تعداد نشریات | 31 |
تعداد شمارهها | 748 |
تعداد مقالات | 7,112 |
تعداد مشاهده مقاله | 10,245,900 |
تعداد دریافت فایل اصل مقاله | 6,899,584 |
اثر میدان مغناطیسی بر مقاومت پیوستگی میلگرد در بتن حاوی الیاف فولادی با استفاده از آزمون بیرونکشیدن میلگرد | ||
تحقیقات بتن | ||
مقاله 1، دوره 13، شماره 4 - شماره پیاپی 32، دی 1399، صفحه 5-16 اصل مقاله (998.54 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/jcr.2020.16649.1440 | ||
نویسندگان | ||
محمد حج فروش1؛ علی خیرالدین* 2؛ امید رضایی فر3 | ||
1دانشجوی دکتری سازه، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران | ||
2استاد ممتاز گروه سازه، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران | ||
3دانشیارگروه سازه، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران | ||
چکیده | ||
در این پژوهش با بهرهگیری از آزمون بیرونکشیدن میلگرد از داخل نمونه استوانهای بتن حاوی 5/1 درصد حجمی الیاف فولادی، مقاومت پیوستگی بین میلگرد و بتن در شرایطی مورد ارزیابی قرار میگیرد که نمونههای بتن در حالت تازه به مدت 2 دقیقه در معرض مستقیم میدان مغناطیسی قرارگرفتند. در این پژوهش، نمونه استوانهای استاندارد بتن با ابعاد300×150 میلیمتر و میلگرد با دو قطر مختلف شامل 14 و20 میلیمتر مورد بررسی قرار گرفت. به منظور بررسی اثر خواص مکانیکی و ریزساختاری بتن بر مقاومت پیوستگی، آزمایشهای مقاومتهای فشاری، کششی شکافت، خمشی و تصویربرداری میکروسکوپ الکترونی روی نمونههای مغناطیسی و غیرمغناطیسی انجام شد. نتایج آزمون بیرونکشیدگی میلگرد نشان داد که گسیختگی همه نمونهها از نوع لغزش میلگرد بود. اعمال میدان مغناطیسی به بتن تازه موجب افزایش مقاومت پیوستگی تا بیش از 83 و 51 درصد متناظر با میلگردهای با قطر 14 و 20 میلیمتر گردید. همچنین میزان طاقت نمونههای بتن تحت میدان مغناطیسی تا حدود 82 و 53 درصد متناظر با میلگردهای با قطر 14 و 20 میلیمتر افزایش یافت. میدان مغناطیسی در بهبود خواص مکانیکی بتن نیز موثر است. بر این اساس مقاومت فشاری بتن تحت میدان مغناطیسی به بیش از 21 درصد افزایش یافت که این میزان در خصوص مقاومتهای کششی و خمشی بتن به ترتیب تا حدود 9 درصد و 13 درصد تعیین گردید. همچنین تصاویر میکروسکوپ الکترونی مشخص کرد که اعمال میدان مغناطیسی به بتن تازه موجب متراکمتر شدن ریزساختار بتن از طریق اثرگذاری بر فرایند هیدراتاسیون سیمان میگردد. | ||
کلیدواژهها | ||
مقاومت پیوستگی؛ آزمایش بیرونکشیدگی میلگرد؛ میدان مغناطیسی یکنواخت؛ بتن الیافی؛ ریزساختار بتن | ||
مراجع | ||
[1] Saidani, M., Saraireh, D., Gerges, M. “Behaviour of different types of fibre reinforced concrete without admixture,” Eng. Struct. (2016); 113: 328-334. [2] Karimipour, A., Ghalehnovi, M., de Brito, J., Attari, M. “The effect of polypropylene fibres on the compressive strength, impact and heat resistance of self-compacting concrete,” Structures. (2020); 25:72-87. [3] Madandoust, R., Kazemi, M., Khakpour Talebi, P., de Brito, J. “Effect of the curing type on the mechanical properties of lightweight concrete with polypropylene and steel fibres,” Constr. Build. Mater. (2019); 223: 1038-1052. [4] Ahmadi, M., Kheyroddin, A., Dalvand, A., Kioumarsi, M. “New empirical approach for determining nominal shear capacity of steel fiber reinforced concrete beams,” Constr. Build. Mater. (2020); 234: 117293. [5] Parvez, A., Foster, S.J. “Fatigue behavior of steel-fiber-reinforced concrete beams,” J. Struct. Eng. (2015); 141: 04014117. [6] Kazemi, M., Kafi, M.A., Hajforoush, M., Kheyroddin, A. “Cyclic behaviour of steel ring filled with compressive plastic or concrete, installed in the concentric bracing system,” Asian J. Civ. Eng. (2019); 1-11. [7] Kazemi, M., Hajforoush, M., Khakpour Talebi, P., Daneshfar, M., Shokrgozar, A., Jahandari, S., Saberian, M., Li, J. “In-situ strength estimation of polypropylene fibre reinforced recycled aggregate concrete using Schmidt rebound hammer and point load test,” J. Sustain. Cem. Based Mater. (2020); 1-18. [8] Garcia Taengua, E., Martí Vargas, J.R., Serna, P. “Bond of reinforcing bars to steel fiber reinforced concrete,” Constr. Build. Mater. 2016; 105: 275-84. [9] Mazaheripour, H.B., Barros, J.A., Sena Cruz, J.M., Pepe, M., Martinelli E. “Experimental study on bond performance of GFRP bars in self-compacting steel fiber reinforced concrete,” Compos. Struct. (2013); 95: 202-12. [10] Albitar, M., Visintin, P., Ali, M.M., Lavigne, O., Gamboa, E. “Bond slip models for uncorroded and corroded steel reinforcement in class-F fly ash geopolymer concrete,” J. Mater. Civil Eng. (2017); 291: 04016186. [11] American Concrete Institute, ACI 408. Bond and Development of Straight Reinforcing Bars in Tension. (ACI 408R-03) Farmington Hills, MI, USA, (2003). [12] Arezoumandi, M., Steele, A.R., Volz, J.S. “Evaluation of the bond strengths between concrete and reinforcement as a function of recycled concrete aggregate replacement level,” Structures (2018); 16: 73-81. [13] Alhawat, M., Ashour, A. “Bond strength between corroded steel reinforcement and recycled aggregate concrete,” Structures (2019); 19: 369-385. [14] Saleh, N., Ashour, A., Sheehan, T. “Bond between glass fibre reinforced polymer bars and high-strength concrete,” Structures (2019); 22: 139-153. [15] ACI (American Concrete Institute), Building code requirements for structural concrete and commentary. ACI 318-14, Farmington Hills, MI, USA, (2014). [16] Du, J., Tang, C., Jia, B., Zhang, D., Miao, Q. “Preparation and long-term stability study of steel fiber/graphite conductive concrete,” Key Eng. Mater. (2016); 680: 361–364. [17] Shahir Liew, M., Nguyen Tri, P., Nguyen, T.A., Kakooei, S. Smart Nanoconcretes and Cement-Based Materials: Properties, Modelling and Applications. Elsevier, (2019); 215-239. [18] Wijffels, M.J.H., Wolfs, R.J.M., Suiker, A.S.J., Salet, T.A.M. “Magnetic orientation of steel fibres in self-compacting concrete beams: Effect on failure behavior,” Cem. Concr. Compos. (2017); 80: 342-355. [19] Mu, R., Li, H., Qing, L., Lin, J., Zhao, Q. “Aligning steel fibers in cement mortar using electro-magnetic field,” Constr. Build. Mater. (2017); 131: 309-316. [20] Gholhaki, M., Kheyroddin, A., Hajforoush, M., Kazemi, M. “An investigation on the fresh and hardened properties of self-compacting concrete incorporating magnetic water with various pozzolanic materials,” Constr. Build. Mater. (2018); 158: 173-180. [21] Ghorbani, S., Sharifi, S., Rokhsarpour, H., Shoja, S., Gholizadeh, M., Rahmatabad, M. A. D., & de Brito, J. “Effect of magnetized mixing water on the fresh and hardened state properties of steel fibre reinforced self-compacting concrete,” Constr. Build. Mater. (2020); 248: 118660. [22] Hajforoush, M., Madandoust, R., Kazemi, M. “Effects of simultaneous utilization of natural zeolite and magnetic water on engineering properties of self-compacting concrete,” Asian J. Civ. Eng. (2019); 20: 289–300. [23] Hajforoush, M., Kheyroddin, A., Rezaifar, O. “Investigation of engineering properties of steel fiber reinforced concrete exposed to homogeneous magnetic field,” Constr. Build. Mater. (2020); 252: 119064. [24] Ferrández, D., Saiz, P., Morón, C., Dorado, M.G., Morón, A. “Inductive method for the orientation of steel fibers in recycled mortars,” Constr. Build. Mater. (2019); 222: 243-253. [25] Abavisani, I., Rezaifar, O., Kheyroddin, A. “Alternating magnetic field effect on fine aggregate steel chip-reinforced concrete properties,” J. Mater. Civ. Eng. (2018); 30: 04018087. [26] Abavisani, I., Rezaifar, O., Kheyroddin, A. “Alternating magnetic field effect on fine aggregate concrete compressive strength,” Constr. Build. Mater. (2017); 134: 83-90. [27] Soto Bernal, J.J., Gonzalez Mota, R., Rosales Candelas, I., Ortiz Lozano, J.A. “Effects of static magnetic fields on the physical, mechanical, and microstructural properties of cement pastes,” Adv. Mater. Sci. Eng. (2015); 1-9. [28] Abavisani, I., Rezaifar, O., Kheyroddin, A. “Magneto-electric control of scaled-down reinforced concrete beams,” ACI Struct. J. (2017); 114: 233-244. [29] Rezaifar, O., Abavisiani, I., Kheyroddin, A. “Magneto-electric active control of scaled down reinforced concrete columns,” ACI Struct. J. (2017); 114: 1351-1362. [30] ASTM C33 / C33M-18, Standard Specification for Concrete Aggregates, ASTM International, West Conshohocken, PA, (2018). [31] ASTM C494, Standard Specification for Chemical Admixtures for Concrete, Annual Book of ASTM Standards, American Society for Testing and Materials, West Conshohocken, PA, USA, (2004). [32] Song, P.S., Hwang, S. “Mechanical properties of high-strength steel fiber-reinforced concrete,” Constr. Build. Mater. (2004); 18(9): 669-673. [33] ASTM A615. Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement. (ASTM A615/615M-16), ASTM International, West Conshohocken PA. (2016). [34] ASTM C192, Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, ASTM International, West Conshohocken. PA, USA, (2018). [35] Grant, I.S., Phillips, W.R. Electromagnetism. John Wiley & Sons, (2013). [36] RILEM 7-II-128. RC6: Bond Test for Reinforcing Steel. 1. Pull-Out Test. RILEM technical recommendations for the testing and use of construction materials, E & FN Spon, U.K., (1994); 102-105. | ||
آمار تعداد مشاهده مقاله: 1,105 تعداد دریافت فایل اصل مقاله: 839 |