تعداد نشریات | 31 |
تعداد شمارهها | 748 |
تعداد مقالات | 7,112 |
تعداد مشاهده مقاله | 10,245,893 |
تعداد دریافت فایل اصل مقاله | 6,899,555 |
Note to the convergence of minimum residual HSS method | ||
Journal of Mathematical Modeling | ||
دوره 9، شماره 2، مرداد 2021، صفحه 323-330 اصل مقاله (296.01 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22124/jmm.2020.18109.1559 | ||
نویسندگان | ||
Arezo Ameri1؛ Fatemeh Panjeh Ali Beik* 2 | ||
1Department of Mathematics, Kerman Branch, Islamic Azad University, Kerman, Iran | ||
2Department of Mathematics, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran | ||
چکیده | ||
The minimum residual HSS (MRHSS) method is proposed in [BIT Numerical Mathematics, 59 (2019) 299--319] and its convergence analysis is proved under a certain condition. More recently in [Appl. Math. Lett. 94 (2019) 210--216], an alternative version of MRHSS is presented which converges unconditionally. In general, as the second approach works with a weighted inner product, it consumes more CPU time than MRHSS to converge. In the current work, we revisit the convergence analysis of the MRHSS method using a different strategy and state the convergence result for general two-step iterative schemes. It turns out that a special choice of parameters in the MRHSS results in an unconditionally convergent method without using a weighted inner product. Numerical experiments confirm the validity of established results. | ||
کلیدواژهها | ||
Minimum residual technique؛ Hermitian and skew-Hermitian splitting؛ two-step iterative method؛ Convergence | ||
آمار تعداد مشاهده مقاله: 708 تعداد دریافت فایل اصل مقاله: 881 |