تعداد نشریات | 31 |
تعداد شمارهها | 748 |
تعداد مقالات | 7,112 |
تعداد مشاهده مقاله | 10,246,377 |
تعداد دریافت فایل اصل مقاله | 6,899,988 |
مطالعه رفتاری خصوصیات مکانیکی و ریزساختار بتن حاوی سرباره فولاد در معرض دمای زیاد | ||
تحقیقات بتن | ||
مقاله 2، دوره 14، شماره 1 - شماره پیاپی 33، فروردین 1400، صفحه 21-35 اصل مقاله (986.38 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/jcr.2021.17796.1457 | ||
نویسندگان | ||
محمد امیری* 1؛ افشین وطن پور اغچه مشهد2؛ مرضیه آریانپور2؛ صدیقه قاسمی3 | ||
1استادیار، دانشکده فنی، دانشگاه هرمزگان. استادیار دانشکده فنی مرودشت، دانشگاه فنی و حرفهای | ||
2دانشجوی کارشناسی ارشد مهندسی عمران، دانشگاه آزاد اسلامی واحد بندرعباس | ||
3دانشجوی دکتری مهندسی عمران، دانشگاه خوارزمی | ||
چکیده | ||
حرارت چه در حالت گذرا چه در حالت پایدار موجب تغییر در خصوصیات فیزیکی و شیمیایی بتن میشود. از سوی دیگر استفاده از سرباره به همراه سیمان پرتلند بر توسعه ریزساختار بتن تأثیرگذار است.. محصولات اصلی فرآیند هیدراتاسیون خمیر سیمان و سرباره که نقش مهمی در افزایش مقاومت بتن دارد، نانوساختارهای هیدرات سیلیکات کلسیم (C-S-H) و هیدرات آلومینوفریت کلسیم (C-A-Fe-H) است. بر این اساس بهمنظور درک عمیقتر از تغییر رفتار نانوساختارهای C-S-H و C-A-Fe-H براثر اعمال درجه حرارتهای زیاد، بتن حاوی درصدهای مختلف سرباره فولاد در این مقاله مورد بررسی قرارگرفته است. در این راستا حدود 150 نمونه مکعبی بتن با جایگزینی صفر، 5%، 10%، 15% و 20% سرباره فولاد به سیمان پرتلند به مدت 28 روز در حمام رطوبت عملآوری شده است. سپس همه آزمونهها به مدت 1 ساعت در دماهای 25 تا 800 درجه سلسیوس قرارگرفته است. درصد تغییرات وزنی، مقاومت فشاری و رفتار ترکخوردگی در تمام آزمونهها موردبررسی قرارگرفته است. برای ارزیابی رفتار ریزساختاری آزمونهها در دماهای مختلف از تصاویر میکروسکوپ الکترونیکی روبشی (SEM) و طیفسنجی پراکندگی انرژی پرتوایکس (EDS) استفاده شد. بر اساس نتایج پژوهش حاضر ماهیت رفتار آزمونههای بتنی وابسته به تغییرات نانوساختارهای C-S-H و C-A-Fe-H تحت دمای زیاد است. مقاومت فشاری نمونههای حاوی 5 تا 15 درصد سرباره فولاد نسبت به نمونه بتن معمولی افزایش داشتند. دلیل این افزایش بر اساس تصاویر SEM تراکم بیشتر نانوساختارهای C-S-H و C-A-Fe-H و هیدروکسید آهن FeO(OH) است. | ||
کلیدواژهها | ||
سرباره فولاد؛ درجه حرارت زیاد؛ مقاومت فشاری؛ C-A-Fe-H؛ SEM | ||
مراجع | ||
[1] Khaliq, W., Mechanical and physical response of recycled aggregates high-strength concrete at elevated temperatures. Fire safety journal, 2018. 96: p. 203-214. [2] Amiri, M. and M. Aryanpour, The effect of high temperatures on concrete performance with a view to the changes in the C-S-H nanostructure. Concrete Research, 2019. 12(4): p. 69-80. [3] Park, S.M., J.G. Jang, N. Lee, and H.-K. Lee, Physicochemical properties of binder gel in alkali-activated fly ash/slag exposed to high temperatures. Cement and Concrete Research, 2016. 89: p. 72-79. [5] Wang, X., W. Ni, J. Li, S. Zhang, M. Hitch, and R. Pascual, Carbonation of steel slag and gypsum for building materials and associated reaction mechanisms. Cement and Concrete Research, 2019. 125: p. 105893. [6] Tian, Q., S. Nakama, and K. Sasaki, Immobilization of cesium in fly ash-silica fume based geopolymers with different Si/Al molar ratios. Science of the total environment, 2019. 687: p. 1127-1137. [7] Gartner, E., J. Young, D. Damidot, and I. Jawed, Hydration of Portland cement. Structure and performance of cements, 2002. 2: p. 57-113. [8] Carlson, E.T., Action of water on calcium aluminoferrites. Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry, 1964. 68(5): p. 453. [9] Carlson, E.T., Some properties of the calcium aluminoferrite hydrates. Vol. 6. 1966: US Government Printing Office. [10] Tüfekçi, M., A. Demirbaş, and H. Genc, Evaluation of steel furnace slags as cement additives. Cement and Concrete Research, 1997. 27(11): p. 1713-1717. [11] Liu, J. and D. Wang, Influence of steel slag-silica fume composite mineral admixture on the properties of concrete. Powder technology, 2017. 320: p. 230-238. [12] Wang, S., G. Zhang, B. Wang, and M. Wu, Mechanical strengths and durability properties of pervious concretes with blended steel slag and natural aggregate. Journal of Cleaner Production, 2020. 271: p. 122590. [13] Subathra Devi, V., M. Madhan Kumar, N. Iswarya, and B.K. Gnanavel, Durability of Steel Slag Concrete under Various Exposure Conditions. Materials Today: Proceedings, 2020. 22: p. 2764-2771. [14] Houaria, M.B.A., M. Abdelkader, C. Marta, and K. Abdelhafid, Comparison between the permeability water and gas permeability of the concretes under the effect of temperature. Energy Procedia, 2017. 139: p. 725-730. [15] Maanser, A., A. Benouis, and N. Ferhoune, Effect of high temperature on strength and mass loss of admixtured concretes. Construction and Building Materials, 2018. 166: p. 916-921. [16] Berenjian, J., N. Tila, M.J. Taheri Amiri, and A. Ashrafian, Investigating the Effect of High Temperatures on Long-term Compressive Strength of Self-Compacting Concrete Containing Powdery Binary Admixtures. Concrete Research, 2018. 11(1): p. 119-128. [17] Amiri, M. and M. Aryanpour, Assessment of the Geopolymer Concrete Performance Compared to Conventional Concrete at High Temperatures from Microstructural Perspective. Modares Civil Engineering journal, 2020. article in press. [18] ASTM, American Society for Testing and Materials. 2004. [19] EN, B., 12390-3, Testing hardened concrete-Part 3: Compressive strength of test specimens. British Standards Institution, 2002. [20] Taylor, P.C., S.H. Kosmatka, and G.F. Voigt, Integrated materials and construction practices for concrete pavement: A state-of-the-practice manual. 2006. [21] Kriskova, L., Y. Pontikes, Ö. Cizer, G. Mertens, W. Veulemans, D. Geysen, P.T. Jones, L. Vandewalle, K. Van Balen, and B. Blanpain, Effect of mechanical activation on the hydraulic properties of stainless steel slags. Cement and Concrete Research, 2012. 42(6): p. 778-788. [22] Tan, H., M. Li, J. Ren, X. Deng, X. Zhang, K. Nie, J. Zhang, and Z. Yu, Effect of aluminum sulfate on the hydration of tricalcium silicate. Construction and Building Materials, 2019. 205: p424-414 Arioz, O., Effects of elevated temperatures on properties of concrete. Fire safety journal, 2007. 42(8): p. 516-522. [23] Ouypornprasert, W., N. Traitruengtatsana, and K. Kamollertvara. Optimum Partial Replacement of Cement by Rice Husk Ash and Fly Ash Based on Complete Consumption of Calcium Hydroxide. 2018. Cham: Springer International Publishing. [24] Vieira, J., J. Correia, and J. De Brito, Post-fire residual mechanical properties of concrete made with recycled concrete coarse aggregates. Cement and Concrete Research, 2011. 41(5): p. 533-541. [25] Behnood, A. and M. Ghandehari, Comparison of compressive and splitting tensile strength of high-strength concrete with and without polypropylene fibers heated to high temperatures. Fire Safety Journal, 2009. 44(8): p. 1015-1022. [26] Castillo, C., Effect of transient high temperature on high-strength concrete. 1987. [27] Ramachandran, V.S. and R.F. Feldman, Concrete science, in Concrete Admixtures Handbook. 1996, Elsevier. p. 1-66. [28] Tshimanga, M.K., Influence des paramètres de formulation et microstructuraux sur le comportement à haute température des bétons. Revue Européenne de Génie Civil, 2006. 10(8): p. 1011-1011. [29] Mydin, M.O., N.M. Zamzani, and A.A. Ghani, Experimental data on compressive and flexural strengths of coir fibre reinforced foamed concrete at elevated temperatures. Data in brief, 2019. 25: p. 104320. [30] Short, N., J. Purkiss, and S. Guise, Assessment of fire damaged concrete using colour image analysis. Construction and building materials, 2001. 15(1): p. 9-15. | ||
آمار تعداد مشاهده مقاله: 1,024 تعداد دریافت فایل اصل مقاله: 762 |