Fn+1 − p1Fn, n ≥ 0. (8)

Furthermore, using the recurrence formula of {Fn} we can prove by induction on n that the
d−Lucas polynomials satisfy in addition the following recurrence relation.

Proposition 1. The d−Lucas polynomials satisfy the following recurrence relation

Ln+1 (x) = p1 (x)Ln (x) + p2 (x)Ln−1 (x) + · · ·+ pd+1 (x)Ln−d (x) , n ≥ 1. (9)

The Binet formula is well known in the theory of Fibonacci numbers. These formula can
also be carried out for the d−Fibonacci polynomials from the characteristic equation

td+1 − p1 (x) td − · · · − pd+1 (x) = 0. (10)

That is,

t

1− p1 (x) t− p2 (x) t2 − · · · − pd+1 (x) td+1
=

d+1∑
i=1

Ai (x)

1− σi (x) t
. (11)

Now, identifying the coefficient of tn in the both sides of (3), we easily obtain the following
Binet’s formula

Fn (x) =

d+1∑
i=1

Ai (x) [σi (x)]n . (12)

More precisely, the multinomial coefficients allow us to give the explicit form of the d−Fibonacci
polynomials. Indeed,

Theorem 1. For n ≥ 0, we have

Fn (x) =
∑

n1,n2,...,nd+1

1+n1+2n2+···+(d+1)nd+1=n

(
n1+n2+···+nd+1
n1,n2,...,nd+1

)
pn1
1 (x)pn2

2 (x) · · · pnd+1

d+1 (x). (13)



d−Fibonacci and d−Lucas polynomials 429

Proof. By developing the right hand side of (11), we get

∞∑
n=0

Fn+1 (x) tn =
1

1− p1(x)t− p2(x)t2 − · · · − pd+1(x)td+1

=
∞∑

n=0

[
p1(x)t+ p2(x)t2 + · · ·+ pd+1(x)td+1

]n
=
∞∑

n=0

[ ∑
n1+n2+···+nd+1=n

(
n

n1,n2,··· ,nd+1

)
pn1
1 (x)pn2

2 (x) · · · pnd+1

d+1 (x)

]
tn1+2n2+···+(d+1)nd+1

=
∞∑

n=0

 ∑
n1,n2,··· ,nd+1

n1+2n2+···+(d+1)nd+1=n

(
n1+n2+···+nd+1

n1,n2,··· ,nd+1

)
pn1
1 (x)pn2

2 (x) · · · pnd+1

d+1 (x)

 tn.
Whence the desired result.

In [6], Lee and Asci introduced the matrix

Qp,q =

[
p (x) q (x)

1 0

]
that plays the Q−Fibonacci matrix with

Q =

[
1 1
1 0

]
.

They proved some results which generalized the classical representation of the Fibonacci poly-
nomials as well as the Fibonacci sequence in terms of the matrix Q. Indeed, in our case, we
introduce a further generalization of this kind of matrices. To this end, let us define the Qd
matrix as follows

Qd =


p1 (x) p2 (x) · · · pd+1 (x)

1 0 0

0
. . .
. . .

0 0 1 0

 . (14)

It follows immediately that, the determinant of the matrix Qd is the polynomial (−1)d pd+1 (x).

Theorem 2. We have the following representation

Qn =


Fn+1 p2Fn + · · ·+ pd+1Fn−d+1 p3Fn + · · ·+ pd+1Fn−d+2 · · · pd+1Fn

Fn p2Fn−1 + · · ·+ pd+1Fn−d p3Fn−1 + · · ·+ pd+1Fn−d+1 · · · pd+1Fn−1

...
...

...
...

...
Fn−d+1 p2Fn−d + · · ·+ pd+1Fn−2d+1 p3Fn−d + · · ·+ pd+1Fn−2d+2 · · · pd+1Fn−d

 .
(15)

Proof. The formula is easy to prove by induction on n.
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We have the following consequence which is also a generalization of the result presented
in [6].

Corollary 1. For m,n ≥ 0, we have

Fn+m+1 = Fn+1Fm+1 + p1(x)FnFm + p2(x) (FnFm−1 + Fn−1Fm)

+ p3(x) (FnFm−2 + Fn−1Fm−1 + Fn−2Fm) + · · ·

+ pd+1(x) (FnFm−d+1 + Fn−1Fm−d+2 + · · ·+ Fn−d+1Fm) .

(16)

Proof. Writing Qn+m = QnQm and then by identification we get the result since the first entries
of matrices Qn+m is the production of the first row in Qn by the first column of Qm.

We have also the following generalization of the result given in [6], and it is again easily
proved by induction on n.

Theorem 3. For n ≥ d, we have

tn = Fn−d+1t
d + (p2(x)Fn−d + · · ·+ pd+1(x)Fn−2d+1) t

d−1

+ (p3(x)Fn−d + · · ·+ pd+1(x)Fn−2d+2) t
d−2 + · · ·+ pd+1(x)Fn−d.

(17)

Now, we are able to generalize several properties of the Fibonacci polynomials as well as for
the generalized Fibonacci polynomials. First, we begin with the following

Theorem 4. For d ≥ 2 and n ≥ 0, we have the following expression∑
n1,n2,··· ,nd+1

(d+1)n1+dn2+···+nd+1=n

(
n1+n2+···+nd+1
n1,n2,··· ,nd+1

)
pn1
1 (x)pn2

2 (x) · · · pnd+1

d+1 (x)Fn−[n1+n2+···+nd+1] = Fn(d+1).

(18)

Proof. For n = 1, we obtain

Fd+1 = p1(x)Fd + p2(x)Fd−1 + · · ·+ pd+1(x)F0.

Let us denote the right hand side of (18) by RH. Then, for n ≥ 2, we have

RH

=
∑

n1,n2,...,nd+1

(d+1)n1+dn2+···+nd+1=n

(
n1+n2+···+nd+1

n1,n2,··· ,nd+1

)
pn1
1 (x)pn2

2 (x) · · · pnd+1

d+1 (x)
[∑d+1

i=1 Aiσ
n−[n1+n2+···+nd+1]
i

]
=

∑
n1,n2,...,nd+1

(d+1)n1+dn2+···+nd+1=n

(
n1+n2+···+nd+1

n1,n2,··· ,nd+1

)
pn1
1 (x)pn2

2 (x) · · · pnd+1

d+1 (x)
[∑d+1

i=1 Aiσ
dn1+(d−1)n2+···+nd+1

i

]
= A1

∑
n1,n2,...,nd+1

(d+1)n1+dn2+···+nd+1=n

(
n1+n2+···+nd+1

n1,n2,··· ,nd+1

) [
σd
1p1(x)

]n1
[
σd−1
1 p2(x)

]n2 · · · [pd+1(x)]
nd+1 + · · ·

+Ad+1

∑
n1,n2,...,nd+1

(d+1)n1+dn2+···+nd+1=n

(
n1+n2+···+nd+1

n1,n2,··· ,nd+1

) [
σd
dp1(x)

]n1
[
σd−1
d p2(x)

]n2 · · · [pd+1(x)]
nd+1
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that is,

RH = A1

[
σd1p1(x) + σd−11 p2(x) + · · ·+ pd+1(x)

]n
+ · · ·

+Ad+1

[
σdd+1p1(x) + σd−1d+1p2(x) + · · ·+ pd+1(x)

]n
.

Now, from the characteristic equation, we see that σdi p1 + σd−1i p2 + · · · + pd+1 = σd+1
i . Using

this last property, we obtain

RH =
d+1∑
i=1

Ai

[
σd+1
i

]n
= Fn(d+1),

which completes the proof.

We have also the following generalization of [6].

Theorem 5. For n ≥ 0, we have∑
n1,n2,...,nd+1

(d+1)n1+dn2+···+nd+1=n

(
n1+n2+···+nd+1
n1,n2,...,nd+1

)
pn1
1 (x)pn2

2 (x) · · · (−pd+1(x))nd+1 Fn−[n1+n2+···+nd+1]

=
n∑
k=0

(
k
n

)
(−2pd+1(x))k F(d+1)(n−k).

(19)

Proof. Let us denote the right-hand side of (19) by RH. Then, by regarding the proof of the
Theorem 4, we can easily get

RH = A1

[(
σd1p1(x) + σd−11 p2(x) + · · ·+ σ1pd(x)

)
− pd+1(x)

]n
+ · · ·

+Ad+1

[(
σdd+1p1(x) + σd−1d+1p2(x) + · · ·+ σd+1pd(x)

)
− pd+1(x)

]n
.

Using again the characteristic equation, we obtain

RH = A1

[
σd+1
1 − 2pd+1(x)

]n
+ · · ·+Ad+1

[
σd+1
d+1 − 2pd+1(x)

]n
= A1

n∑
k=0

(
k
n

)
(−2pd+1(x))k σ

(d+1)(n−k)
1 + · · ·+Ad+1

n∑
k=0

(
k
n

)
(−2pd+1(x))k σ

(d+1)(n−k)
d+1 .

Whence the desired result.

3 The Infinite d−Fibonacci and d−Lucas Polynomials Matrix

In this section, we define a new matrix called d−Fibonacci polynomials matrix. The infinite
d−Fibonacci polynomials matrix

z(x) =
[
Fp1,p2,...,pd+1,i,j (x)

]
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is defined as follows

z(x) =



1 0 0 · · ·

p1(x) 1 0
...

p1(x)2 + p2(x) p1(x) 1
...

p1(x)3 + 2p1(x)p2(x) + p3(x) p1(x)2 + p2(x) p1(x) 1

t1(x) t2(x) p1(x)2 + p2(x)
. . .

... · · · · · · . . .


=

(
gz(x)(t), fz(x)(t)

)
,

where

t1(x) = p1(x)4 + 2p1(x)2p2(x) + p2(x)2 + p1(x)p3(x) + p4(x),

t2(x) = p1(x)3 + 2p1(x)p2(x) + p3(x).

The matrix z(x) is an element of the set of Riordan matrices. Since, the first column of z(x)

is
(
1, p1(x), p1(x)2 + p2(x), t2(x), t1(x), . . .

)T
, then it obvious that

gz(x)(t) =
∞∑
n=0

Fp1,p2,··· ,pd+1,n (x) tn =
[
1− p1 (x) t− p2 (x) t2 − · · · − pd+1 (x) td+1

]−1
.

In the matrix z(x) each entry has a rule with upper two rows, that is,

Fn+1,j (x) = p1 (x)Fn,j (x) + p2 (x)Fn−1,j (x) + · · ·+ pd+1 (x)Fn−d,j (x)

Then fz(x)(t) = t, that is,

z(x) =
(
gz(x)(t), fz(x)(t)

)
=

(
1

1− p1 (x) t− p2 (x) t2 − · · · − pd+1 (x) td+1
, t

)
.

Hence, z(x) ∈ R.
Similarly, we can define the d−Lucas polynomial matrix. The infinite d−Lucas polynomial

matrix is given by
χ(x) =

[
Lp1,p2,...,pd+1,i,j(x)

]
and it can be written as

χ(x) = (gχ(x)(t), fχ(x)(t))

=

(
2− p1(x)t

1− p1 (x) t− p2 (x) t2 − · · · − pd+1 (x) td+1
, t

)
.

In the rest of this section, we give two factorizations of Pascal matrix involving the d−Fibonacci
polynomial matrix. For these factorizations we need to define two matrices. Firstly, we define
an infinite matrix B(x) = (bi,j(x)) as follows

bi,j(x) =

(
i− 1

j − 1

)
− p1(x)

(
i− 2

j − 1

)
− p2(x)

(
i− 3

j − 1

)
− · · · − pd+1(x)

(
i− d− 2

j − 1

)
. (20)
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So, we have

B(x) =



1 0 0 0 · · ·
1− p1(x) 1 0 0

1− p1(x)− p2(x) 2− p1(x) 1 0

1− p1(x) − p2(x)− p3(x) 3− 2p1(x)− p2(x) 3− p1(x) 1
...

...
... 6− 3p1(x)− p2(x) 4− p1(x)

. . .

l1(x) l2(x)
. . .

. . .

l3(x) l4(x)
. . .

... · · ·


,

(21)

where

l1(x) = 1− p1(x)− p2(x)− · · · − pd(x),

l2(x) = d− (d− 1)p1(x)− (d− 2)p2(x)− · · · − 2pd−2(x)− pd−1(x),

l3(x) = 1− p1(x)− p2(x)− · · · − pd+1(x)

l4(x) = (d+ 1)− dp1(x)− (d− 1)p2(x)− · · · − 2pd−1(x)− pd(x).

Now, we give the first factorization of the infinite Pascal matrix via the infinite d−Fibonacci
polynomials matrix and the infinite matrix B(x) by the following theorem.

Theorem 6. Let B(x) be the infinite matrix as in (21) and z(x) be the infinite d−Fibonacci
polynomial matrix, then

P (x) = z(x) ∗B(x)

where P is the Pascal matrix.

Proof. From the definitions of the infinite Pascal matrix and the infinite d−Fibonacci polyno-
mials matrix, we have the following Riordan representing

P =

(
1

1− t
,

t

1− t

)
, z(x) =

(
1

1− p1 (x) t− p2 (x) t2 − · · · − pd+1(x)td+1
, t

)
.

Now, we can find the Riordan representation of the infinite matrix

B(x) =
(
gB(x)(t), fB(x)(t)

)
as follows

B(x) =



1 0 0 0 · · ·
1− p1(x) 1 0 0

1− p1(x)− p2(x) 2− p1(x) 1 0

1− p1(x)− p2(x)− p3(x) 3− 2p1(x)− p2(x) 3− p1(x) 1
...

...
... 6− 3p1(x)− p2(x) 4− p1(x)

. . .

l1(x) l2(x)
. . .

. . .

l3(x) l4(x)
. . .

... · · ·


,

(22)
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where

l1(x) = 1− p1(x)− p2(x)− · · · − pd(x),

l2(x) = d− (d− 1)p1(x)− (d− 2)p2(x)− · · · − 2pd−2(x)− pd−1(x),

l3(x) = 1− p1(x)− p2(x)− · · · − pd+1(x),

l4(x) = (d+ 1)− dp1(x)− (d− 1)p2(x)− · · · − 2pd−1(x)− pd(x).

From the first column of the matrix B(x), we obtain

gB(x)(t) =
1− p1 (x) t− p2 (x) t2 − · · · − pd+1 (x) td+1

1− t
.

From the rule of the matrix B(x),

fB(x)(t) =
t

1− t
.

Thus,

B(x) =

(
1− p1 (x) t− p2 (x) t2 − · · · − pd+1 (x) td+1

1− t
,

t

1− t

)
(23)

which completes the proof.

Now, we define the n× n matrix R(x) = (ri,j(x)) as follows

ri,j(x) =

(
i− 1

j − 1

)
− p1(x)

(
i− 1

j

)
− p2(x)

(
i− 1

j + 1

)
− · · · − pd+1(x)

(
i− 1

j + d

)
.

We have the infinite matrix R(x) as follows

R(x) =



1 0 0 0 · · ·
1− p1(x) 1 0 0

1− 2p1(x)− p2(x) 2− p1(x) 1 0

1− 3p1(x) − 3p2(x)− p3(x) 3− 2p1(x)− p2(x) 3− p1(x) 1
...

...
... 6− 3p1(x)− p2(x) 4− p1(x)

s1(x) s2(x)
. . .

. . .

s3(x) s4(x)
. . .

... · · ·


,

where

s1(x) = 1− dp1(x)− d(d− 1)

2!
p2(x)− · · · − pd(x),

s2(x) = d− (d− 1)p1(x)− (d− 2)p2(x)− · · · − 2pd−2(x)− pd−1(x),

s3(x) = 1− (d+ 1)p1(x)− (d+ 1)d

2!
p2(x)− · · · − pd+1(x),

s4(x) = (d+ 1)− dp1(x)− (d− 1)p2(x)− · · · − 2pd−1(x)− pd(x).

Now, we give the second factorization of the infinite Pascal matrix via the infinite d−Fibonacci
polynomials matrix by the following corollary.
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Corollary 2. Let R(x) be the matrix as in (22). Then

P = R(x) ∗z(x).

We can find easily the inverses of the matrices by using the Riordan representations of the
given matrices.

Corollary 3. One has

z−1(x) = (1− p1 (x) t− p2 (x) t2 − · · · − pd+1 (x) td+1, t), (24)

B−1(x) =
(1 + t)d

D
,

where

D = 1 + (d+ 1− p1(x)) t+

(
(d+ 1)d

2!
− dp1(x)− p2(x)

)
t2

+

(
(d+ 1)d(d− 1)

3!
− d(d− 1)

2!
p1(x)− (d− 1)p2(x)− p3(x)

)
+ · · ·+ (1− p1(x)− p2(x)− · · · − pd+1(x)) td+1,

and

χ−1(x) =

(
1− p1 (x) t− p2 (x) t2 − · · · − pd+1 (x) td+1

2− p1(x)t
, t

)
. (25)
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