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Abstract. Statistical modeling is constantly in demand for simple and flexible probability dis-
tributions. We are helping to meet this demand by proposing a new candidate extending the
standard Ailamujia distribution, called the power Ailamujia distribution. The idea is to extend
the adaptability of the Ailamujia distribution through the use of the power transform, introduc-
ing a new shape parameter in its definition. In particular, the new parameter is able to produce
original non-monotonic shapes for the main functions that are desirable for data fitting purposes.
Its interest is also shown through results about stochastic orders, quantile function, moments
(raw, incomplete and probability weighted), stress-strength parameter and Tsallis entropy. New
classes of distributions based on the power Ailamujia distribution are also presented. Then,
we investigate the corresponding statistical model to analyze two kinds of data: complete data
and data in presence of censorship. In particular, a goodness-of-fit statistical test allowing the
processing of right-censored data is developed. The potential of the new model is demonstrated
by its application to four data sets, two being related to the Covid-19 pandemic.

Keywords: Ailamujia distribution, power distribution, moments, stress-strength parameter, entropy, data

analysis, Covid-19 pandemic.
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1 Introduction

In order to understand the proposed methodology, a retrospective on the so-called Ailamujia
distribution is needed. First, the Ailamujia distribution is an univariate lifetime distribution
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depending on a single parameter, say θ > 0. It is defined by the following cumulative distribution
function (cdf):

Fo(x, θ) = 1− (1 + θx)e−θx, x ≥ 0, (1)

and Fo(x, θ) = 0 otherwise. Initially, it considers a parametrization of the form θ = 2α, where
α > 0, just to have an elegant mathematical mean of the form 1/α (without other additional
constant). The corresponding probability density function (pdf) is quite simple; it is expressed
as

fo(x, θ) = θ2xe−θx, x ≥ 0, (2)

and fo(x, θ) = 0 otherwise. The Ailamujia distribution was emphasized by [25]. Technically,
as defined by (1), it corresponds to the Erlang distribution with shape parameter 2 and rate
parameter θ. With a parametrization of the form θ = 1/γ with γ > 0, it also appears under the
name of length-biased exponential (LBE) distribution in [11]. It has the features to be simple,
with pdf presenting right-skewed and bell shapes, and increasing hazard rate function (hrf).
Thus, it can be viewed as a suitable alternative to other well established one-parameter lifetime
distributions, such as the exponential and Lindley distributions (see [23]). The basics on the
Ailamujia distribution can be found in [25], including the estimation of the parameter via the
maximum likelihood method.

Over the last years, the Ailamujia distribution has also received a particular treatment. For
the statistical developments, we may refer the reader to [28] for the parameter estimation via
confidence intervals and statistical tests, Reference [33] showing how the Ailamujia distribution
can be applied for maintenance-decision-oriented modeling, Reference [24] for the parameter
estimation with Bayesian techniques, and Reference [22] developing the minimax estimation of
the parameter under different loss functions.

In order to overcome some limitations of the Ailamujia distribution for modeling purposes,
such as the lack of non-monotonic shapes for the hrf, modern extensions of it have been pro-
posed. Among them, let us evoke the weighted version introduced in [17], the size biased version
proposed in [30], and the new generalization developed in [18]. We may also refer to [1], [14]
and [16] developing extensions of the LBE distribution connected to the Ailamujia distribution.
The one in [1] is based on the exponential transmuted transformation, the one in [16] uses the
Marshall-Olkin transformation and the one in [14] is based on the odd Weibull transformation
of the LBE distribution. All these extensions are applied in concrete scenarios, showing how
derivations of the Ailamujia and LBE distributions can be efficient for various data analyses.

In this paper, we propose an extension of the Ailamujia distribution through the use of
the power transform. It is based on a quite natural idea: adding a shape parameter β > 0
to the former Ailamujia distribution in order to increase its overall flexibility. More precisely,
we define the power Ailamujia (PA) distribution with parameters β and θ by the distribution
of the random variable Y = X1/β, where X denotes a random variable having the Ailamujia
distribution with parameter θ. That is, it constitutes a new two-parameter lifetime distribution
specified by the following cdf:

F (x,$) = 1− (1 + θxβ)e−θx
β
, x ≥ 0, (3)



Theory and application of the power Ailamujia distribution 393

and F (x,$) = 0 otherwise, where $ = (β, θ)T is the parameter vector. To draw parallels, the PA
distribution is to the Ailamujia distribution what the Weibull distribution is to the exponential
distribution or what the power Lindley distribution is to the Lindley distribution (see [15]). To
make some links with the existing literature, when β = 1, the PA distribution is reduced to
the former Ailamujia distribution. Moreover, the PA distribution is also a special case of the
weighted Weibull distribution as introduced by [13], defined with the shape parameter c = 1.
However, to our knowledge, this special case has not received particular attention. Among the
interesting facts of the PA distribution, the following ones are discussed:

(i) The corresponding pdf and hrf are very pliant, presenting monotonic and non-monotonic
shapes; the pdf presents decreasing or bell-like shapes, and the hrf has decreasing, concave
increasing, convex increasing and upside-down bathtub shapes, contrary to the pdf and
hrf of the Ailamujia distribution.

(ii) It enjoys interesting stochastic ordering results.

(iii) The quantile function has a closed-form expression.

(iv) The moments are easily defined via the Euler gamma function and can be used to define
various characteristics of importance.

(v) The expression of the stress-strength parameter is tractable, which makes it statistically
attractive.

(vi) The Tsallis entropy is quite manageable.

For further probabilistic or statistical aims, some possible classes of distributions derived to the
PA distribution are also examined. The inferential complexity is favorable; the PA model is
easily implementable and can be used for diverse statistical purposes. We discuss these aspects
for the treatment of complete data and data in presence of censorship. The parameters of the
model are estimated following the maximum likelihood approach. The behavior of this approach
is attested by simulated experiments. In addition, based on the methodology of [5], a goodness-
of-fit statistical test allowing the processing of right-censored data is developed. The fits of four
practical data sets are performed, including two being related to the Covid-19 pandemic. The
obtained results are quite favorable to the PA model.

We organize the paper as follows. Section 2 contains all the essential results on the proposed
distribution. Its applicability is discussed in Section 3. Goodness-of-fit tests for complete and
right-censored data are developed in Section 4. Finally, the paper concludes in Section 5.

2 Results on the PA distribution

Diverse results on the PA distribution are presented in this section. When possible, the Ailamujia
and PA distributions are compared on the considered aspects.
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2.1 Analytical study of the pdf

Upon a simple differentiation of F (x,$) in (3), the pdf of the PA distribution with vector of
parameters $, or with parameters β > 0 and θ > 0, is given as

f(x,$) = θ2βx2β−1e−θx
β
, x ≥ 0, (4)

and f(x,$) = 0 otherwise. Diverse analytical results of f(x,$) are now discussed, starting
with the asymptotic properties.

Based on (4), when x → 0, we have f(x,$) ∼ θ2βx2β−1. Thus, for β < 1/2, we get
limx→0 f(x,$) = +∞, for β = 1/2, we have limx→0 f(x,$) = θ2/2, and for β > 1/2, we obtain
limx→0 f(x,$) = 0. In all cases, we have limx→+∞ f(x,$) = 0.

A modes analysis of the PA distribution is performed in the next result.

Proposition 1. The PA distribution is unimodal and

• if β ≤ 1/2, the mode is given as x∗ = 0,

• if β > 1/2, the mode is defined by

x∗∗ =

(
2β − 1

θβ

)1/β

.

Proof. The modes analysis of a distribution consists in studying the existence and definition of
the maximum(s) of the corresponding pdf. In the context of the PA distribution, for x ≥ 0,
after developments and simplifications, we get

f ′(x,$) = −θ2βx2β−2e−θxβ
[
β(θxβ − 2) + 1

]
.

Therefore, f ′(x,$) = 0 implies that x = x∗ or x = x∗∗, depending on the values of β. Therefore,
since f(x,$) ≥ 0, in view of the limit properties of f(x,$), it is clear that x∗ is a maximum
for f(x,$) if β ≤ 1/2, and x∗∗ is a maximum for f(x,$) if β > 1/2. This ends the proof of
Proposition 1.

Proposition 1 illustrates the importance of the parameter β in the definition of the modes.
If β > 1/2, this is crucial in understanding the peak observed in the pdf curve.

2.2 Analytical study of the hrf

Based on (3) and (4), the corresponding hrf is given as

h(x,$) = θ2β
x2β−1

1 + θxβ
, x ≥ 0, (5)

and h(x,$) = 0 otherwise.
Some asymptotic results of h(x,$) are now discussed. Based on (5), when x → 0, we have

h(x,$) ∼ θ2βx2β−1. Hence, for β < 1/2, we obtain limx→0 h(x,$) = +∞, for β = 1/2, we have
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limx→0 h(x,$) = θ2/2, and for β > 1/2, we get limx→0 h(x,$) = 0. Also, when x → +∞, we
have h(x,$) ∼ θβxβ−1. Hence, for β < 1, we get limx→+∞ h(x,$) = 0, for β = 1, we obtain
limx→+∞ h(x,$) = θ, and for β > 1, we have limx→+∞ h(x,$) = +∞.

The shapes behavior of h(x,$) is studied in the following proposition.

Proposition 2. The hrf h(x,$) satisfies the following shapes properties, depending on the
values of β:

• for 1/2 < β < 1, h(x,$) has a upside-down bathtub shape,

• for β ≤ 1/2, h(x,$) is decreasing,

• for β ≥ 1, h(x,$) is increasing.

Proof. The derivative of h(x,$) is the key; for x ≥ 0, we have

h′(x,$) = θ2βx2β−2
2β + (β − 1)θxβ − 1

(1 + θxβ)2
.

Therefore, h′(x,$) = 0 implies that x = 0 or x = {(2β − 1)/[θ(1 − β)]}1/β, depending on the
values of β. Now, remark that xo = {(2β − 1)/[θ(1 − β)]}1/β is into [0,+∞) if 1/2 < β < 1.
Therefore, since h(x,$) ≥ 0, in view of the limit properties of h(x,$), the following results
hold:

• for 1/2 < β < 1, h(x,$) has a upside-down bathtub shape, attaining its maximum at xo,

• for β ≤ 1/2, we have 2β + (β − 1)θxβ − 1 ≤ −(θ/2)xβ ≤ 0, implying that h′(x,$) ≤ 0,
and h(x,$) is decreasing with a maximum at x = 0,

• for β ≥ 1, we have 2β + (β − 1)θxβ − 1 ≥ 1 > 0, implying that h′(x,$) ≥ 0, and h(x,$)
is increasing with a minimum at x = 0.

This completes the proof of Proposition 2.

Proposition 2 points out the importance of the parameter β in the versatility of the shapes
of the hrf.

Propositions 1 and 2 give mathematical elements on the flexibility of the PA distribution.

2.3 Graphical comparison

Now, we complete the two above parts by comparing graphically the panel of shapes of the pdfs
and hrfs of the standard Ailamujia and PA distributions, respectively. First, Figure 1 presents
the possible shapes of the pdf and hrf of the Ailamujia distribution for various values of θ.

From Figure 1, we see that the pdf of the standard Ailamujia distribution has right-skewed
bell shapes, with more or less weight on the tails, and the corresponding hrf is only concave and
increasing.

Figure 2 presents diverse shapes of the pdf and hrf of the PA distribution for various values
of θ and β, illustrating some special cases of Propositions 1 and 2.
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Figure 1: Plots of the (a) pdf and (b) hrf of the standard Ailamujia distribution.
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Figure 2: Plots of the (a) pdf and (b) hrf of the PA distribution.

In Figure 2, we see that the pdf of the PA distribution has decreasing or bell-like shapes,
with various features on the skewness and kurtosis. Also, the corresponding hrf has decreasing,
concave increasing, convex increasing and upside-down bathtub shapes.

Based on these figures, it is clear that the functions of the PA distribution are more pliant to
those of the former Ailamujia distribution, mainly thanks to the presence of the shape parameter
β.

2.4 Stochastic ordering results

The PA and Weibull distributions are involved in a simple stochastic order dominance, as stated
in the result below.

Proposition 3. The PA distribution first-order stochastically dominates the Weibull distribu-
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tion, that is, for any x ∈ R, we have

F (x,$) ≤ G(x,$),

where F (x,$) is given in (3) and G(x,$) is the cdf of the Weibull distribution with parameters

β and θ, i.e., G(x,$) = 1− e−θxβ with x ≥ 0, and 0 otherwise.

Proof. From (3), the inequality holds for x < 0 since F (x,$) = G(x,$) = 0. For x ≥ 0, since
1 + θxβ ≥ 1, we immediately get

F (x,$) = 1− (1 + θxβ)e−θx
β ≤ 1− e−θxβ = G(x,$).

The desired first-order stochastic property is established.

Proposition 3 shows that the PA and Weibull distributions do not intersect in the stochastic
sense; the PA model can be applied when the Weibull model falls from some statistical purposes.

Another stochastic ordering aspect of the PA distribution is described in the next result. It
shows that the PA distribution enjoys a simple likelihood ratio-order. See [8] for the essentials
on this probabilistic concept.

Proposition 4. Let Y1 and Y2 be two random variables following the PA distribution with
parameters β > 0, and θ1 > 0 and θ2 > 0, respectively. Then, if θ1 ≥ θ2, Y2 is greater to Y1
according to the likelihood ratio-ordering, i.e., Y1 ≤lr Y2. Mathematically, this is equivalent to
say that the function }(x,$1, $2) = f(x,$1)/f(x,$2), where $1 = (β, θ1)

T and $2 = (β, θ2)
T ,

is decreasing with respect to x.

Proof. The proof is mainly based on the expression in (4) and some simplification. Indeed, for
x ≥ 0, we have

}(x,$1, $2) =

(
θ1
θ2

)2

e−(θ1−θ2)x
β
,

which is clearly decreasing if θ1 ≥ θ2 by composition. The desired result is proved.

The likelihood ratio-order described in Proposition 4 has numerous consequences, implying
inequalities on diverse probabilistic functions and moments. The essentials are available in [8].

2.5 Quantile function

The quantile function of the PA distribution is derived to the inverse function of F (x,$). It is
specified in the next theorem.

Theorem 1. The quantile function of the PA distribution is expressed as

Q(y,$) =

(
−1

θ

[
W (e−1(y − 1)) + 1

])1/β

, y ∈ (0, 1),

where W (x) denotes the well-known Lambert function.
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Proof. By its definition, Q(y,$) satisfies F [Q(y,$), $] = y with y ∈ (0, 1). From this equality,
by using (3) and the property of the Lambert function, i.e., W (x)eW (x) = x, the following chain
of equivalences holds:

1− (1 + θQ(y,$)β)e−θQ(y,$)β = y ⇔ (1 + θQ(y,$)β)e−θQ(y,$)β = 1− y

⇔ −(1 + θQ(y,$)β)e−(1+θQ(y,$)β) = e−1(y − 1)

⇔ −(1 + θQ(y,$)β) = W (e−1(y − 1))

⇔ θQ(y,$)β = −W (e−1(y − 1))− 1

⇔ Q(y,$) =

(
−1

θ

[
W (e−1(y − 1)) + 1

])1/β

.

The desired result is obtained.

The closed-form expression of the quantile function in Theorem 1 is an advantage of the PA
distribution. From it, we can obtain the main quartiles and define some measures of skewness
and kurtosis. It is also fundamental for obtaining simulated values from the PA distribution in
a simple way.

2.6 Moments

Let Y be a random variable following the PA distribution with a vector of parameters $, that
is, with cdf and pdf specified by (3) and (4), respectively. The sth moment of Y is presented
below.

Proposition 5. Let s be an integer. Then, the sth moment of Y is given as

ms = E(Y s) = θ−s/βΓ

(
s

β
+ 2

)
, (6)

where Γ(x) denotes the standard Euler gamma function.

Proof. The transfer formula gives

ms =

∫ +∞

0
xsf(x,$)dx = θ2β

∫ +∞

0
xs+2β−1e−θx

β
dx.

One can remark that there is no problem of convergence for this integral. By making the change
of variable y = θxβ, the desired result follows:

ms = θ−s/β
∫ +∞

0
xs/β+1e−ydy = θ−s/βΓ

(
s

β
+ 2

)
.

The proof of Proposition 5 ends.

From Proposition 5, the mean of Y is given as

µ = m1 = θ−1/βΓ

(
1

β
+ 2

)
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and the variance of Y is obtained as

σ2 = m2 −m2
1 = θ−2/β

[
Γ

(
2

β
+ 2

)
− Γ

(
1

β
+ 2

)2
]
.

As a complementary indicator, the coefficient of variation of Y is defined by

CV =
σ

µ
=

√√√√√√ Γ
(

2
β + 2

)
Γ
(

1
β + 2

)2 − 1.

We can notice that CV only depends on β; θ has no influence on it. The sthnon-central moment
of Y is defined by m∗s = E[(Y −µ)s]. That is, by applying the binomial formula, we can express
it as

m∗s = θ−s/βs!
s∑

k=0

1

k!(s− k)!
(−1)s−kΓ

(
1

β
+ 2

)s−k
Γ

(
k

β
+ 2

)
.

From the first four non-central moments of Y , we can define the general coefficient of Y as
Cs = m∗s/σ

s. The so-called coefficients of skewness and kurtosis correspond to C3 and C4,
respectively.

Also, the incomplete moments of Y can be determined in a similar way to the moments;
by following the proofs of Proposition 5, we establish that the sth incomplete moments of Y at
t ≥ 0 is given by

ms(t) = E(Y sI(Y ≤ t)) = θ−s/βγ

(
s

β
+ 2, θtβ

)
,

where γ(a, x) denotes the lower incomplete gamma function. Basically, the moments of Y
follow by applying t → +∞. Also, from this formula, one can define various probabilistic
measures, such as the mean residual life, Bonferroni, Zenga and Lorenz curves, and so on. See,
for instance, [10].

We complete this part by exhibiting the probability weighted moments of Y , which reveal
to be quite manageable. First, for any integers s and u, let us define the (s, u)th probability
weighted moment of Y as ms,u = E(Y s(1 − F (Y,$))u). Owing to the binomial formula and
Proposition 5 with s + kβ instead of s (the formula remaining true for any real number, not
only integer), we get

ms,u = θ−s/β
1

(u+ 1)s/β+2

u∑
k=0

(
u

k

)
1

(u+ 1)k
Γ

(
s

β
+ k + 2

)
.

The moments of Y are deduced by taking u = 0. More generally, this result is of interest for
further moments analysis of the order statistics, among others. See, for instance, [4].
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2.7 Stress-strength parameter

The stress-strength parameter measures the probability that a random strength exceeds the
random stress in a certain system. Thus, we can model the strength and stress of the system by
two independent random variables, say Y1 and Y2, and the stress-strength parameter is defined
by R = P (Y1 ≥ Y2). We may refer to [31] for further detail. Here, we express it in a special case
of the PA distribution.

Theorem 2. Assume that Y1 and Y2 follow the PA distribution with parameters β > 0, and
θ1 > 0 and θ2 > 0, respectively. Then, we have

R = 1− θ21(θ1 + 3θ2)

(θ1 + θ2)3
.

Proof. From the independence of Y1 and Y2, (3) and (4), by denoting $1 = (β, θ1)
T and $2 =

(β, θ2)
T , we can write

R = P (Y1 ≥ Y2) =

∫ +∞

0
F (x,$2)f(x,$1)dx

=

∫ +∞

0

[
1− (1 + θ2x

β)e−θ2x
β
]
θ21βx

2β−1e−θ1x
β
dx

= 1− θ21β
∫ +∞

0
x2β−1e−(θ1+θ2)x

β
dx− θ2θ21β

∫ +∞

0
x3β−1e−(θ1+θ2)x

β
dx.

By applying the change of variable y = (θ1 + θ2)x
β, and using Γ(2) = 1 and Γ(3) = 2, we get

R = 1− θ21
(θ1 + θ2)2

Γ(2)− θ2θ
2
1

(θ1 + θ2)3
Γ(3) = 1− θ21

(θ1 + θ2)2
− 2θ2θ

2
1

(θ1 + θ2)3
= 1− θ21(θ1 + 3θ2)

(θ1 + θ2)3
.

The stated formula is obtained.

This expression is quite simple, and can be the object of a future statistical study (proceeding
as in [21], for instance). As a last remark, when θ1 = θ2, we obtain the expected R = 1/2.

2.8 Tsallis entropy

Let Y be a random variable following the PA distribution with vector of parameters $, that is
with cdf and pdf specified by (3) and (4), respectively. The randomness of Y can be evaluated
through the use of various entropy measures (see [3]). Here, we focus our attention on the Tsallis
entropy of Y defined by

Tγ =
1

γ − 1

(
1−

∫ +∞

0
f(x,$)γdx

)
,

where γ 6= 1 and γ > 0. A closed-form expression of Tγ is now investigated.

Theorem 3. The Tsallis entropy of the PA distribution exists for γ(2β − 1) > −1, and it is
given by

Tγ =
1

γ − 1

[
1− θ(γ−1)/ββγ−1γ−2γ+(γ−1)/βΓ

(
γ

β
(2β − 1) +

1

β

)]
.
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Proof. First, let us study the convergence of Tγ . When x→ 0, we have f(x,$)γ ∼ θ2γβγx(2β−1)γ
and, for all the possible values of the parameters, we have limx→+∞ x

2f(x,$)γ = 0. The
Riemann integral criteria implies that Tγ converges if and only if (2β − 1)γ > −1. In this case,
we have ∫ +∞

0
f(x,$)γdx = θ2γβγ

∫ +∞

0
xγ(2β−1)e−γθx

β
dx.

By making the change of variable y = γθxβ, after some developments, we get∫ +∞

0
f(x,$)γdx = θ(γ−1)/ββγ−1γ−2γ+(γ−1)/βΓ

(
γ

β
(2β − 1) +

1

β

)
.

We finally establish that, for γ 6= 1, γ > 0 and γ(2β − 1) > −1,

Tγ =
1

γ − 1

[
1− θ(γ−1)/ββγ−1γ−2γ+(γ−1)/βΓ

(
γ

β
(2β − 1) +

1

β

)]
.

The desired result is get.

The effects of all the parameters impact on this entropy measure; β has a crucial role in this
regard, mainly for the gamma term.

2.9 On some new classes of distributions

We now present some general classes of distributions based on common approaches and the
PA distribution. First, consider a generic continuous distribution having a cdf denoting by
G(x), possibly of several parameters that we do not formalize. Then, the following classes of
distributions are natural to consider for further statistical purposes.

• The odd-power Ailamujia (OPA) class of distributions defined by the following cdf:

FOPA(x,$) = 1−

[
1 + θ

(
G(x)

1−G(x)

)β]
e−θ[G(x)/(1−G(x))]β , x ∈ R,

where $ denotes a vector of parameters containing β, θ and the eventual parameter(s) of
G(x). The expression of FOPA(x,$) comes from the T-X transformation by [2], the PA
distribution and the use of the odd function.

• The log-power Ailamujia (LPA) class of distributions specified by the following cdf:

FOPA(x,$) = 1−
{

1 + θ [− log(1−G(x))]β
}
e−θ[− log(1−G(x))]β , x ∈ R.

This definition is derived to the T-X transformation by [2], the PA distribution and the
use of the logarithmic function.
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• The truncated-power Ailamujia (TPA) class of distributions defined by the following cdf:

FTPA(x,$) =
1

1− (1 + θ)e−θ

[
1− (1 + θG(x)β)e−θG(x)β

]
, x ∈ R.

This expression comes from the truncation transformation over (0, 1) as described in [26]
and the PA distribution.

These three classes of distributions can be generalized by replacing G(x) by its exponentiated
version, i.e., G(x)α with α > 0. More details on the techniques allowing to construct useful
classes of distributions can be found in [10].

3 Maximum likelihood method

The PA model is characterized by the cdf and pdf specified by (3) and (4), respectively. The
parameters β and θ are supposed to be unknown. As the first step in any data analysis through
the PA model, we need to estimate these parameters via the data. These data are supposed to
be observations of random variable Y following the PA distribution. Here, the observations can
be of two complementary natures: complete or right-censored. Among the available methods
in the literature, we focus on the more popular one: the maximum likelihood method. The
complete theory of this method with various applications can be found in [9].

3.1 Complete observations case

The basics of the maximum likelihood method in the context of the PA model for the complete
observations case are described below. By denoting x1, . . . , xn the observations of Y , the max-
imum likelihood estimates (MLEs) of β and θ, denoted by β̂ and θ̂, respectively, are obtained
from the following maximization definition:

$̂ = argmax$∈[0,+∞)2 `($),

where $̂ = (β̂, θ̂)T , and `($) denotes the log-likelihood function defined by

`($) =
n∑
i=1

log[f(xi, $)] = 2n log θ + n log β + (2β − 1)
n∑
i=1

log xi − θ
n∑
i=1

xβi .

The MLEs are thus the solutions of the following score equations:

∂`

∂β
($) =

n

β
+ 2

n∑
i=1

log xi − θ
n∑
i=1

xβi log xi = 0,
∂`

∂θ
($) =

2n

θ
−

n∑
i=1

xβi = 0.

That is, β̂ and θ̂ satisfied

n

β̂
+ 2

n∑
i=1

log xi −

[
1

2n

n∑
i=1

xβ̂i

]−1 n∑
i=1

xβ̂i log xi = 0, θ̂ =

[
1

2n

n∑
i=1

xβ̂i

]−1
,



Theory and application of the power Ailamujia distribution 403

but the exact formulas for β̂ and θ̂ involving x1, . . . , xn are not available. In practice, this is
however not an obstacle: we can easily determine the numerical values of β̂ and θ̂ through the
use of a current statistical software. Here, the R software is used1 .

In order to check the efficiency of the obtained MLEs, a short simulation work is now
proposed. We generated N = 10000 complete samples of observations from the PA model
with parameters β = 1.5 and θ = 0.4 with a fixed size, repeating this procedure for different
sizes. Then, we calculate the MLEs of the unknown parameters and their mean squared errors
(MSEs). These numerical quantities are given in Table 1.

Table 1: Mean simulated values of the MLEs and MSEs for the completed case.

N = 10000 n = 15 n = 25 n = 50 n = 130 n = 350 n = 500

β̂ 1.5212 1.5192 1.5169 1.5103 1.5074 1.5012

MSE 0.0076 0.0067 0.0048 0.0032 0.0019 0.0010

θ̂ 0.3788 0.3807 0.3843 0.3890 0.3901 0.3994

MSE 0.0089 0.0074 0.0052 0.0038 0.0028 0.0015

In Table 1, we see that the MLEs agree closely with the true parameter values. This confirms
the consistency of the obtained MLEs.

We now consider several criteria allowing us to compare numerically the fits of several sta-
tistical models. Among these criteria, there are the Anderson-Darling (AD), Cramér-von Mises
(CVM), Kolmogorov-Smirnov (KS) and its p-value, as well as Akaike information criterion
(AIC), corrected Akaike information criterion (CAIC), Bayesian information criterion (BIC)
and Hannan-Quinn information criterion (HQIC). The lower the values of AD, CVM, KS, AIC,
CAIC, BIC and HQIC, and the greater values of KS p-value, the better the fit.

We now apply our methodology to the vinyl chloride data set given below: {5.1, 1.2, 1.3,
0.6, 0.5, 2.4, 0.5, 1.1, 8.0, 0.8, 0.4, 0.6, 0.9, 0.4, 2.0, 0.5, 5.3, 3.2, 2.7, 2.9, 2.5, 2.3, 1.0, 0.2, 0.1,
0.1, 1.8, 0.9, 2.0, 4.0, 6.8, 1.2, 0.4, 0.2}. All the details on this data set are available in [7], [6]
and [20]. Also, as competitors of the PA model, we consider the classic Weibull (W) model,
power Lindley (PL) model, classic gamma (Ga) model and Ailamujia (A) model.

Table 2 presents the values of CVM, AD, KS, p-value and MLEs for the mentioned models.

Since it has the lowest CVM, AD, KS and the greatest p-value, the PA model is the more
adequate to fit the data. We complete this analysis with Table 3, displaying the values of −̂̀,
AIC, CAIC, BIC and HQIC.

From Table 3, we see that the PA model is the best, having the lowest AIC, CAIC, BIC
and HQIC. Finally, Figure 3 illustrates the obtained fits of the considered models, showing how
good the fits of the PA model is.

1R Development Core Team, R: A language and environment for statistical computing, R Foundation for
Statistical Computing, Vienna, Austria (2005), ISBN 3-900051-07-0, URL: http://www.R-project.org.

http://www.R-project.org
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Table 2: Goodness-of-fit measures of the models for the vinyl chloride data.

Model CVM AD KS p-value MLEs

PA 0.0334 0.2191 0.0822 0.9756 1.4416 0.6819
(θ, β) (0.2030) (0.0868)

A 0.0465 0.3017 0.2182 0.0785 1.0641 -
(θ) (0.1290) -

W 0.0462 0.3000 0.0918 0.9366 0.5262 1.0102
(α, β) (0.1176) (0.1326)

PL 0.0531 0.3431 0.0943 0.9226 0.8832 0.9139
(λ, η) (0.1094) (0.1452)

Ga 0.0459 0.2975 0.0973 0.9041 1.0626 0.5654
(a, b) (0.2281) (0.1535)

Table 3: The values of −̂̀, AIC, CAIC, BIC and HQIC for the vinyl chloride data.

Model −̂̀ AIC CAIC BIC HQIC

PA 55.0126 114.0253 114.4124 117.0781 115.0664

A 60.6572 123.3146 123.4396 124.8409 123.8351

W 55.4496 114.8992 115.2863 117.9520 115.9403

PL 55.7599 115.5198 115.9069 118.5726 116.5609

Ga 55.4131 114.8263 115.2134 117.8790 115.8674
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Figure 3: Plots of the (a) estimated pdfs and (b) estimated cdfs of the considered models.
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3.2 Right censored observations case

Let c1, . . . , cn be n right censored observations with fixed censoring time τ . Hence, each ci can
be written as ci = (xi, δi), where δi = 0 if xi is a censoring time and δi = 1 if xi is a failure time,
where x1, . . . , xn denotes observations from a random variable following the PA distribution.
The censorship is assumed to be non informative. Then, the MLEs of β and θ, denoted by β̂
and θ̂, respectively, are obtained such that

$̂ = argmax$∈[0,+∞)2 `($),

where $̂ = (β̂, θ̂)T , and `($) denotes the log-likelihood function defined by

`($) =

n∑
i=1

δi log[h(ci, $)] +

n∑
i=1

log[S(ci, $)],

where S(x,$) = 1− F (x,$), that is

`($) =
n∑
i=1

δi

[
log β + 2 log θ + (2β − 1) log ci − log(1 + θcβi )

]
+

n∑
i=1

log(1 + θcβi )− θ
n∑
i=1

cβi .

The MLEs are thus the solutions of the following score equations:

∂`

∂β
($) =

n∑
i=1

δi

[
1

β
+ 2 log ci −

θcβi log ci

1 + θcβi

]
+

n∑
i=1

θcβi log ci

1 + θcβi
− θ

n∑
i=1

cβi log ci = 0,

and
∂`

∂θ
($) =

n∑
i=1

δi

[
2

θ
−

cβi

1 + θcβi

]
+

n∑
i=1

cβi

1 + θcβi
−

n∑
i=1

cβi = 0.

The exact formulas for β̂ and θ̂ involving x1, . . . , xn are not available, but numerical methods
can be used for evaluation, such as the Newton-Raphson or Monte Carlo methods. For these
methods, we refer the reader to the book of [12].

We complete this part by a short simulation work. As for the complete case, we generate
N = 10000 samples of right-censored observations with fixed size from the PA model with
parameters β = 1.5 and θ = 0.4, repeating the operation for different sample sizes. Then, we
calculate the MLEs of the unknown parameters and their mean squared errors (MSEs). The
obtained numerical quantities are given in Table 4.

In Table 4, we see that the MLEs agree closely with the true parameter values. This confirms
the consistency of the obtained MLEs. Application on real data will be provided later, with the
use of an adequate statistical test.

4 Goodness-of-fit tests

To check the validity of any statistical model, different criteria may be used. When data are
complete, the most common tests are those based on empirical functions such as Kolmogorov-
Smirnov, Anderson-Darling and others statistics, or the likelihood ratio test, AIC, BIC or chi-
square test. When the parameters are unknown, they are replaced by their estimates.
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Table 4: Mean simulated values of the MLEs and MSEs for the censored data case.

N = 10000 n = 15 n = 25 n = 50 n = 130 n = 350 n = 500

β̂ 1.4824 1.4863 1.4884 1.4912 1.4936 1.4983

MSE 0.0088 0.0072 0.0057 0.0048 0.0032 0.0019

θ̂ 0.4298 0.4274 0.4203 0.4134 0.4089 0.4022

MSE 0.0067 0.0056 0.0042 0.0037 0.0024 0.0012

Among these goodness-of-fit tests, we are interesting in the well known Nikulin Rao Robson
(NRR) statistic Υ2 which is based on maximum likelihood estimates on initial non grouped data.
This statistic proposed by [27] and [29] recovers information lost while grouping data and follows
a chi-square distribution. However, the presence of censorship makes all classical goodness-of-fit
tests inapplicable. Therefore, researchers gave different modifications of existing statistics. Ten
years ago, Reference [5] developed a modified NRR statistic for continuous distributions with
unknown parameters and right censoring. As this version of the NRR statistic recovers also
all information lost while regrouping data, it can be used to fit data from survival analysis,
reliability and other fields where data are generally censored.

In this section, we construct modified chi-square goodness-of-fit test statistics for fitting
complete and right censored data to the proposed model.

4.1 NRR statistic: generality

Here, a general setting is adopted. Let x1, . . . , xn be observations from a random variable X.
We consider the null hypothesis H0 according to which a the distribution of a random variable
X has a certain cdf denoted by F (x,$), where $ = ($1, . . . , $s)

T is the parameter vector and
s is the number of the model parameters. That is H0 : P (X ≤ x) = F (x,$). Consider r equi-

probable grouping intervals I1, . . . , Ir, where Ij = ]aj−1, aj ], Ii ∩ Ij = ∅, i 6= j, and
r⋃
j=1

Ij = R,

such as, for j = 1, . . . , r,

pj ($) = F (aj , $)− F (aj−1, $) =
1

r
.

Now, let υ = (υ1, . . . , υr)
T be the number of observed xi grouping into these intervals Ij and

R($) =

(
υ1 − np1 ($)√

np1($)
,
υ2 − np2($)√

np2($)
, . . . ,

υr − npr($)√
npr ($)

)T
.

The NRR statistic Υ2 proposed by [27] and [29] is defined by

Υ2 = R2 ($̂) +
1

n
l ($̂)T (I ($̂)− J ($̂))−1 l ($̂) ,

where I ($̂) and J ($̂) are the estimated information matrices on non-grouped and grouped data,
respectively, and $̂ is the vector of the MLEs. The elements of the vector l ($̂) = (ls($̂))T1×s
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are specified by

ls($̂) =
r∑
j=1

νj
pj

∂pj($̂)

∂$̂s
.

Then, the distribution of the random version of Υ2 is a chi-square distribution with r−1 degrees
of freedom.

To construct the test statistic Υ2 corresponding to the PA model with a parameter vector
$ = (β, θ)T , we calculate the MLEs, say $̂ = (β̂, θ̂)T , and the limit intervals aj , the derivatives
∂pj($)/∂$s and the estimated information matrices I ($̂) and J ($̂) . They are not given in
this paper but we make them available to users. Finally, we obtain the statistic Υ2 which allows
to verify if data belong to the PA distribution.

4.2 NRR statistic with right censorship

Now, suppose that we deal with right censored observations c1, . . . , cn with fixed censoring time
τ , recalling that each ci can be written as ci = (xi, δi), where δi = 0 if xi is a censoring time
and δi = 1 if xi is a failure time, and that the censorship is assumed to be non informative.
Then, [5] introduced a modification of the NRR statistic as described above. First, it is based
on the vector

Zj =
1√
n

(Uj − ej), j = 1, . . . , r,

with r � s, where Uj and ej are the observed and expected numbers of failures to fall into the

grouping intervals Ij , the statistic Υ′2 is defined by Υ′2 = ZT Σ̂−Z, where Z = (Z1, . . . , Zr)
T ,

Σ is the covariance matrix of Z and Σ̂− is a generalized inverse of Σ. For calculation purposes,
the authors write this statistic as follow

Υ′2 =
r∑
j=1

(Uj − ej)2

Uj
+Q

with the quadratic form Q obtained as

Q = Ŵ T Ĝ−Ŵ , Âj =
1

n
Uj , Uj =

∑
i:ci∈Ij

δi,

Ĝ = [ĝll′ ]s×s , ĝll′ = îll′ −
r∑
j=1

ĈljĈl′jÂ
−1
j ,

Ĉlj =
1

n

∑
i:ci∈Ij

δi
∂ log[h(ci, $̂)]

∂$
,

îll′ =
1

n

n∑
i=1

δi
∂ log[h(ci, $̂)]

∂$l

∂ log[h(ci, $̂)]

∂$l′
,

Ŵl =

r∑
j=1

ĈljÂ
−1
j Zj , Ŵ = (Ŵ1, . . . , Ŵs)

T ,
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where l, l′ = 1, . . . , s, and $̂ represents the MLE of $ on initial data. Under the null hypothesis
H0, under a non-degenerated, the limit distribution behind the statistic Υ′2 is a chi-square with
k = rank(Σ) degrees of freedom. For more details on modified chi-square tests, one may refer
to the book of [32].

For testing the null hypothesis that a right censored sample is described by the PA model, we
develop Υ′2 corresponding to this distribution. At that end, we have to compute the maximum
likelihood estimators $̂ = (β̂, θ̂)T on initial data (see Section 3), the estimated information
matrix îll′ which can be deduced from the score functions and the estimated limit intervals âj .

To apply this test statistic, the expected failure times ej to fall into the grouping intervals
Ij must be the same for any j, so the estimated interval limits âj are equal to

âj = H−1

(
Ej −

∑m−1
l=1 H (cl, $̂)

n−m+ 1
, $̂

)
, âr = max

(
c(n),τ

)
,

where Er =
∑n

i=1H (ci, $̂), Ej = (j/r)Er and m the minimal integer such that Ej ∈ [bm−1, bm]
with

bm = (n−m)H
(
c(m), $̂

)
+

m∑
l=1

H(c(l), $̂),

c(1), . . . , c(n) denoting the ordered values of c1, . . . , cn.

We set ej = Er/r. After that, we calculate the components of the estimated matrix Ĉ which
are obtained as follows

Ĉ1j =
1

n

n∑
i:ci∈Ij

δi

[
1

β̂
+ 2 log ci −

θ̂cβ̂i log ci

1 + θ̂cβ̂i

]
,

Ĉ2j =
1

n

n∑
i:ci∈Ij

δi

[
2

θ̂
−

cβ̂i

1 + θ̂cβ̂i

]

and the estimated matrix Ŵ is derived from the matrix Ĉ . Therefore, the test statistic can be
obtained easily as

Υ
′2 =

r∑
j=1

(Uj − ej)2

Uj
+ Ŵ T

ı̂ll′ − r∑
j=1

ĈljĈl′jÂ
−1
j

−1
l×l′

Ŵ .

To confirm the theory and the practicability of the proposed tests for fitting data sets to the
PA distribution, we use numerical simulations. We generate N = 10000 samples of complete
observations from the PA model with parameters β = 1.5 and θ = 0.4, considering different
sample sizes. In this framework, we calculate the test statistic Υ2. The obtained values with
the theoretical levels of significance (ε = 1%, 5% and 10%) are summarized in Table 5.

Now, we reconduct the above simulation study but with right-censored observations. Thus,
we determine Υ′2. The obtained results are presented in Table 6.
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Table 5: Simulated levels of significance for Υ2 against their theoretical values.

N = 10000 n = 25 n = 50 n = 130 n = 350 n = 500

ε = 1% 0.0063 0.0071 0.0082 0.0094 0.0103

ε = 5% 0.0438 0.0453 0.0462 0.0478 0.0490

ε = 10% 0.0959 0.0968 0.0979 0.0983 0.1013

Table 6: Simulated levels of significance for Υ′2 against their theoretical values 30% of censorship.

N = 10000 n = 25 n = 50 n = 130 n = 350 n = 500

ε = 1% 0.0055 0.0062 0.0076 0.0085 0.0094

ε = 5% 0.0462 0.0474 0.0482 0.0493 0.0509

ε = 10% 0.0942 0.0961 0.0973 0.0986 0.0997

As we can see in Tables 5 and 6, the empirical proportions of rejection of the null hypothesis
H0 are very close to the corresponding theoretical ones. Therefore, the test statistics Υ2 and
Υ′2 proposed in this work can be used to check the adequacy of data to the PA model in a
satisfactory manner.

4.3 Applications

The usefulness of the PA model through the previous methodology is illustrated by three exam-
ples from different areas. The first one concerns censored data from survival analysis, so we use
Υ′2 to fit these data to hypothesized distributions. For the complete data case, Υ2 is constructed
for testing if the two other examples are modeled by the proposed model.

Example 1. We consider sample data from 50 patients with acute myeloid leukemia, reported to
the International Register of Bone Marrow Transplants. These patients had an allogeneic bone
marrow transplant where the HLA (Histocompatibility Leukocyte Antigen) homolog marrow
was used to rebuild their immune systems. The ordered data of this study are contained in the
following set: {0.030, 0.493, 0.855, 1.184, 1.283, 1.480, 1.776, 2.138, 2.500, 2.763, 2.993, 3.224,
3.421, 4.178, 4.441∗, 5.691, 5.855∗, 6.941∗, 6.941, 7.993∗, 8.882, 8.882, 9.145∗, 11.480, 11.513,
12.105∗, 12.796, 12.993∗, 13.849∗, 16.612∗, 17.138∗, 20.066, 20.329∗, 22.368∗, 26.776∗, 28.717∗,
28.717∗, 32.928, 33.783∗, 34.211, 34.770∗, 39.539, 41.118∗, 45.033, 46.053∗, 46.941, 48.289∗,
57.401∗, 58.322, 60.625∗}, where the symbol * represents censorship.

We use the statistic test provided above to verify if the distribution behind these data can
be modeled by the PA distribution. First, the MLEs values are given as

$̂ = (β̂, θ̂)T = (1.5236, 0.8462)T .

If we consider r = 5 intervals Ij for grouping the data, preliminary calculations of the statistic
Υ′2 are given in Table 7.
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Table 7: Numerical values of âj , Uj , Ĉ1j , Ĉ2j and ej .

âj 2.645 7.523 16.789 30.256 60.625

Uj 9 10 11 8 13

Ĉ1j -1.3463 0.9463 -3.4676 -1.6744 0.7647

Ĉ2j 0.9346 1.2634 0.8867 1.0346 1.1346

ej 4.3986 4.3986 4.3986 4.3986 4.3986

Then, we deduce the value of the statistic Υ′2, which is equal to Υ′2 = 7.0353. Since
Υ
′2 = 7.0353 ≤ χ2

5 = 11.0705 (for significance level ε = 5%) the null hypothesis H0 is not
rejected. This remains true even for the other significance levels, thus which allows us to say
that these data are adequately fitted the proposed PA model.

Example 2. The empirical importance of the proposed model is proved by two applications to
COVID-19 data sets, containing complete observations.

• Algeria

In the first application, we take into account the daily new infected cases in Algeria. The
data is available at

https://www.worldometer.info/coronavirus/country/algeria/

and contains daily new cases between May 24 and June 7, 2020. The considered data set
is: {104, 115, 104, 98, 107, 113, 119, 127, 133, 137, 140, 160, 194, 197, 193}.

• Iran

In the second application, we consider the new daily deaths in Iran. Because Iran is one
of the most affected countries due to the COVID-19 epidemic. The data is available at

https://www.worldometer.info/coronavirus/country/iran/

and contains the daily new cases between February 21 and March 10, 2020. The considered
data set is: {2, 2, 2, 4, 4, 3, 7, 8, 9, 11, 12, 11, 15, 16, 16, 21, 49, 43, 54}.
The MLEs of the parameters of the PA model are obtained for these two datasets as follows

$̂1 = (β̂, θ̂)T = (2.1963, 0.8234)T , $̂2 = (β̂, θ̂)T = (1.8236, 0.7451)T ,

respectively.

We also calculate the test statistics Υ2 to fit these data sets to the competing models. The
results are the following:

Υ2
1 = 8.6238, Υ2

2 = 7.1286,

respectively. As, in each case, Υ2 ≺ χ2
5 = 11.0705 (for the significance level ε = 5%) the

null hypothesis H0 is not rejected. The PA model is thus adequate to fit these data.

https://www.worldometer.info/coronavirus/country/algeria/
https://www.worldometer.info/coronavirus/country/iran/
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5 Concluding notes

We develop a new two-parameter distribution, extending the so-called Ailamujia distribution by
the use of the power transform. We demonstrate its significant gain in terms of functional pliancy,
discuss some measures of importance and show that it has enough qualities to be considered as
an efficient statistical model for data analysis. In particular, the complete and right-censored
data cases are considered, with the development of a new statistical test in this regard. The
results on four practical data sets are quite favorable to the PA model, motivating its use for
various purposes, including those beyond the scope of this paper.
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