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Abstract. The aim of this study is the introduction of the numerical methods for solving
the fuzzy q-differential equations that many real life problems can be modelized in the form
of these equations. q-Taylor’s expansion method is among important and famous methods for
solving these problems. In this paper, applications of the fuzzy q-Taylor’s expansion, the fuzzy
local q-Taylor’s expansion and the fuzzy q-Euler’s method, based on the generalized Hukuhara
q-differentiability are illustrated which are two numerical methods for finding approximate so-
lution of the fuzzy initial value q-problems (for short FIVq-Ps).
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1 Introduction

Mathematics and Physics are two main topics and applicable fields of sciences. For the first
time, relations between these topics especially quantum calculus (q-calculus) and q-differential
operators were studied by Jackson in [19]. It has a lot of applications in different mathematical
areas such as: number theory, combinatorics, basic hyper-geometric functions, orthogonal poly-
nomials and other sciences: quantum theory, mechanics, theory of relativity, capacitor theory,
electrical circuits, particle physics, viscoelastic, electro-analytical chemistry, neurology, diffusion
systems, control theory and statistics; for instance see the articles [2,7,26]. Recently, there have
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appeared many papers which study for more details on q-calculus, we refer the reader to the
references [10,12–15,17,21–24].

In recent decades, the research on fuzzy calculus is becoming an interesting and useful topic
among applied scientists [11, 28]. Among the applications in this field there are conversion
problems into fuzzy differential equations and find their approximate solution using numerical
methods [1,3,4,29]. One of the numerical methods that plays an important role in studying the
local behavior of a suitable fuzzy-valued function is fuzzy Taylor’s expansion. This expansion is
a powerful tool in approximation theory and other fuzzy numerical methods. Anastassiou in [5]
proved the fuzzy Taylor’s expansion for Hukuhara differentiable functions.

The quantum calculus is usually referred in mathematics as the calculus without limit and
replaces the classical derivative with a difference operator. As a result, q-Taylor’s theorem will
also be important in quantum calculus. The concept of the q-Taylor’s series was formulated by
Jackson [18] in 1910. A new notation of q-Taylor’s formula was presented by Jing et al. and
Ernst in [10,20]. After that, Ismail and Stanton in [16] introduced the q-type interpolation series.
In [25] López et al. used the approach of [27] to give the sufficient conditions for convergence of
Ismail-Stanton q-Taylor’s series. In 2008, Annaby et al. [6] proved q-Taylor’s series for Jackson
q-difference operators. So that, the fuzzy q-derivative and fuzzy q-fractional derivative in Caputo
sense based on the generalized Hukuhara difference, to show the importance of the q-derivative
by establishing a connection between quantum calculus and fuzzy calculus was introduced in [30]
by Noeiaghdam et al. In this work, we will investigate one of the basic applications of fuzzy
q-Taylor’s expansion that is in solving the FIVq-Ps are described.

There are many numerical, analytical and semi-analytical methods for solving q-differential
equations. But we know that, solving the fuzzy form of these problems is difficult. Thus we
prefer to apply the numerical method for fuzzy q-differential equations. Studying novel numerical
methods to convert the fuzzy q-problems to the crisp form, solving the obtained crisp problems
and finding the approximate solutions are among challenging and interesting problems that in
recent years many authors have been focused on these topics. But cases, we can not transform
the fuzzy problems to the crisp form easily. This paper aims to provide the numerical methods
for solving fuzzy q-differential equations, without converting them to crisp forms it mean that
we the full fuzzy methods are applied to solve the fuzzy q-differential equations.

In the most simple problems of the q-differential equations, the need to use numerical and
approximate methods such as q-Euler’s method is less felt, so it has not been introduced so
far. Due to the explanations given for the use of fuzzy numerical methods in solving fuzzy
q-differential equations and that there are fuzzy q-differential equations that cannot be solved
by analytical methods, it will certainly always be important to introduce methods for finding
approximate solution to such problems. Accordingly, in this paper, after introducing local q-
Taylor’s expansion and the q-Euler’s method in crisp form, we have introduced the fuzzy local
q-Taylor’s expansion and fuzzy q-Euler’s method to solve the FIVq-Ps.

This paper is organized as follows: Section 2, presents some preliminaries, including the
basic definitions of the fuzzy calculus and quantum calculus. Principal properties for fuzzy q-
derivative and also fuzzy q-Taylor’s theorem are expressed in Section 3. In the main section,
local q-Taylor’s expansion and q-Euler’s methods and also fuzzy form of these methods based
on the concept of generalized Hukuhara q-differentiability for finding approximation solution of
FIVq-Ps are introduced.
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2 Notations and Preliminary Results

Fuzzy calculus: In this section, we review some definitions and notations of fuzzy logic and
the fuzzy calculus which can be found in the articles [9, 28–30]. Basically, an arbitrary fuzzy
number u in parametric form is an ordered pair of functions [u(r), u(r)], 0 ≤ r ≤ 1 which satisfies
in the following requirements:

I. u(r) is a bounded monotonic increasing left continuous function in (0,1],

II. u(r) is a bounded monotonic decreasing left continuous function in (0,1],

III. u(r) ≤ u(r), 0 ≤ r ≤ 1.

The set of all these fuzzy numbers is denoted by RF . A crisp number k is simply represented by
u(r) = u(r) = k, 0 ≤ r ≤ 1, and called singleton. For arbitrary numbers u, v ∈ RF and scalar
k, we define

addition : [u⊕ v]r = [u(r) + v(r), u(r) + v(r)],

scalar multiplication :
k ≥ 0⇒ [k � u]r = [ku(r), ku(r)].
k < 0⇒ [k � u]r = [ku(r), ku(r)].

The meaning of fuzzy-valued function is a function y : A → RF , A ∈ R where [y(t)]r =
[y(t; r), y(t; r)] so called the r-cut or parametric form of the fuzzy-valued function y.

Let u, v ∈ RF , if there exists w ∈ RF , such that u = v ⊕ w, then w is called the Hukuhara
difference (H-difference for short) of u and v, and it is denoted by u 	 v and for w ∈ RF
existential, it is the generalized Hukuhara difference (gH-difference for short) defined as

u	gH v = w ⇔
{

(i) u = v ⊕ w,
or (ii) v = u⊕ (−1)w.

It is easy to show that (i) and (ii) are both valid if and only if w is a crisp number.
Now, the Hausdorff distance between fuzzy numbers is given by d : RF ×RF → R+ ∪{0} as

d(u, v) = sup0≤r≤1 max{|u(r)−v(r)|, |u(r)−v(r)|}, and it is easy to see that following properties
of the metric d for λ ∈ R and ∀u, v, w, z ∈ RF are valid:

I. d(u⊕ w, v ⊕ w) = d(u, v),

II. d(λu, λv) =| λ | d(u, v).

III. d(u⊕ v, w ⊕ z) ≤ d(u,w) + d(v, z),

In the following, we summarize the fundamental definitions and results without proving the
relevant properties on q-calculus. For more details refer to [8,22,23,31], and the references given
therein.

Quantum calculus: In expression
y(t)− y(t0)

t− t0
as t approaches t0, the limit if it exists, gives

the familiar definition of the derivative Dy(t) (normal derivative) of a function y(t) at t = t0.
However, if we take t = qt0 or t = t0 + h, where q is a fixed number different from 1, and h
is a fixed number different from 0 and do not take the limit, with these changes we obtain the
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so-called quantum calculus. To make this statement precisely, we need the following definitions:
Let µ ∈ R. The time-scale Tµ, for 0 < q < 1 is defined as

Tµ = {t : t = µqn, n ∈ Z+} ∪ {0},

where Z+ is the set of nonnegative integer numbers. The q-analogues of a positive integer
number a is defined as follows

[a]q =
1− qa

1− q
.

Consider an arbitrary function y : Tµ → R. The q-differential and q-derivative of y are respec-
tively,

dqy(t) = y(t)− y(qt),

Dqy(t) =
dqy(t)

dqt
=
y(t)− y(qt)

(1− q)t
, t ∈ Tµ − {0}.

It is obvious that if t = 0 then Dqy(0) = Dy(0), where Dy is normal derivative. Further we
define

D0
qy = y, Dnq y = Dq(Dn−1q y), n = 1, 2, 3, . . . .

If the function y is differentiable at t, we have limq→1Dqy(t) = Dy(t). The q-derivative operator
is a special case of Hahn’s q-operator, which is defined in [23]. The q-antiderivative qIa for y is
defined in the following form∫ b

a
y(s)dqs = b(1− q)

∞∑
i=0

qiy(bqi)− a(1− q)
∞∑
i=0

qiy(aqi),

that is called the Jackson integral of y(x). As for q-derivative, we can define an operator q-
antiderivative qI

n
a as follows

qI
0
ay(t) = y(t), qI

n
a y(t) = qIa(qI

n−1
a y(t)), n = 1, 2, 3, . . . .

Also, for the operators qIa and Dq we have

Dq.qIay(t) = y(t), qIa.Dqy(t) = y(t)− y(a).

The q-fractional function is defined by

(t− s)nq =


∏n−1
i=0 (t− qis), n ∈ N,

tn
∏∞
i=0

1− s

t
qi

1− s

t
qi+n

, (t 6= 0) O.W.

The q-gamma function denoted by Γq(.) is defined as follows

Γq(α) =
(1− q)α−1q

(1− q)α−1
, α ∈ R/{0} ∪ Z−, 0 < q < 1,

Γq(α+ 1) =
1− qα

1− q
Γq(α) = [α]qΓq(α), Γq(1) = 1, α > 0.
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3 Definitions and properties of fuzzy q-differentiability

Before considering methods for approximating the solutions of the FIVq-Ps, we need some
definitions and results from the fuzzy q-differentiability. In the sequel, fuzzy q-derivative based
on the concept of generalized Hukuhara q-differentiability is introduced. Consequently, the
obtained results and properties of fuzzy q-differentiability are useful and can be proved.

Definition 1. For arbitrary fuzzy-valued function y : Tµ → RF , q-differential by gH-difference
is

gHDqy(t) = y(t) �gH y(qt).

Therefore, the generalized Hukuhara q-derivative (for short Fq [gH]-derivative) of y is defined by

F
q Dy(t) =

gHDqy(t)

Dqt
=
y(t) �gH y(qt)

(1− q)t
, t ∈ Tµ − {0}.

On the other hand, for the fuzzy-valued functions y(t) and y(qt), we have

[y(t) �gH y(qt)]r =

[
min{y(t; r)− y(qt; r), ȳ(t; r)− ȳ(qt; r)},

max{y(t; r)− y(qt; r), ȳ(t; r)− ȳ(qt; r)}
]
,

If the gH-difference exists, then [y(t)�y(qt)]r = [y(qt)�gHy(t)]r. The conditions for the existence
of gHDqy(t) = y(t) �gH y(qt) ∈ RF with respect to r are

case(i)



gHDqy(t; r) = y(t; r)− y(qt; r), is increasing,

gHDqy(t; r) = y(t; r)− y(qt; r), is decreasing,

gHDqy(t; r) ≤gH Dqy(t; r),

case(ii)



gHDqy(t; r) = y(t; r)− y(qt; r), is increasing,

gHDqy(t; r) = y(t; r)− y(qt; r), is decreasing,

gHDqy(t; r) ≤gH Dqy(t; r).

Definition 2. Let y : Tµ → RF and y(t)	gH y(qt) exists. If

[Fq Dyi−gH(t)]r = [Dqy(t; r), Dqy(t; r)], 0 ≤ r ≤ 1,

we say that y is F
q [(i)− gH]-differentiable and if

[Fq Dyii−gH(t)]r = [Dqy(t; r), Dqy(t; r)], 0 ≤ r ≤ 1,

y is F
q [(ii)− gH]-differentiable where

Dqy(t; r) =
y(t; r)− y(qt; r)

(1− q)t
, Dqy(t; r) =

y(t; r)− y(qt; r)

(1− q)t
.
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Definition 3. Let y : Tµ → RF be a fuzzy-valued function on Tµ. A point ξ ∈ Tµ −{0} is said
to be a switching point for the F

q [gH]-differentiably of y, if in any neighborhood V of ξ there exist
points t1 < ξ < t2 such that
(type I) y is F

q [(i) − gH]−differentiable at t1 while y is not F
q [(ii) − gH]−differentiable at t1,

and y is F
q [(ii)− gH]−differentiable at t2 while y is not Fq [(i)− gH]−differentiable at t2, or

(type II) y is F
q [(ii) − gH]−differentiable at t1 while y is not F

q [(i) − gH]−differentiable at t1,

and y is F
q [(i)− gH]−differentiable at t2 while y is not Fq [(ii)− gH]−differentiable at t2.

Definition 4. Let y : Tµ → RF . We say that y is F
q [gH]-differentiable of the nth-order at

t0 whenever the function y is F
q [gH]-differentiable of the order m (m = 1, 2, . . . , n − 1) at t0,

moreover the F
q [gH]-differentiable type has no change (there is not any switching point on Tµ).

Then there exists F
q D(n)y(t0) ∈ RF such that

F
q D(n)y(t0) =

F
q D(n−1)y(t0) �gH

F
q D(n−1)y(qt0)

(1− q)t0
.

Theorem 1. [30] Suppose that [y(t)]r = [y(t; r), ȳ(t; r)]. The function y is F
q [gH]-differentiable

if and only if y(t; r) and ȳ(t; r) are q-differentiable with respect to t for all r ∈ [0, 1] and

[Fq Dy(t)]r = [min{Dqy(t; r), Dqȳ(t; r)},max{Dqy(t; r), Dqȳ(t; r)}].

Definition 5. Let y be a fuzzy-valued function and F (t) �gH F (qt) exists. Then the fuzzy
Jackson integral is defined by

F (t) = (1− q)t�
∞∑
j=0

qj � y(qjt)

Throughout the rest of this paper, the notation Cf (Tµ,RF ) is called the set of fuzzy-valued
continuous functions defined on Tµ and Cnf (Tµ,RF ), n ∈ N for the space of fuzzy-valued functions
y on Tµ such that itself and its first n, q-derivatives are all in Cf (Tµ,RF ).

Theorem 2. [30] Let y : Tµ → RF , be F
q [gH]-differentiable function such that the type of

F
q [gH]-differentiability of y in Tµ does not change. Then for t ∈ Tµ,

I. If y(s) is F
q [(i)− gH]-differentiable then F

q Dyi−gH(s) is q-integrable over Tµ and

y(t) = y(a)⊕
∫ t

a

F
q Dyi−gH(s)dqs.

II. If y(s) is F
q [(ii)− gH]-differentiable then F

q Dyii−gH(s) is q-integrable over Tµ and

y(t) = y(a) � (−1)

∫ t

a

F
q Dyii−gH(s)dqs.

Theorem 3. Let Fq D(j)y : Tµ → RF and F
q D(j)y ∈ Cf (Tµ,RF ), j = 1, . . . , n. For all t ∈ Tµ
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I. Assume that Fq D(j)y, j = 1, . . . , n are F
q [(i)− gH]-differentiable and there is no change in

the type of Fq [gH]-differentiability on Tµ. Then

F
q D(j−1)yi−gH(t) = F

q D(j−1)yi−gH(a)⊕
∫ t

a

F
q D(j)yi−gH(s)dqs.

II. If Fq D(j)y, j = 1, . . . , n are F
q [(ii)−gH]-differentiable and the type of Fq [gH]-differentiability

does not change on Tµ, then

F
q D(j−1)yii−gH(t) = F

q D(j−1)yii−gH(a)⊕
∫ t

a

F
q D(j)yii−gH(s)dqs.

III. Assume that Fq D(j)y for j = 1, . . . , n exist and in each order of differentiation, the type of
F
q [gH]-differentiability changes on Tµ( i.e. F

q [gH]-differentiability changes from F
q [(i)−gH]

to F
q [(ii)− gH] and vice versa), then
F
q D(j−1)yi−gH(t) = F

q D(j−1)yi−gH(a) � (−1)
∫ t
a

F
q D(j)yii−gH(s)dqs, j is even number,

F
q D

(j−1)
ii−gHy(t) = F

q D(j−1)yii−gH(a) � (−1)
∫ t
a

F
q D(j)yi−gH(s)dqs, j is odd number.

Proof. By assuming F
q D(j)y ∈ Cf (Tq,RF ), i = 0, . . . , n, we give the proof only for parts II and

III, the part I is left because the proof for it is similar.

II. Our proof starts with the observation that F
q D(j)y, j = 1, . . . , n are F

q [(ii) − gH]-

differentiable. Hence, using properties of Fq [gH]-derivative and Theorem 2, we have

[ ∫ t

a

F
q D(j)yii−gH(s)dqs

]
r

=

[ ∫ t

a
D(j)
q ȳ(s; r)dqs,

∫ t

a
D(j)
q y(s; r)dqs

]
=

[ ∫ t

a
Dq(D(j−1)

q ȳ)(s; r)dqs,

∫ t

a
Dq(D(j−1)

q y)(s; r)dqs

]
= [D(j−1)

q ȳ(t; r)−D(j−1)
q ȳ(a; r),D(j−1)

q y(t; r)−D(j−1)
q y(a; r)]

= [D(j−1)
q ȳ(t; r),D(j−1)

q y(t; r)]− [D(j−1)
q ȳ(a; r),D(j−1)

q y(a; r)]

= [Fq D(j−1)yii−gH(t)	 F
q D(j−1)yii−gH(a)]r,

leads to

F
q D(j−1)yii−gH(t) = F

q D(j−1)yii−gH(a)⊕
∫ t

a

F
q D(j)yii−gH(s)dqs.

In the following, taking into account that the next part can be proved in much the same way,
the only difference being in the analysis of assumptions.
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III. Under the conditions stated in the part III, by Definition 1 and Theorem 2 and assum-
ming that j is an even number, we get[

F
q D(j−1)yi−gH(t)	 (−1)�

∫ t

a

F
q D(j)yii−gH(s)dqs

]
r

= [D(j−1)
q y(t; r),D(j−1)

q ȳ(t; r)] +

[
−
∫ t

a
D(j)
q y(s; r)dqs,−

∫ t

a
D(j)
q ȳ(s; r)dqs

]
= [D(j−1)

q y(t; r),D(j−1)
q ȳ(t; r)]

+ [D(j−1)
q y(a; r)−D(j−1)

q y(t; r),D(i−1)
q ȳ(a; r)−D(j−1)

q ȳ(t; r)]

= [D(j−1)
q y(a; r), D(j−1)

q ȳ(a; r)] = [ Fq D(j−1)yi−gH(a)]r,

that leads to

F
q D(j−1)yi−gH(t) = F

q D
(j−1)
i−gHy(a) � (−1)

∫ t

a

F
q D(j)yii−gH(s)dqs.

The proof for odd numbers by a similar process is obvious and yields

F
q D(j−1)yii−gH(t) = F

q D(j−1)yii−gH(a) � (−1)

∫ t

a

F
q D(j)yi−gH(s)dqs,

which completes the proof.

Theorem 4. (Fuzzy q-Taylor’s Theorem) Let Fq D(n)y ∈ Cf (Tµ,RF ) and t ∈ Tµ. For finding
the fuzzy q-Taylor’s expansion of y around a ∈ Tµ, we have

I. If Fq D(j)y, j = 0, 1, . . . , n − 1 are F
q [(i) − gH]-differentiable, provided that type of Fq [gH]-

differentiability has no change on Tµ. Then there exists η ∈ Tµ such that

y(t) = y(a)⊕
n−1∑
j=1

[
(t− a)jq

Γq(j + 1)
� F
q D(j)yi−gH(a)

]
⊕

(t− a)nq
Γq(n+ 1)

� F
q D(n)yi−gH(η).

II. If Fq D(j)y, j = 0, 1, . . . , n− 1 are F
q [(ii)− gH]-differentiable, provided that type of Fq [gH]-

differentiability has no change on Tµ. Then there exists η ∈ Tµ such that

y(t) = y(a) � (−1)
n−1∑
j=1

[
(t− a)jq

Γq(j + 1)
� F
q D(j)yii−gH(a)

]
� (−1)

(t− a)nq
Γq(n+ 1)

� F
q D(n)yii−gH(η).

III. Suppose that Fq D(j)y, j = 1, . . . , n exist and in each order the type of Fq [gH]-differentiability
changes on Tµ, then there exists η ∈ Tµ such that

y(t) = y(a) � (−1)
n−1∑
j=1

j is odd

[
(t− a)jq

Γq(j + 1)
� F
q D(j)yii−gH(a)

]
⊕

n−1∑
j=1

j is even

[
(t− a)jq

Γq(j + 1)

� F
q D(j)yi−gH(a)

]
� (−1)

(t− a)nq
Γq(n+ 1)

� F
q D(n)yii−gH(η).
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IV. If y has a switching point at ξ ∈ Tµ of type II (i.e. F
q [gH]-differentiability changes

from F
q [(ii)− gH] to F

q [(i)− gH]) and suppose that the type of differentiability for F
q D(j)y, j =

1, . . . , n− 1 are F
q [(i)− gH]-differentiable. Then there exists η ∈ Tµ such that

y(t) =



y(a) � (−1)(t− a)� F
q Dyii−gH(a)

⊕
∑n−1

j=2

[
(t− a)jq

Γq(j + 1)
� F
q D(j)yi−gH(a)

]
⊕

(t− a)nq
Γq(n+ 1)

� F
q D(n)yi−gH(η), 0 < t ≤ ξ,

y(a)⊕
∑n−1

j=1

[
(t− a)jq

Γq(j + 1)
� F
q D(j)yi−gH(a)

]
⊕

(t− a)nq
Γq(n+ 1)

� F
q D(n)yi−gH(η), ξ ≤ t.

V. If y has a switching point at ξ ∈ Tµ of type I (i.e. F
q [gH]-differentiability changes

from F
q [(i)− gH] to F

q [(ii)− gH]) and suppose that the type of differentiability for F
q D(j)y, j =

1, . . . , n− 1 are F
q [(ii)− gH]-differentiable. Then there exists η ∈ Tµ such that

y(t) =



y(a)⊕ (t− a)� F
q Dyi−gH(a)

�(−1)
∑n−1

j=2

[
(t− a)jq

Γq(j + 1)
� F
q D(j)yii−gH(a)

]
�(−1)

(t− a)nq
Γq(n+ 1)

� F
q D(n)yii−gH(η), 0 < t ≤ ξ,

y(a) � (−1)
∑n−1

j=1

[
(t− a)jq

Γq(j + 1)
� F
q D(k)yii−gH(a)

]
�(−1)

(t− a)nq
Γq(n+ 1)

� F
q D(n)yii−gH(η), ξ ≤ t.

Proof. Since F
q D(n)y ∈ Cf (Tµ,RF ), by Theorem 3, we obtain:

I. Suppose F
q D(j)y, for j = 0, 1, . . . , n are fuzzy q-differentiable as in Definition 2 (i) then

F
q I

(n)
a

F
q D(n)yi−gH(t)

= F
q I

(n−1)
a

F
q D(n−1)yi−gH(t)	 F

q I
(n−1)
a

F
q D(n−1)yi−gH(a)

= F
q I

(n−2)
a

F
q D(n−2)yi−gH(t)	 F

q I
(n−2)
a

F
q D(n−2)yi−gH(a)	 F

q I
(n−1)
a

F
q D(n−1)yi−gH(a)

...

= F
q Ia

F
q Dyi−gH(t)	 F

q I
(2)
a

F
q D(2)yi−gH(a)	 · · · 	 F

q I
(n−1)
a

F
q D(n−1)yi−gH(a)

=y(t)	 y(a)	 F
q Ia

F
q Dyi−gH(a)	 F

q I
(2)
a

F
q D(2)yi−gH(a)	 · · · 	 F

q I
(n−1)
a

F
q D(n−1)yi−gH(a).

Since

F
q I

(j)
a =

∫ t

a

∫ t

a
· · ·
∫ t

a
dqsdqs · · · dqs︸ ︷︷ ︸

j−times

=
(t− a)jq

Γq(j + 1)
,
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so, we have

F
q I

(n)
a

F
q D(n)yi−gH(t) = y(t)	 y(a)	 (t− a)q

Γq(2)
F
q Dyi−gH(a)	

(t− a)2q
Γq(3)

F
q D(2)yi−gH(a)

	 · · · 	 (t− a)jq
Γq(j + 1)

F
q D(j−1)yi−gH(a).

Also, q-mean-value theorem for η ∈ (a, t), gives

y(t) = y(a)⊕
n−1∑
j=1

[
(t− a)jq

Γq(j + 1)
� F
q D(j)yi−gH(a)

]
⊕

(t− a)nq
Γq(n+ 1)

� F
q D(n)yi−gH(η).

II. Suppose that F
q D(j)y, for j = 0, 1, . . . , n are fuzzy q-differentiable as in Definition 2(ii), then

F
q I

(n)
a

F
q D(n)yii−gH(t)

= F
q I

(n−1)
a

F
q D(n−1)yii−gH(t)	 F

q I
(n−1)
a

F
q D(n−1)yii−gH(a)

= F
q I

(n−2)
a

F
q D(n−2)yii−gH(t)	 F

q I
(j−2)
a

F
q D(n−2)yii−gH(a)	 F

q I
(n−1)
a

F
q D(n−1)yii−gH(a)

...

= F
q Ia

F
q Dyii−gH(t)	 F

q I
(2)
a

F
q D(2)yii−gH(a)	 · · · 	 F

q I
(n−1)
a

F
q D(n−1)yi−gH(a)

=(−1)y(t)	 (−1)y(a)	 F
q Ia

F
q Dyii−gH(a)	 F

q I
(2)
a

F
q D(2)yii−gH(a)

	 · · · 	 F
q I

(n−1)
a

F
q D(n−1)yii−gH(a).

Similar to proof of I, we get

y(t) = y(a)	 (−1)
n−1∑
j=1

[
(t− a)jq

Γq(j + 1)
� F
q D(j)yii−gH(a)

]
	 (−1)

(t− a)nq
Γq(n+ 1)

� F
q D(n)yii−gH(η).

III. Assuming that Fq [gH]-differentiability of Fq D(j)y for j = 1, . . . , n changes on Tµ and F
q D(n−1)y

is fuzzy q-differentiable as in Definition 2(ii) then we have

F
q I

(n)
a

F
q D(n)yii−gH(t)

= −Fq I(n−1)a
F
q D(n−1)yi−gH(t)	 (−1)Fq I

(n−1)
a

F
q D(n−1)yi−gH(a)

= −Fq I(n−1)a
F
q D(n−1)yi−gH(t)	 (−1)[−Fq I(n−2)a

F
q D(n−2)yii−gH(a)

	 (−1)Fq I
(n−2)
a

F
q D(n−2)yii−gH(a)]

...

= −Fq I(n−1)a
F
q Dy

(n−1)
i−gH (t)	 F

q I
(n−2)
a

F
q D(n−2)yii−gH(a)⊕ · · · ⊕ y(x)	 y(a)

=
−(t− a)n−1q

Γq(n)
F
q Dy

(n−1)
i−gH (t)	

−(t− a)n−2q

Γq(n− 1)
F
q D(n−2)yii−gH(a)⊕ · · · ⊕ y(x)	 y(a).
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Therefore

y(t) = y(a) � (−1)
n−1∑
j=1

j is odd

[
(t− a)jq

Γq(j + 1)
� F
q D(j)yii−gH(a)

]

⊕
n−1∑
j=1

j is even

[
(t− a)jq

Γq(j + 1)
� F
q D(j)yi−gH(a)

]
� (−1)

(t− a)nq
Γq(n+ 1)

� F
q D(n)yii−gH(η).

IV. Suppose F
q D(j)y, for j = 0, 1, . . . , n are q-differentiable as in Definition 2(i).

F
q I

(n)
a

F
q D(n)yi−gH(t) = F

q I
(n−1)
a

F
q D(n−1)yi−gH(t)	 F

q I
(n−1)
a

F
q D(n−1)yi−gH(a)

= F
q I

(2)
a

F
q D(2)yi−gH(t)	 F

q I
(2)
a

F
q D(2)yi−gH(a)

	 · · · 	 F
q I

(n−1)
a

F
q D(n−1)yi−gH(a). (1)

Since F
q Dy is q-differentiable on [a, ξ] as in Definition 2.4 (i) and on [ξ, b] as in Definition 2.4 (ii),

thus gives

F
q I

(2)
a

F
q D(2)yi−gH(t) =


F
q Ia

F
q Dyi−gH(t)	 F

q Ia
F
q Dyi−gH(a), 0 < t ≤ ξ,

−Fq Ia F
q Dyi−gH(a)	 (−1)Fq Ia

F
q Dyi−gH(t), ξ ≤ t.

(2)

Now, if we substitute Eq. (2) into Eq. (1), the proof of IV can be obtained, and the proof of V
is similar to IV, which proves the theorem.

4 Numerical methods

In this section, first is introduced crisp numerical methods by using the q-Taylor’s expansion.
Finally, fuzzy local q-Taylor’s expansion and fuzzy q-Euler’s method for solving the FIVq-Ps
based on the generalized Hukuhara q-derivative are presented.

Local q-Taylor’s expansion: Consider the following initial value q-problem (for short IVq-P){
Dqy(t) = f(t, y(t)),
y(0) = y0 ∈ R, (3)

where f : [0, b] → R is continuous and y(t) is an unknown function of variable t. Furthermore,
Dqy(t) is the first order q-derivative of y(t).

Now, by dividing the interval [0, b] with the step length of hk, we have the partition ÎN =
{t0 = 0 < t1 = qN−1b < t2 = qN−2b < . . . < tN−2 = q2b < tN−1 = qb < tN = b} where
tk = qN−kb = qtk+1 are called the mesh points, and hk = tk − tk−1 = tk(1− q) = qN−kb(1− q)
for k = 1, 2, . . . , N are called the step sizes. Consider the q-Taylor’s expansion introduced in
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Section 2, for t1 = t0 + h1. Then if y and it’s high order are q-differentiable, we have

y(t1) = y(t0 + h1) = y(t0) + (t1 − t0)Dqy(t0) +
(t1 − t0)2q

Γq(3)
D(2)
q y(t0) + ...

= y0 + qN−1bDqy0 +
(qN−1b)2q

Γq(3)
D(2)
q y0 + · · ·+ (qN−1b)pq

Γq(p+ 1)
D(p)
q y0 · · · .

To find an approximation of y1, we cut above expression to the q-derivative of pth-order and

assume that D(j)
q y(t0) = D(j)

q y0, j = 0, 1, . . . , p. Therefore

y(t1) ' y1 = y0 + qN−1bDqy0 +
[qN−1b]2

Γq(3)
D(2)
q y0 + · · ·+ [qN−1b]p

Γq(p+ 1)
D(p)
q y0,

that its accuracy depends on the smallness of the h0 and the bigness of the p. Using y1 and
t2 = t1 + h2, we get

y(t2) = y(t1 + h2) = y(t1) + (t2 − t1)Dqy(t1) +
(t2 − t1)2q

Γq(3)
D(2)
q y(t1) + · · ·

= y1 + (qN−2b− qN−1b)Dqy1 + · · ·+ (qN−2b− qN−1b)pq
Γq(p+ 1)

D(p)
q y1 + · · · .

In this step, by cutting the expression obtained above to pth-order, clearly we get

y(t2) ' y2 = y1 + qN−2b(1− q) Dqy1 + [qN−2b(1− q)]2 D(2)
q y1 + · · ·+ [qN−2b(1− q)]p D(p)

q y1.

As the process continues, we derive

yk+1 = yk + qN−(k+1)b(1− q) Dqyk + [qN−(k+1)b(1− q)]2 D(2)
q yk

+ · · ·+ [qN−(k+1)b(1− q)]p D(p)
q yk,

and finally for hk+1 = tk+1 − tk = qN−(k+1)b(1− q) and k = 1, 2, . . . , N − 1, we obtain

yk+1 = yk + hk+1Dqyk + h2k+1D(2)
q yk + · · ·+ hpk+1D

(p)
q yk.

So, local q-Taylor’s expansion is the following form:

y1 = y0 +

p∑
j=1

[qN−1b]j

Γq(j + 1)
D(j)
q y0 = y0 +

p∑
j=1

hj1
Γq(j + 1)

D(j)
q y0,

yk+1 = yk +

p∑
j=1

[qN−(k+1)b(1− q)]jD(j)
q yk = yk +

p∑
j=1

hjk+1D
(j)
q yk, k = 1, 2, . . . , N − 1.

q-Euler’s method: Consider the q-Taylor’s series expansion of the unique solution of the IVq-P
(3) evaluated at the point t0 which is q-differentiable and continuous, as follows

y(t1) = y(t0) + qN−1b Fq Dy(t0) +
[qN−1b]2

Γq(3)
D(2)
q y(η0),
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and at the point tk

y(tk+1) = y(tk) +
(tk+1 − tk)q

Γq(2)
Dqy0(tk) +

(tk+1 − tk)2q
Γq(3)

D2
qy(ηk),

for each k = 1, . . . , N − 1 and some points ηk ∈ (tk+1, tk). Let us assume hk+1 = tk+1 − tk =
qN−(k+1)b(1− q). By using problem (3), we have y(t1) = y(t0) + h1f(t0, y(t0)) +

h21
q + 1

D(2)
q y(η0),

y(tk+1) = y(tk) + hk+1 f(tk, y(tk)) + h2k+1D
(2)
q y(ηk)), k 6= 0.

On the other hand, for each k = 1, . . . , N − 1 we conclude

d(y(tk+1), y(tk) + hk+1f(tk, y(tk)) + h2k+1D(2)
q y(ηk))

≤d(y(tk+1), y(tk) + hk+1f(tk, y(tk))) + d(0, h2k+1D(2)
q y(ηk))→ 0.

It is obvious that when hk+1 → 0 then d(y(tk+1), y(tk)+hk+1f(tk, y(tk)))→ 0 and d(0, h2k+1D
(2)
q y(ηk))

→ 0. So, when h1 → 0, we have

d(y(t1), y(t0) + h1f(t0, y(t0)) +
h21
q + 1

D(2)
q y(η0))→ 0.

Then, for sufficiently small hk+1 (k = 0, 1, 2, . . . , N−1), we have y(tk+1) ≈ y(tk)+hk+1 f(tk, y(tk)).
If yk+1 is the approximate value of y(tk+1), then q-Euler’s method is given by the recurrence
relation {

y0 = y0,
yk+1 = yk + hk+1f(tk, yk), k = 0, . . . , N − 1.

(4)

4.1 Fuzzy local q-Taylor’s expansion

Consider the following FIVq-P {
F
q Dy(t) = f(t, y(t)),

y(0) = y0 ∈ RF ,
(5)

where f : [0, b]×RF → RF is continuous and y(t) is an unknown fuzzy function of crisp variable
t. Furthermore, Fq Dy(t) is the first order Fq [gH]-derivative of y(t), with the finite set of switching

points. Now, if we consider the mesh points tk = qN−kb = qtk+1 and step sizes hk = qN−kb(1−q)
for k = 1, 2, . . . , N , then
Case I. If y and it’s high order q-derivatives are F

q [(i) − gH]-differentiable and type of Fq [gH]-
differentiability has no change on Tµ, for t1 = t0 + h1, then we have

y(t1) = y(t0 + h1) = y(t0)⊕ (t1 − t0)� F
q Dyi−gH(t0)⊕

(t1 − t0)2q
Γq(3)

� F
q D(2)yi−gH(t0)⊕ · · · (6)

= y0 ⊕ qN−1b� F
q Dy0,i−gH ⊕

(qN−1b)2q
Γq(3)

� F
q D(2)y0,i−gH

⊕ · · · ⊕ (qN−1b)pq
Γq(p+ 1)

� F
q D(p)y0,i−gH . . . . (7)
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To find an approximation of y1, we cut the expression (6) to the q-derivative of pth-order and
assume F

q D(j)ygH(t0) = F
q D(j)y0,gH , j = 0, 1, . . . , p. Therefore

y(t1) ' y1 = y0 ⊕ qN−1b� F
q Dy0,i−gH ⊕

[qN−1b]2

Γq(3)
� F
q D(2)y0,i−gH

⊕ · · · ⊕ [qN−1b]p

Γq(p+ 1)
� F
q D(p)y0,i−gH ,

that its accuracy depends on the smallness of the h0 and the bigness of the p. Using y1 and
t2 = t1 + h2, we get

y(t2) = y(t1 + h2) = y(t1)⊕ (t2 − t1)� F
q Dyi−gH(t1)⊕

(t2 − t1)2q
Γq(3)

� F
q D(2)yi−gH(t1)⊕ · · ·

= y1 ⊕ (qN−2b− qN−1b)� F
q Dy1,i−gH ⊕

(qN−2b− qN−1b)2q
Γq(3)

� F
q D(2)y1,i−gH

⊕ · · · ⊕ (qN−2b− qN−1b)pq
Γq(p+ 1)

� F
q D(p)y1,i−gH ⊕ . . . .

Now, by assuming that y(t2) ' y2 and cut the expression obtained above to pth-order, clearly
we obtain

y2 = y1 ⊕ qN−2b(1− q)� F
q Dy1,i−gH ⊕ [qN−2b(1− q)]2 � F

q D(2)y1,i−gH

⊕ · · · ⊕ [qN−2b(1− q)]p � F
q D(p)y1,i−gH .

As the process continues, we derive

yk+1 = yk ⊕ qN−(k+1)b(1− q)� F
q Dyk,i−gH ⊕ [qN−(k+1)b(1− q)]2 � F

q D(2)yk,i−gH

⊕ · · · ⊕ [qN−(k+1)b(1− q)]p � F
q D(p)yk,i−gH ,

and generally for step hk+1 = tk+1 − tk = qN−(k+1)b(1− q) and k = 1, 2, . . . , N − 1, it results in

yk+1 = yk ⊕ hk+1 � F
q Dyk,i−gH ⊕ h2k+1 � F

q D(2)yk,i−gH · · · ⊕ hpk+1 �
F
q D(p)yk,i−gH .

Finally, we conclude that

y1 = y0 ⊕
p∑
j=1

[qN−1b]j

Γq(j + 1)
� F
q D(j)y0,i−gH = y0 ⊕

p∑
j=1

hj1
Γq(j + 1)

� F
q D(j)y0,i−gH ,

yk+1 = yk ⊕
p∑
j=1

[qN−(k+1)b(1− q)]j � F
q D(j)yk,i−gH

= yk ⊕
p∑
j=1

hjk+1 �
F
q D(j)yk,i−gH , k = 1, 2, . . . , N − 1.
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Case II. If y and it’s high order q-derivatives are F
q [(ii)− gH]-differentiable and type of Fq [gH]-

differentiability is unchangeable on Tµ, then

y1 = y0 � (−1)

p∑
j=1

hj1
Γq(j + 1)

� F
q D(j)y0,ii−gH ,

yk+1 = yk � (−1)

p∑
j=1

hjk+1 �
F
q D(j)yk,ii−gH , k = 1, 2, . . . , N − 1.

Case III. If y is Fq [(i)−gH]-differentiable, and it’s high order derivatives, change from F
q [(i)−gH]

to F
q [(ii)− gH]-differentiability according to Definition 3(type I), then

y1 = y0 � (−1)

p∑
j=1

j is odd

hj1
Γq(j + 1)

� F
q D(j)y0,ii−gH ⊕

p∑
j=2

j is even

hj1
Γq(j + 1)

� F
q D(j)y0,i−gH ,

yk+1 = yk � (−1)

p∑
j=1

j is odd

hjk+1 �
F
q D(j)yk,ii−gH ⊕

p∑
j=2

j is even

hjk+1 �
F
q D(j)yk,i−gH , k = 1, . . . , N − 1.

Case IV. If y has a switching point at ξ ∈ Tµ of type II (i.e. F
q [gH]-differentiability changes

from F
q [(ii) − gH] to F

q [(i) − gH]) and the type of differentiability for F
q D(j)y, j = 1, . . . , n − 1

are F
q [(i)− gH]-differentiable, then for k = 0

y1 =


y0 � (−1)h1 � F

q Dy0,ii−gH ⊕
∑p

j=2

hj1
Γq(j + 1)

� F
q D(j)y0,i−gH , 0 < t ≤ ξ,

y0 ⊕
∑p

j=1

hj1
Γq(j + 1)

� F
q D(j)y0,i−gH , ξ ≤ t.

and for k = 1, 2, . . . , N − 1,

yk+1 =


yk � (−1)hk+1 � F

q Dyk,ii−gH ⊕
∑p

j=2 h
j
k+1 �

F
q D(j)yk,i−gH , 0 < t ≤ ξ,

yk ⊕
∑p

j=1 h
j
k+1 �

F
q D(j)yk,i−gH , ξ ≤ t.

Case V. If y has a switching point at ξ ∈ Tµ of type I (i.e. F
q [gH]-differentiability changes from

F
q [(i) − gH] to F

q [(ii) − gH]) and the type of differentiability for F
q D(j)y, j = 1, . . . , n − 1 are

F
q [(ii)− gH]-differentiable, then for k = 0

y1 =


y0 ⊕ h1 � F

q Dy0,i−gH � (−1)
∑p

j=2

hj1
Γq(j + 1)

� F
q D(j)y0,ii−gH , 0 < t ≤ ξ,

y0 � (−1)
∑p

j=1

hj1
Γq(j + 1)

� F
q D(j)y0,ii−gH , ξ ≤ t.
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and for k = 1, 2, . . . , N − 1,

yk+1 =


yk ⊕ hk+1 � F

q Dyk,i−gH � (−1)
∑p

j=2 h
j
k+1 �

F
q D(j)yk,ii−gH , 0 < t ≤ ξ,

yk � (−1)
∑p

j=1 h
j
k+1 �

F
q D(j)yk,ii−gH , ξ ≤ t.

This method is called the fuzzy local q-Taylor’s expansion. One way to avoid calculating the
higher order q-derivatives is to put p = 1 in the fuzzy local q-Taylor’s expansion which the
approximated results are obtained by fuzzy q-Euler’s method in the following section.

4.2 Fuzzy q-Euler’s method

The q-Euler’s method which often serves as the basis to construct more complex methods, is
a first-order numerical method. Fuzzy q-Euler’s method is the natural starting point for any
discussion of numerical methods for solving the fuzzy q-differential equation. We know that
the fuzzy q-Euler’s method can be derived in several ways. By considering the mesh points
tk = qN−kb = qtk+1 and the step sizes hk = qN−kb(1 − q) for k = 1, 2, . . . , N , the method that
is considered here is as follows:
Case I. Consider the fuzzy q-Taylor’s series expansion of the unique solution of the FIVq-P
(5) about tk which is F

q [(i)− gH]-differentiable and belongs to C2f (Tµ,RF ) such that the type of
F
q [gH]-differentiability is unchangeable on [0, b] ∈ Tµ, as follows

y(t1) = y(t0)⊕ qN−1b� F
q Dy(t0)⊕

[qN−1b]2

Γq(3)
� F
q D(2)y(η0),

and

y(tk+1) = y(tk)⊕
(tk+1 − tk)q

Γq(2)
� F

q Dyi−gH(tk)⊕
(tk+1 − tk)2q

Γq(3)
� F

q D(2)yi−gH(ηk),

for each k = 1, . . . , N − 1 and some points ηk ∈ (tk+1, tk). Let us assume hk+1 = tk+1 − tk =
qN−(k+1)b(1− q) and by using problem (5), we have

y(t1) = y(t0)⊕ h1 � f(t0, y(t0))⊕
h21
q + 1

� F
q D(2)yi−gH(η0),

y(tk+1) = y(tk)⊕ hk+1 � f(tk, y(tk))⊕ h2k+1 � F
q D(2)yi−gH(ηk)), k 6= 0.

On the other hand, for each k = 1, . . . , N − 1 we conclude

d(y(tk+1), y(tk)⊕ hk+1 � f(tk, y(tk))⊕ h2k+1 � F
q D(2)yi−gH(ηk))

≤d(y(tk+1), y(tk)⊕ hk+1 � f(tk, y(tk))) + d(0, h2k+1 � F
q D(2)yi−gH(ηk))→ 0,

as hk+1 → 0 since d(y(tk+1), y(tk)⊕hk+1�f(tk, y(tk)))→ 0 and d(0, h2k+1� F
q D(2)yi−gH(ηk))→

0. So, when h1 → 0, it is obvious that

d(y(t1), y(t0)⊕ h1 � f(t0, y(t0))⊕
h21
q + 1

� F
q D(2)yi−gH(η0))→ 0.
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Table 1: Numerical results of Example 1 for q = 0.7 and the node points ti = qib.
q = 0.7

ti = qib hi = ti − ti−1 yi = yi−1 ⊕ hi(qti−1yi−1) ei = y(ti)− yti
0.2401 0.07203 (0.82,1.,1.2) (0.0197394,0.0240725,0.028887)
0.343 0.1029 (0.834181,1.01729,1.22075) (0.0266999,0.0325609,0.0390731)
0.49 0.147 (0.863624,1.0532,1.26384) (0.0423815,0.0516848,0.0620218)
0.7 0.21 (0.92583,1.12906,1.35487) (0.0812172,0.0990454,0.118854)
1. 0.3 (1.06193,1.29503,1.55404) (0.19581,0.238793,0.286552)

Then, for suffciently small hk+1 (k = 0, 1, 2, . . . , N−1), we have y(tk+1) ≈ y(tk)⊕hk+1� f(tk, y(tk)).
If yk+1 is the approximate value of y(tk+1), then the fuzzy q-Euler’s method can be constructed
in the following form {

y0 = y0,
yk+1 = yk ⊕ hk+1 � f(tk, yk), k = 0, . . . , N − 1.

(8)

Case II. Let us suppose that y(t) ∈ C2f (Tµ,RF ) is Fq [(ii)− gH]-differentiable such that the type

of F
q [gH]-differentiability do not change on Tµ. According to the process described above, in

this case the fuzzy q-Euler’s is presented as{
y0 = y0,
yk+1 = yk � (−1)hk+1 � f(tk, yk), k = 0, . . . , N − 1.

(9)

Case III. Assume that y(t) has a switching point type I at ξ ∈ [0, b] , such that t0, t1, . . . , tj , ξ,
tj+1, . . . , tN . So according to Eq. (8) and (9), the fuzzy q-Euler’s method is obtained as follows

y0 = y0,
yk+1 = yk ⊕ hk+1 � f(tk, yk), k = 0, 1, . . . , j,
yk+1 = yk � (−1)hk+1 � f(tk, yk), k = j + 1, j + 2, . . . , N − 1.

Case IV. If ξ is a switching point type II, the fuzzy q-Euler’s method takes the form
y0 = y0,
yk+1 = yk � (−1)hk+1 � f(tk, yk), k = 0, 1, . . . , j,
yk+1 = yk ⊕ hk+1 � f(tk, yk), k = j + 1, j + 2, . . . , N − 1.

Example 1. Let us consider the following problem{
F
q Dy(t) = qt� y(t), t ∈ Tµ,
y0 = (0.82, 1, 1.2) ∈ Rf ,

(10)

where the solution is y(t) = (0.82, 1, 1.2)�
∑∞

n=0

qnt2n

[2n]q!!
, in which [2n]q!! = [n]q!(2)nq . Numerical

results are demonstrated in Table 1 for q = 0.7.
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Remark 1. It is clear that the accuracy of y1 in fuzzy local q-Taylor’s expansion depends on
small values of h and large values of p. But we should have the pth-order derivative of y. We
know that in the fuzzy local q-Taylor’s expansion for p > 1, finding the high order derivative of y
is difficult. Thus we should use other methods, that they do not apply the high order derivatives
of F

q Dy. By substituting p = 1 in the Taylor expansion, we can approximate the value of yi+1

that we call the fuzzy q-Euler’s method.

5 Conclusions

As we know, there are many real life problems in the various fields of science and engineering
that can be modelized as differential equations. Thus, solving differential equations have been
always one of the concerns of various sciences. Most of the time it is not possible to find
the exact solution to the problem using direct methods, so we need to use approximate and
numerical methods to solve differential equations.The q-Taylor’s expansion method is one of
the elementary and original methods for solving differential equations especially initial value q-
problems. In this article we have tried to introduce the fuzzy local q-Taylor’s expansion and the
fuzzy q-Euler’s method for solving the FIVq-P. These numerical methods were defined based on
the fuzzy q-Taylor’s expansion. Accordingly, we will need to introduce local q-Taylor’s expansion
and q-Euler’s method in crisp form then the fuzzy mode. In the future works, we will examine
the details of these applications that no attempt has been made here to develop.
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