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Abstract. In this paper, we introduce an efficient conjugate gradient method for solving nons-
mooth optimization problems by using the Moreau-Yosida regularization approach. The search
directions generated by our proposed procedure satisfy the sufficient descent property, and more
importantly, belong to a suitable trust region. Our proposed method is globally convergent un-
der mild assumptions. Our numerical comparative results on a collection of test problems show
the efficiency and superiority of our proposed method. We have also examined the ability and
the effectiveness of our approach for solving some real-world engineering problems from image
processing field. The results confirm better performance of our method.
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1 Introduction

Consider the following optimization problem

min
x∈Φ

f(x). (1)

This model depending on the types of objective function f (smooth or nonsmooth), and the set
Φ (discrete or continuous) involves a variety of optimization problems.

Optimization problems are appeared in many research fields such as engineering, manage-
ment, economics, medicine, pharmacy, astronomy and so on. They are highly regarded and also
there exist many effective ways to solve them. A challenging issue regarding to (1) is solving
large-scale nonsmooth problems, such as those in optimal control, image processing and machine
learning problems.
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Image processing is an active field of research and has many applications in photography,
medicine, astronomy, industry, etc. One of its main proposes is reconstruction of a real image
from a blurred or corrupted version of it.

The most commonly used model for damaged images due to blurring and noise is the following
linear model:

y = Ax+ η, x ∈ X,

which is used to retrieve the original image x from y destroyed by a blurring matrix A and a
noise vector η. Matrix A can be obtained by a certain Point Spread Function (PSF). There is
typically a PSF corresponding to each kind of blurring [16].

This problem can be cast as the following optimization problem

min
x∈X

1

2
‖ Ax− y‖22 + νφ(x),

where ν is a regularization parameter and φ is a regularization term. We need to shed more light
on the critical role of regularization term, which is necessary to obtain a satisfactory solution.
On the other hand, it determines the type of the resulting optimization problem. For example
choosing φ(x) = ‖x‖1 or φ(x) = ‖x‖2 results in a nonsmooth or smooth problem, respectively.

As we know, image deblurring is a large-scale inverse problem which is very ill-conditioned
and hard to solve. Therefore, designing new methods for solving this problem is still an active
field of research.

In this paper, we investigate optimization problems like (1), where f is a nonsmooth convex
function and Φ is Rn (unconstrained case).

We know that there are a lot of methods for solving (1) with continuously differentiable
objective function such as Newton, Quasi-Newton and conjugate gradient methods. All the
introduced methods find the optimal solution by generating descent directions using exact or
inexact line search procedures.

Conjugate gradient methods have been extensively employed by researchers in recent decades
due to their strong local and global convergence properties and also low memory requirements
for solving large-scale problems. Conjugate gradient iterations are generally defined as follows:

xk+1 = xk + αkdk, (2)

where αk > 0 is a step length and the search direction dk is computed by

dk+1 =− gk+1 + βkdk (d0 = −g0), (3)

recursively, where gk =: ∇f(xk). The scalar βk known as the conjugate gradient parameter is
indeed one of the most important parameters of these methods. In fact, various choices of βk
lead to different conjugate gradient algorithms. Some previous works in this field show that a
proper choice of this parameter led us to a better numerical performance. Some famous classical
choices of βk can be found in Hestenes and Stiefel (HS) [17], Fletcher and Reeves (FR) [11],
Polak and Ribiere and Polyak (PRP) [31], Fletcher (CD) [10], Liu and Storey (LS) [26] and Dai
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and Yuan (DY) [8] as shown below:

βHSk =
gTk+1yk

dTk yk
, βFRk =

‖gk+1‖2

‖gk‖2
, βPRPk =

gTk+1yk

‖gk‖2
,

βCDk =
‖gk+1‖2

−dTk gk
, βLSk =

gTk+1yk

−dTk gk
, βDYk =

‖gk+1‖2

dTk yk

where yk := gk+1 − gk and ‖ · ‖ denotes the Euclidean norm.
Andrei [2], introduced 40 different types of these parameters, and thus, 40 different types of

conjugate gradient algorithms. There are many articles that addressed different types of these
methods and compared them numerically, see for example [1,3,7,15,21]. Although these methods
originally have been developed for solving smooth optimization problems, some researchers have
used them recently to solve nonsmooth convex optimization problems.

Some well known methods available for solving nonsmooth convex optimization problems
are subgradient and bundle methods [22]. But, our approach here to cast these problems is
transforming them to equivalent smooth problems via Moreau-Yosida regularization technique.

Consider

min
x∈Rn

F (x), (4)

where F : Rn −→ R is the so-called Moreau-Yosida regularization of f , which is defined by

F (x) = min
z∈Rn
{f(z) +

1

2λ
‖z − x‖2}, (5)

where λ is a positive parameter. The set of minimizers of (1) coincide with the set of min-
imizers of (4). Fortunately, F is a differentiable convex function even when the function
f is nondifferentiable [30]. There are various iterative methods for solving (4), for example
see [4, 12,13,20,24,25,27,33–41,43].

The good features of conjugate gradient methods for smooth problems encouraged us to
modify these methods for nonsmooth problems.

The main features of the method presented in this paper are:

• All search directions satisfy sufficient descent condition, indicating that the function is
decreasing.

• All search directions lie in a trust region, yielding some good convergence results.

• Our proposed method has global convergence under specific assumptions and the numerical
results show a better performance of the method than some existing standard methods.

The organization of the paper is as follow: after a brief review in Section 2, we introduce
the new method in Section 3. Then, we discuss its convergence in Section 4. Finally in Section
5, we present the two types of comparisons. Firstly, we report the numerical efficiency of the
new algorithm for solving some small and large scale nonsmooth optimization problems using
different choices of the main parameters. The details of iterations along with the Dolan-Moré
performance profiles are presented. Secondly, we consider an image debluring problem and
present its numerical comparisons.
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2 A brief review

In the sequel, we describe the main features of the Moreau-Yosida regularization (5).

We note that the right-hand side of (5) is well defined when f is convex and while it is
strongly convex, it has a unique minimizer which is denoted by

p(x) = arg min
z∈Rn
{f(z) +

1

2λ
‖z − x‖2}. (6)

Therefore, F can be expressed by

F (x) = f(p(x)) +
1

2λ
‖p(x)− x‖2, (7)

where its gradient is

g(x) =
x− p(x)

λ
. (8)

F (x) and g(x) have remarkable properties. We refer interested readers to [13, 19, 23, 29, 32]. In
continuation, we present some of their properties without proof.

Theorem 1. The function F in (5) is finite-valued, convex, everywhere differentiable and its

gradient is g(x) = x−p(x)
λ .Furthermore, for all x1, x2 ∈ Rn

‖g(x1)− g(x2)‖2 ≤ 1

λ
(g(x1)− g(x2))T (x1 − x2).

Consequently, g is globally Lipschitz continuous with the constant term
1

λ
, namely

‖g(x1)− g(x2)‖ ≤ 1

λ
‖x1 − x2‖. (9)

Finally, the following statements are equivalent:
(i) x is the minimizer of f .
(ii) x is the minimizer of F .
(iii) g(x) = 0.
(iv) x = p(x).

Proof. see [18].

By Rademacher’s theorem, g : Rn −→ Rn is almost everywhere differentiable and the set

∂Bg(x) = {V ∈ Rn×n|V = lim
xi−→x

∇g(xi), xi ∈ Dg}

is nonempty and compact, where Dg = {x ∈ Rn|g is differentiable in x}. We note that every
V ∈ ∂Bg(x) is a symmetric positive semidefinite matrix, because g is the gradient of a convex
function F [40].
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To compute F (x) and g(x), we need to estimate p(x) in (6). There are some efficient
procedures for computing p(x). We refer interested readers to [5, 6, 12] for a clear explanation
of these procedures along with a brief analysis of its computational cost.

In order to provide an efficient conjugate gradient algorithm, Fatemi [9] introduced an opti-
mization problem by combining the three conditions

dTk+1yk = 0,

dTi gk = 0, i = 0, 1, . . . , k − 1 and

dTk gk 6 −η‖gk‖2, η > 0 is a constant,

that are familiar in the linear conjugate gradient theory. The problem was

min
βk

[
gTk+1dk+1 +M

((
gTk+2sk

)2
+
(
dTk+1yk

)2)]
, (10)

where sk := xk+1 − xk and M is a penalty parameter. By solving this problem and using the
secant condition Bk+1sk = yk, a new βk was proposed as follows

βk =
−1

2M(1 + t2)

gTk+1dk

(yTk dk)
2

+
yTk gk+1

yTk dk
− t

(1 + t2)

sTk gk+1

yTk dk
, (11)

where t > 0 is a suitable approximation of the step length αk. The author showed that the
resulting method is globally converged for general functions. Moreover, numerical comparisons
reported in the paper showed that the method is efficient in the sense of Dolan-Moré performance
profile.

3 Preliminary results

The good features of the method presented in [9] inspired us to modify it for solving nonsmooth
problems. Considering gk = ∇F (xk), we define

dk+1 =− gk+1 + βNk dk (d0 = −g0), (12)

where

βNk = (yk −
1

2M(1 + t2)

dk
Tk
− t

1 + t2
sk)

T gk+1

Tk
, (13)

and

Tk = max{γ‖dk‖.‖yk‖, ‖dk‖.‖sk‖, |dTk yk|,
dTk gk+1

2M
(
(1 + t2)yk − tsk

)T
gk+1

} ≥ 0, (14)

for some constant γ > 0.

Equality (13) is our modified version of (11) suitable for nonsmooth problems as we will
show as follows.
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Lemma 1. Consider conjugate gradient iterations based on (2) and (12) with any step length
αk > 0 and βk in (13). Then, for a fixed positive scalar 0 < c < 1 and the choice of

M =
2c

(1 + t2)‖yk‖2
, (15)

in (13), we have

dTk+1gk+1 6 −(1− c)‖gk+1‖2. (16)

Proof. Using (12) and (13), we have

dTk+1gk+1 =− ‖gk+1‖2 + βNk d
T
k gk+1

= −‖gk+1‖2 +
(yTk gk+1)(dTk gk+1)

Tk
− 1

2M(1 + t2)
×

(dTk gk+1)2

T 2
k

− t

1 + t2
×

(sTk gk+1)(dTk gk+1)

Tk
.

Since αk and t are positive, we deduce that

dTk+1gk+1 ≤ −‖gk+1‖2 + (yTk gk+1)×
dTk gk+1

Tk
− 1

2M(1 + t2)
×

(dTk gk+1)2

T 2
k

Now, using the fact that ab ≤ l

4
a2 +

1

l
b2, where a, b and l are positive scalars, we have

dTk+1gk+1 ≤− ‖gk+1‖2 +
l

4
(yTk gk+1)2 +

1

l

(dTk gk+1)2

T 2
k

− 1

2M(1 + t2)
×

(dTk gk+1)2

T 2
k

.

Now, let l = 2M(1 + t2), so

dTk+1gk+1 ≤ −‖gk+1‖2 +
M(1 + t2)

2
× (yTk gk+1)2

Finally, the Cauchy-schwartz inequality implies that

dTk+1gk+1 ≤ −‖gk+1‖2 +
M(1 + t2)

2
‖yk‖2‖gk+1‖2.

The proof is now completed using (15) and the above inequality.

It is easy to see that replacing (15) in (13) and (14) yields

βNk = (yk −
‖yk‖2

4c

dk
Tk
− t

1 + t2
sk)

T gk+1

Tk
, (17)

where

Tk = max{γ‖dk‖.‖yk‖, ‖dk‖.‖sk‖, |dTk yk|,
(1 + t2)‖yk‖2dTk gk+1

4c
(
(1 + t2)yk − tsk

)T
gk+1

}. (18)
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Lemma 2. For the search direction dk introduced by (12) and (17), we have

‖dk‖ ≤ (2 +
1

γ
+

1

4cγ2
)‖gk‖. (19)

Proof. Using (12), (17) and the Cauchy-schwartz inequality, we have

‖dk+1‖ = ‖ − gk+1 + βNk dk‖ ≤ ‖gk+1‖+ |βNk |‖dk‖

= ‖gk+1‖+ ‖yk −
‖yk‖2

4c

dk
Tk
− t

1 + t2
sk‖
‖gk+1‖
Tk

‖dk‖

≤ ‖gk+1‖+
‖yk‖‖dk‖‖gk+1‖

Tk
+
‖yk‖2‖dk‖2‖gk+1‖

4cT 2
k

+
t

1 + t2
‖sk‖‖dk‖‖gk+1‖

Tk
.

(20)

Moreover, using (18) we have

Tk ≥ γ‖yk‖‖dk‖ =⇒ 1

Tk
≤ 1

γ‖yk‖‖dk‖
, (21)

and

Tk ≥ ‖sk‖‖dk‖ =⇒ 1

Tk
≤ 1

‖sk‖‖dk‖
. (22)

Finally, by replacing (21) and (22) in (20), we have

‖dk+1‖ ≤ ‖gk+1‖+
1

γ
‖gk+1‖+

1

4cγ2
‖gk+1‖+ ‖gk+1‖ =⇒ ‖dk+1‖ ≤ (2 +

1

γ
+

1

4cγ2
)‖gk+1‖.

4 Global convergence

We are now in a position where we can sum up the contents of the previous sections to introduce
our new conjugate gradient algorithm.

Algorithm 1. New Conjugate Gradient Algorithm (NCG)

• Step1. Choose a starting point x0 ∈ Rn and a suitable value for positive parameters λ, γ,
δ, 0 < σ < 1, 0 < c < 1 and 0 < ε < 1. Compute g0 = ∇F (x0), set d0 = −g0 and k = 0.

• Step2. Check the stopping condition. if ‖gk‖ < ε then stop; else go to step 3.

• Step3. Compute the step length αk using the following Armijo-type line search:

F (xk + αkdk)− F (xk) ≤ σαkgTk dk (23)

where αk = δ × 2−ik , ik ∈ {0, 1, 2, . . .}

• Step4. Compute xk+1 = xk+αkdk, gk+1 = ∇F (xk+1), sk = xk+1−xk and yk = gk+1−gk.
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• Step5. Compute the conjugate gradient parameter βNk using (17) and (18).

• Step6. Compute the search direction dk+1 = −gk+1 + βNk dk.

• Step7. Set k = k + 1 and go to step 2.

Our final task is investigation of the global convergence properties of algorithm (NCG). To
do this, we consider the following necessary assumptions to prove convergence of the algorithm.

1. The level set Γ =
{
x ∈ Rn |F (x) ≤ F (x0)

}
is bounded.

2. The function F is bounded from below.
3. The sequence {Vi} is bounded, that is, there is a constant L such that for each i

‖Vi‖ ≤ L, (24)

where Vi ∈ ∂Bg(xi).

Lemma 3. For the sequence {xk, αk} generated by algorithm NCG and in the presence of as-
sumptions 1, 2 and 3, we have for sufficiently large k, that there exists constant α0 > 0 such
that

αk ≥ α0 (25)

Proof. Assume that αk satisfies (23). If αk = 1 then the proof is completed. Otherwise, suppose
that α

′
k = αk/2. So we have

F (xk + α
′
kdk)− F (xk) > σα

′
kg
T
k dk.

Using the Taylor expansion of F and Eq. (24) we conclude that

σα
′
kg
T
k dk < F (xk + α

′
kdk)− F (xk)

= α
′
kd
T
k gk +

1

2
(α
′
k)

2dTk V (uk)dk

≤ α
′
kd
T
k gk +

L

2
(α
′
k)

2‖dk‖2

where uk = xk + θα
′
kdk and θ ∈ (0, 1). The upper bound on V (uk) comes from assumption 2

and the fact that the quadratic form dtV (x)d is generally convex for every d, because V (x) is
positive semidefinite for every x.

Now by replacing (16) and (19) in the above inequality we have

α
′
k >

[
−(1− σ)dTk gk
‖dk‖2

]
2

L

>

[
(1− σ)(1− c)(
2 + 1

γ + 1
4cγ2

)2] 2

L
.

Now, by considering W =

[
(1−σ)(1−c)(
2+ 1

γ
+ 1

4cγ2

)2] 2
L , we have

αk > 2W.

The proof is completed by taking α0 ∈ (0, 2W ).
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Now, it is the time to proof our main result.

Theorem 2. Assume that the conditions in Lemma 3 hold. Then, we have

lim inf
k→∞

‖gk‖ = 0. (26)

Moreover, any accumulation point of xk is an optimal solution of (1).

Proof. Assume that (26) does not hold. Then there exist k0 > 0 and ε0 > 0 such that

∀k > ko : ‖gk‖ ≥ ε0. (27)

Using inequalities (16), (23), (25) and (27), for all k > k0, we have

F (xk+1)− F (xk) ≤σαkdTk gk
≤− (1− c)σαk‖gk‖2

≤− (1− c)σα0ε
2
0.

(28)

Now inequality (28) and assumption 1 yield∑
(1− c)σα0ε

2
0 <∞.

It is clearly a contradiction due to the fact that
∑

(1− c)σα0ε
2
0 =∞. Then,

lim inf
k→∞

‖gk‖ = 0.

Now assume that x∗ is an accumulation point of xk. So there exists a subsequence xkj such
that

lim
kj−→∞

xk = x∗.

Therefore,
‖∇F (x∗)‖ = ‖g(x∗)‖ = 0,

and since g(x) = ∇F (x) = x−p(x)
λ , we have x∗ = p(x∗) and so by Theorem 1, x∗ is an optimal

solution for (1).

5 Numerical experiments and comparisons

In this section, we investigate the numerical performance of Algorithm 1 (NCG) presented in
section 4 by solving some unconstrained nonsmooth test problems. We have compared NCG by
Algorithm 4.2 and Algorithm 3.1 in [38] and [37], respectively. Numerical results reported in [38]
show that Algorithm 4.2 is more efficient than the MPRP method presented in [40]. Authors
in [40] claim that MPRP method is more efficient than both the proximal bundle and bundle
trust region methods. In addition, Algorithm 3.1 introduce a new three-term conjugate gradient
method which is an interesting idea in this field. According to these facts, we have considered
those algorithms in our comparisons.
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(a) Total number of iterations (k). (b) Total number of function eval-
uations (i).

(c) CPU time (t).

Figure 1: Performance profiles of these methods.

We initialized algorithms by setting λ = 1, γ = 0.02, c = 0.02, δ = 0.5, σ = 0.8 and
t = 1. The algorithms are terminated if either ‖gk‖ ≤ 10−7 or the number of iterations are
exceeded 3000. All tests were run on a 2.4 Intel Core(TM) i7-5500U processor computer with
8 GB of RAM and a 64-bit windows 10 operating system using Matlab R2017b programming
environment.

We considered small and large scale problems reported by [28] and [14] in our numerical
tests. Tables 1 and 2 show the names, dimensions (Dim) and the optimal objective function
value (fops) of test problems.

In Tables 3 and 4, we have reported the details of the results for NCG algorithm, Algorithm
4.2 and Algorithm 3.1. In both tables, k is the total number of iterations, i is the total number
of function evaluations and t is the CPU time in second. Furthermore, f indicates the final
function value and Dim demonstrates the problem dimension considered for comparisons.

The reported results express that the proposed algorithm can successfully solve all test prob-
lems. We can also see from Figure 1 that the NCG algorithm acts better than both Algorithm
4.2 and Algorithm 3.1 in the sense of Dolan-Moré performance profile. Therefore, NCG can be
introduced as an acceptable and efficient way to solve nonsmooth problems.

We now investigate the efficiency of our algorithm for solving a highly regarded real word
application from image processing field, namely, image debluring.

In figure 2, we have blurred 256 × 256, Lena, Brain, Cameraman and Megan images using
Toeplitz matrices. In this figure, images (a) and (c) have been blurred with the linear motion
of a camera by 15 pixels and images (e) and (g) have been blurred by the linear motion of a
camera by 20 pixels. Then, using nonsmooth regularization term φ(x) = ‖ x‖1, the images have
been recovered. According to [42] the best value of the regularization parameter ν is around
0.001 and the algorithm stops after 50 iterations.

It can be seen from Table 5 and Figures 3, 4 and 5 that all algorithms can successfully solve
image restoration problem, and we can see less CPU time for NCG in comparison with other
two algorithms. As a result, our method with the proper choices of parameters is also effective
for solving real world problems.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Original and blurred/noisy images.

(a) t = 658.985 (b) t = 766.233 (c) t = 651.095 (d) t = 641.430

Figure 3: Deblurring image with Algorithm NCG.

(a) t = 835.226 (b) t = 688.648 (c) t = 723.232 (d) t = 747.763

Figure 4: Deblurring image with Algorithm 4.2.

(a) t = 3792.801 (b) t = 1526.456 (c) t = 1814.476 (d) t = 2854.751

Figure 5: Deblurring image with Algorithm 3.1.
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Table 1: Small-scale test problems [28].

Nr. Problem’s Name Dim fops
1 Crescent 2 0
2 CB2 2 1.952245
3 CB3 2 2
4 DEM 2 -3
5 QL 2 7.20
6 LQ 2 -1.4142136
7 Mifflin1 2 -1
8 Mifflin2 2 -1
9 Wolf 2 -8
10 Rosen-Suzuki 4 -44

Table 2: Large-scale test problems [14].

Nr. Problem’s Name

1 Generalization of MAXQ (convex)
2 Generalization of MAXHILB (convex)
3 Number of active faces (nonconvex)
4 Nonsmooth generalization of Brown function (nonconvex)
5 Chained cresent1 (nonconvex)
6 Chained cresent2 (nonconvex)

Table 3: Test results for small-scale problems.
Nr. Algorithm NCG Algorithm 4.2 Algorithm 3.1

k i t f k i t f k i t f
1 86 463 21.525 6.5472310ˆ(-4) 156 917 52.677 0.74999 106 530 22.184 0.74999
2 6 66 3.622 1.95350 6 66 7.765 1.95350 381 4478 207.447 1.95378
3 13 188 10.389 2.00145 13 188 10.919 2.00145 171 2121 134.351 2.00149
4 16 124 9.224 -2.99864 18 120 8.213 -2.99905 16 95 4.883 -2.99945
5 12 93 16.022 7.20362 12 93 16.685 7.20362 12 93 15.585 7.20362
6 14 98 4.74 -1.41388 14 98 5.39 -1.41388 14 98 4.852 -1.41388
7 21 170 289.819 -0.99923 409 4958 288.417 -0.99996 133 967 81.697 -0.99967
8 14 111 6.753 -0.99975 12 81 10.894 -0.99954 12 81 10.963 -0.99954
9 18 311 30.075 -7.99290 114 1739 106.909 -7.99201 139 2101 310.549 -7.99551
10 29 872 52.301 -43.97174 7 200 36.121 -43.94660 87 2831 110.121 -43.9049

6 Conclusion

In many top-notch domains like image and medical image processing, new mathematical meth-
ods that facilitate and speed up the processing step are highly appreciated. We introduced
an efficient conjugate gradient method to solve nonsmooth optimization problems by using the
Moreau-Yosida regularization technique. Our approach guarantees sufficient descent property
and with mild assumptions has global convergence. In final section, we showed how our proposed
method has higher performance and outperforms the older methods in this field. An implemen-
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Table 4: Test results for large-scale problems.

Nr. Dim Algorithm NCG Algorithm 4.2 Algorithm 3.1

k i t k i t k i t

1 1000 15 60 3.169 26 104 5.009 26 104 2.331
5000 20 80 22.532 32 128 30.621 32 128 31.231
10000 43 172 137.387 67 268 213.279 67 268 207.711

2 1000 9 70 22.696 7 55 12.637 31 270 118.749
5000 10 87 438.84 12 103 540.842 41 441 4931.256
10000 24 199 4021.326 7 60 788.047 25 236 10320

3 1000 11 55 6.94 11 55 7.481 11 55 6.559
5000 13 65 52.223 13 65 53.426 13 65 53.158
10000 13 64 212.012 13 64 212.731 13 64 209.936

4 1000 22 110 7.215 36 190 9.619 74 451 49.339
5000 38 194 54.29 51 264 78.601 379 1979 1668.019
10000 39 197 230.627 57 292 364.195 1280 6589 5301.382

5 1000 18 92 10.129 18 92 11.263 29 231 26.921
5000 17 93 49.856 17 93 56.576 99 586 400.038
10000 16 95 163.977 16 95 171.754 98 583 1626.941

6 1000 9 36 2.359 9 36 2.396 11 44 6.069
5000 13 52 29.658 13 52 15.064 37 148 105.763
10000 11 44 37.822 10 40 92.828 5 20 64.555

Table 5: CPU time comparisons.

Lena Brain Cameraman Megan

Algorithm NCG 658.985 766.233 651.095 641.430
Algorithm 4.2 835.226 688.648 723.232 747.763
Algorithm 3.1 3792.801 1526.456 1814.476 2854.751

tation of our proposed approach also employed to solve image deblurring problem. Our reported
results showed that the proposed method is efficient in the sense of CPU time comparisons.
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