Journal of Algebra and Related Topics

Vol. 8, No 2, (2020), pp 75-92

RELATIONS BETWEEN G-SETS AND THEIR ASSOCIATE \widehat{G}-SETS

N. RAKHSH KHORSHID AND S. OSTADHADI-DEHKORDI*

Abstract

In this paper, we define and consider G-set on Γ semihypergroups and we obtain relations between G-sets and their associate \widehat{G}-sets where G is a Γ-semihypergroup and \widehat{G} is an associated semihypergroup. Finally, we obtain the relation between direct limit of \widehat{G}-sets from the direct limit defined on G-sets.

1. Introduction

The concept of semigroup generalized by Sen and Saha[23]. They defined the notion of a Γ-semigroup as a generalization of a semigroup. In continue, mathematicians extended many classical properties of semigroups to Γ-semigroups, for instance Chattopadhyay [1, 2], Hila [18, 19], Hila et. al. [20], Sen et. al. [23, 24] and many others.

The concept of hypergroup was introduced in 1934 by a French mathematician F. Marty [22] and he published some notes on hypergroups, using this concept in algebraic functions, rational fractions, non-commutative groups. The concept of Γ-semihypergroups was introduced by Davvaz et al [17]. After that Dehkordi et. al. [6, 7] investigated the ideals, rough ideals, homomorphisms and regular relations of Γ-semihypergroups. Dehkordi et al introduced the notions of another Γ-hyperstructures [11]. Also, Dehkordi defined the notion quasi-order Γ-semihypergroup and introduced quasi-order semihypergroups associated with a quasi-order Γ-semihypergroups [12].

MSC(2010): 05C65, 20N15.
Keywords: Γ-semihypergroup, G-set, \widehat{G}-set, direct limit.
Received: 27 September 2020, Accepted: 14 November 2020.
$*$ Corresponding author .

In this paper, we will introduce the notion G-set in context of Γ semihypergroups as a generalization of G-set on semihypergroups. Also, we will obtain the notion \widehat{G}-set associated with G-set and study its relations with G-set. Finally, we will prove that the direct limit on \widehat{G}-set exists by using of direct limit on G-set.

2. Preliminaries

First of all, we recall some notions and results about Γ-semihypergroup that we shall use in the following paragraphs. Let G be a nonempty set and $\mathcal{P}^{*}(G)$ be the set of all nonempty subsets of G. A map ० : $G \times G \longrightarrow \mathcal{P}^{*}(G)$ is called hyperoperation on G and the couple (G, \circ) is called hypergroupoid. When $(x, y) \in G^{2}$ then its image under \circ is denoted by $x \circ y$. Let A and B be nonempty subsets of hypergroupoid G. Then, $A \circ B$ is given by $A \circ B=\bigcup_{a \in A, b \in B} a \circ b$. Also, $x \circ A$ is used for $\{x\} \circ A$. A hypergroupoid (G, \circ) is called semihypergroup if hyperoperation \circ is associative and a semihypergroup is hypergroup if for all $x \in G, G=x \circ G=G \circ x$.

Definition 2.1. Let G and Γ be nonempty subsets. Then, G is called a Γ-semihypergroup, when for every $\alpha \in \Gamma$ there is a hyperoperation $\oplus_{\alpha}: G \times G \longrightarrow \mathcal{P}^{*}(G)$ such that for every $\alpha, \beta \in \Gamma$ and $x, y, z \in G$:

$$
\left(x \oplus_{\alpha} y\right) \oplus_{\beta} z=x \oplus_{\alpha}\left(y \oplus_{\beta} z\right)
$$

A Γ-semihypergroup G is called Γ-hypergroup, when for every $\alpha \in \Gamma$ and $x \in G$,

$$
G=x \oplus_{\alpha} G=G \oplus_{\alpha} x
$$

Definition 2.2. Let G be a Γ-hypergroup. Then, we say that G is a Γ-polygroup if the following conditions hold:
(1) $\forall \alpha \in \Gamma, \exists e_{\alpha} \in G: \forall g \in G, e_{\alpha} \oplus_{\alpha} g=g \oplus_{\alpha} e_{\alpha}=g$,
(2) $\forall g \in G, \exists g^{-1} \in G, e_{\alpha} \in G: e_{\alpha} \in g \oplus_{\alpha} g^{-1} \cap g^{-1} \oplus_{\alpha} g$,
(3) $g_{1} \in g_{2} \oplus_{\alpha} g_{3} \Longrightarrow g_{2} \in g_{1} \oplus_{\alpha} g_{3}^{-1}, g_{3} \in g_{2}^{-1} \oplus_{\alpha} g_{1}$.

Also, we say that a Γ-polygroup G is a canonical Γ-hypergroup, if the following condition holds:
$\forall g_{1}, g_{2} \in G, \alpha \in \Gamma, \quad g_{1} \oplus_{\alpha} g_{2}=g_{2} \oplus_{\alpha} g_{1}$.
Example 2.3. Suppose that G is a canonical hypergroup, $H \leq G$ and $\Gamma=H$. For all $\alpha \in \Gamma$, we define

$$
H g_{1} H \oplus_{\alpha} H g_{2} H=H g_{1} \alpha \alpha^{-1} g_{2} H=\bigcup_{t \in g_{1} \alpha \alpha^{-1} g_{2}} H t H
$$

Therefore, $G / / H=\{H g H: g \in G\}$ is a Γ-polygroup.

Definition 2.4. Let G be a Γ-semihypergroup and X be a non-empty set. We say that X is a left G-set, if there is an external hyperoperation $h: G \times X \longrightarrow \mathcal{P}^{*}(X)$ with the property

$$
h\left(g_{1} \oplus_{\alpha} g_{2}, x\right)=h\left(g_{1}, h\left(g_{2}, x\right)\right)
$$

where $\alpha \in \Gamma, g_{1}, g_{2} \in G$ and $x \in X$.
If e is an scalar identity of G, we say that X has a unitary when $h(e, x)=x$, for every $x \in X$.

Dually, a non-empty set X is a right G-set if there is an external hyperoperation $h: X \times G \longrightarrow \mathcal{P}^{*}(X)$,

$$
h\left(x, g_{1} \oplus_{\alpha} g_{2}\right)=h\left(h\left(x, g_{1}\right), g_{2}\right)
$$

In the same way, we say that X has a unitary when $h(x, e)=x$, for every $x \in X$.

Example 2.5. Suppose that G is a semihypergroup, N is a subsemihypergroup of G and $\Gamma=\{n \in N: \mathrm{n}$ is an scalar element of G$\}$. Then, G is a Γ-semihypergroup and N is a Γ-subsemihypergroup of G with the following hyperoperation:

$$
\forall x, y \in G, n \in \Gamma, \quad x \oplus_{n} y=x \cdot n \cdot y
$$

Therefore, $G \times N$ is a Γ-semihypergroup by following hyperoperation:

$$
\left(g_{1}, n_{1}\right) \oplus_{n}\left(g_{2}, n_{2}\right)=\left\{(t, s): t \in g_{1} g_{2}, s \in n_{1} n_{2}\right\},
$$

where $\left(g_{1}, n_{1}\right),\left(g_{2}, n_{2}\right) \in G \times N$.
Also, we define the equivalence relation N^{*} on G as follows:

$$
\forall x, y \in G, x N^{*} y \Longleftrightarrow \forall n \in N, x \oplus_{n} N=y \oplus_{n} N
$$

Thus, $\left[G: N^{*}\right]=\left\{[x]_{N^{*}}: x \in G\right\}$ is a left $(G \times N)$-set:

$$
\begin{gathered}
h:(G \times N) \times\left[G: N^{*}\right] \longrightarrow \mathcal{P}^{*}\left(\left[G: N^{*}\right]\right), \\
h\left((g, n),[x]_{N^{*}}\right)=\left[g \oplus_{n} x\right]_{N^{*}} .
\end{gathered}
$$

Definition 2.6. Let G and H be Γ-semihypergroups. Then, we say that X is a (G, H)-set if it is a left G-set by external hyperoperation $h_{1}: G \times X \longrightarrow \mathcal{P}^{*}(X)$ and a right H-set by external hyperoperation $h_{2}: X \times H \longrightarrow \mathcal{P}^{*}(X)$ and

$$
h_{2}\left(h_{1}(g, x), h\right)=h_{1}\left(g, h_{2}(x, h)\right),
$$

where $g \in G, h \in H$ and $x \in X$.
Definition 2.7. Let G be a canonical Γ-hypergroup and X be a left G-set. Then, we say that X is reversible if $x_{1} \in h\left(g, x_{2}\right)$ implies that $x_{2} \in h\left(g^{-1}, x_{1}\right)$, where $x_{1}, x_{2} \in X$ and $g \in G$.

Definition 2.8. Let G be a Γ-semihypergroup and X be a left G-set and $x \in X$. Then, stabilizer x defined as follows:

$$
\operatorname{Stab}(x)=\{g \in G: x=h(g, x)\} .
$$

Definition 2.9. [12] Let H be a Γ-semihypergroup and the relation ρ defined on

$$
H \times \Gamma=\{(x, \alpha): x \in H, \alpha \in \Gamma\}
$$

as follows:

$$
(x, \alpha) \rho(y, \beta) \Longleftrightarrow \forall z \in H, x \oplus_{\alpha} z=y \oplus_{\beta} z
$$

This relation is equivalence. Then, the set $\widehat{H}=\left\{[(x, \alpha)]_{\rho}: x \in H, \alpha \in\right.$ $\Gamma\}$ is a semihypergroup by the following hyperoperation:

$$
[(x, \alpha)]_{\rho} \circ[(y, \beta)]_{\rho}=\left\{[(z, \beta)]_{\rho}: z \in x \oplus_{\alpha} y\right\} .
$$

Let X be a left G-set, $A, B \subseteq X$ and Θ be an equivalence relation on X. Then, we say that $(A, B) \in \bar{\Theta}$ if for every $a \in A$ there is $b \in B$ such that $(a, b) \in \Theta$ and for every $b^{\prime} \in B$ there is $a^{\prime} \in A$ such that $\left(a^{\prime}, b^{\prime}\right) \in \Theta$.

Definition 2.10. Let G be a Γ-semihypergroup and X be a left G-set. Then, an equivalence relation Θ is called regular, when

$$
\left(x_{1}, x_{2}\right) \in \Theta \Longrightarrow\left(h\left(g, x_{1}\right), h\left(g, x_{2}\right)\right) \in \bar{\Theta} .
$$

By the regular relation on left G-sets, we can construct quotient left G-sets as follows:
Proposition 2.11. Let X be a left G-set and Θ be an equivalence relation on X. Then, $[X: \Theta]=\left\{[x]_{\Theta}: x \in X\right\}$ is a left G-set by the following hyperoperation:

$$
\begin{gathered}
\bar{h}: G \times[X: \Theta] \longrightarrow \mathcal{P}^{*}([X: \Theta]) \\
\bar{h}\left(g,[x]_{\Theta}\right)=\left\{[t]_{\Theta}: t \in h(g, x)\right\}
\end{gathered}
$$

such that X is a left G-set by a hyperoperation $h: G \times X \longrightarrow \mathcal{P}^{*}(X)$.
Proof. Suppose that $\left[x_{1}\right]_{\Theta}=\left[x_{2}\right]_{\Theta}$. Since Θ is regular relation on X, implies that $\left(h\left(g, x_{1}\right), h\left(g, x_{2}\right)\right) \in \bar{\Theta}$. Hence, $\bar{h}\left(g,\left[x_{1}\right]_{\Theta}\right)=\bar{h}\left(g,\left[x_{2}\right]_{\Theta}\right)$ and the hyperoperation \bar{h} is well-defined. Also, for $[x]_{\Theta} \in[X: \Theta]$ and $g_{1}, g_{2} \in G$,

$$
\begin{aligned}
\bar{h}\left(g_{1} \oplus_{\alpha} g_{2},[x]_{\Theta}\right) & =\bigcup_{g \in g_{1} \oplus_{\alpha} g_{2}} \bar{h}\left(g,[x]_{\Theta}\right) \\
& \left.=\bigcup_{g \in g_{1} \oplus \alpha g_{2}}\{t]_{\Theta}: t \in h(g, x)\right\} \\
& =\left\{[t]_{\Theta}: t \in h\left(g_{1} \oplus_{\alpha} g_{2}, x\right)\right\} \\
& =\left\{[t]_{\Theta}: t \in h\left(g_{1}, h\left(g_{2}, x\right)\right)\right\} \\
& =\bar{h}\left(g_{1}, \bar{h}\left(g_{2},[x]_{\Theta}\right)\right) .
\end{aligned}
$$

This complete the proof.

Proposition 2.12. Let G be a commutative Γ-semihypergroup and X be a left G-set. Then, X is a (G, G)-set.

Proof. The proof is straightforward.
Example 2.13. Let G be a canonical hypergroup and H be a subcanonical hypergroup of G. Then, G is a left H-set by the following hyperoperation:

$$
\begin{gathered}
h: H \times G \longrightarrow \mathcal{P}^{*}(G), \\
h(\alpha, g)=\alpha^{-1} g \alpha .
\end{gathered}
$$

Let $\alpha_{1}, \alpha_{2} \in H$ and $g \in G$. Therefore, $h\left(\alpha_{1} \alpha_{2}, g\right)=\left(\alpha_{1} \alpha_{2}\right)^{-1} g\left(\alpha_{1} \alpha_{2}\right)$ and we have

$$
\begin{aligned}
h\left(\alpha_{1}, h\left(\alpha_{2}, g\right)\right) & =h\left(\alpha_{1}, \alpha_{2}^{-1} g \alpha_{2}\right) \\
& =\alpha_{1}^{-1}\left(\alpha_{2}^{-1} g \alpha_{2}\right) \alpha_{1} \\
& =\left(\alpha_{2} \alpha_{1}\right)^{-1} g\left(\alpha_{2} \alpha_{1}\right) .
\end{aligned}
$$

Because H is canonical hypergroup, we have $\alpha_{1} \alpha_{2}=\alpha_{2} \alpha_{1}$. Also, G is a right H-set, because H is commutative.

Definition 2.14. A map $\phi: X \longrightarrow Y$ from a left G-set X (By a hyperoperation h_{1}) into a left G-set Y (By a hyperoperation h_{2}) is called a G-map if

$$
\phi\left(h_{1}(g, x)\right)=h_{2}(g, \phi(x)) .
$$

When X and Y are (G, H)-sets and $\phi: X \longrightarrow Y$ is a G-map and an H-map, then ϕ is called (G, H)-map. A G-map ϕ is called isomorphism when it is both one to one and onto.
Let $\operatorname{Mor}(X, Y)$ be the set of all G-maps from X into Y, where X and Y are left G-sets. Then, $\operatorname{Mor}(X, Y)$ is a left G-set.

Definition 2.15. Let (I, \leq) be a partially ordered set and $\left\{X_{i}: i \in I\right\}$ be a collection of (G, H)-sets, where G and H be Γ-semihypergroups. Also, for every $i, j \in I$ such that $i \leq j$, there are (G, H)-maps $\alpha_{i j}$: $X_{i} \longrightarrow X_{j}$ such that
(1) $\alpha_{i i}=I_{X_{i}}$,
(2) $\alpha_{i j} \circ \alpha_{j k}=\alpha_{i k}$.

Then, we say that $\left(X_{i}, \alpha_{i j}\right)_{i, j \in I}$ is a direct system of (G, H)-sets.
A (G, H)-set X is called a direct limit of $\left(X_{i}, \alpha_{i j}\right)_{i, j \in I}$ if there exist (G, H)-maps $\beta_{i}: X_{i} \longrightarrow X$ such that for all $i \leq j, \beta_{j} \circ \alpha_{i j}=\beta_{i}$. Also, if there exists a (G, H)-set Y with the property that there exist (G, H)-maps $\gamma_{i}: X_{i} \longrightarrow Y$ such that $\gamma_{j} \circ \alpha_{i j}=\gamma_{i}$, where $i \leq j$, then there is a unique (G, H)-map $\delta: X \longrightarrow Y$ such that $\delta \circ \beta_{i}=\gamma_{i}$, for every $i \in I$. We write $\lim _{i \in I} X_{i}=X$.
3. Relations between G-SEtS and their associate \widehat{G}-SEtS

In this section, we introduce the notion \widehat{G}-set by use of the notion G set. Also, we define a regular relation $\widehat{\Theta}$ on \widehat{G}-sets and obtain some examples and results. Throughout this section, G is a Γ-semihypergroup unless otherwise states. In continue, we construct \widehat{G}-set, where \widehat{G} is an associated semihypergroup of Γ-semihypergroup G.

Let G be a Γ-semihypergroup, X be a left G-set by a hyperoperation $h: G \times X \longrightarrow \mathcal{P}^{*}(X)$ and the relation λ defined on

$$
X \times G \times \Gamma=\{(x, g, \gamma): x \in X, g \in G, \gamma \in \Gamma\}
$$

as follows:

$$
(x, g, \alpha) \lambda\left(y, g^{\prime}, \beta\right) \Longleftrightarrow \forall g^{\prime \prime} \in G, h\left(g \oplus_{\alpha} g^{\prime \prime}, x\right)=h\left(g^{\prime} \oplus_{\beta} g^{\prime \prime}, y\right) .
$$

Then, λ is an equivalence relation and

$$
\widehat{X}=\left\{[(x, g, \alpha)]_{\lambda}: x \in X, g \in G, \alpha \in \Gamma\right\},
$$

is a left \widehat{G}-set by the following hyperoperation:

$$
\begin{aligned}
& \widehat{h}: \widehat{G} \times \widehat{X} \longrightarrow \mathcal{P}^{*}(\widehat{X}), \\
& \widehat{h}\left([(g, \alpha)]_{\rho},\left[\left(x, g^{\prime}, \beta\right)\right]_{\lambda}\right)=\left[\left(h(g, x), g^{\prime}, \beta\right)\right]_{\lambda} .
\end{aligned}
$$

Because

$$
\begin{aligned}
\widehat{h}\left(\left[\left(g_{1}, \alpha\right)\right]_{\rho} \circ\left[\left(g_{2}, \beta\right)\right]_{\rho},\left[\left(x, g^{\prime}, \gamma\right)\right]_{\lambda}\right) & =\widehat{h}\left(\left[\left(g_{1} \oplus_{\alpha} g_{2}, \beta\right)\right]_{\rho},\left[\left(x, g^{\prime}, \gamma\right)\right]_{\lambda}\right) \\
& =\left[\left(h\left(g_{1} \oplus_{\alpha} g_{2}, x\right), g^{\prime}, \gamma\right)\right]_{\lambda} \\
& =\left[\left(h\left(g_{1}, h\left(g_{2}, x\right)\right), g^{\prime}, \gamma\right)\right]_{\lambda} \\
& =\widehat{h}\left(\left[\left(g_{1}, \alpha\right)\right]_{\rho},\left[\left(h\left(g_{2}, x\right), g^{\prime}, \gamma\right)\right]_{\lambda}\right) \\
& =\widehat{h}\left(\left[\left(g_{1}, \alpha\right)\right]_{\rho}, \widehat{h}\left(\left[\left(g_{2}, \beta\right)\right]_{\rho},\left[\left(x, g^{\prime}, \gamma\right)\right]_{\lambda}\right)\right),
\end{aligned}
$$

for every $\left[\left(g_{1}, \alpha\right)\right]_{\rho},\left[\left(g_{2}, \beta\right)\right]_{\rho} \in \widehat{G}$ and $\left[\left(x, g^{\prime}, \gamma\right)\right]_{\lambda} \in \widehat{X}$.
Definition 3.1. Let X be a left G-set and $A \subseteq X$. Then, we define

$$
\widehat{A}=\left\{[(x, g, \alpha)]_{\lambda}: x \in A, g \in G, \alpha \in \Gamma\right\} .
$$

Example 3.2. Let G be a canonical Γ-hypergroup and X be a reversible left G-set with unit by an external hyperoperation h. Then, we define the equivalence relation \equiv on X as follows:

$$
\forall x_{1}, x_{2} \in X, x_{1} \equiv x_{2} \Longleftrightarrow \exists g \in G: x_{1} \in h\left(g, x_{2}\right) .
$$

Let $x \equiv y$ and $g^{\prime} \in G$ be arbitrary. Then, we prove that $h\left(g^{\prime}, x\right) \equiv h\left(g^{\prime}, y\right)$. If $u \in h\left(g^{\prime}, x\right)$ be arbitrary, then $x \equiv y$ implies that there exists $g \in G$ such that $x \in h(g, y)$. Hence,

$$
u \in h\left(g^{\prime}, x\right) \subseteq h\left(g^{\prime}, h(g, y)\right)=h\left(g^{\prime} \oplus_{\alpha} g, y\right)=h\left(g \underset{\alpha}{\oplus} g^{\prime}, y\right)=h\left(g, h\left(g^{\prime}, y\right)\right),
$$

because G is commutative. Thus, There exists $v \in h\left(g^{\prime}, y\right)$ such that $u \in$ $h(g, v)$. This means that $u \equiv v$. Similarly, we can show that for every $v \in h\left(g^{\prime}, y\right)$, there exists $u \in h\left(g^{\prime}, x\right)$ such that $u \equiv v$. We conclude that \equiv is regular. Also, $[X: \equiv]=\left\{[x]_{\equiv}: x \in X\right\}$ is a left G-set by the following hyperoperation:

$$
\begin{aligned}
& h^{\oplus}: G \times[X: \equiv] \longrightarrow \mathcal{P}^{*}([X: \equiv]) \\
& h^{\oplus}\left(g,[x]_{\equiv}\right)=[h(g, x)]_{\equiv}
\end{aligned}
$$

First, we show that h^{\oplus} is well-defined. Suppose that $\left(g_{1},\left[x_{1}\right]_{\equiv}\right)=\left(g_{2},\left[x_{2}\right]_{\equiv}\right)$. Hence, $g_{1}=g_{2}$ and $\left[x_{1}\right]_{\equiv}=\left[x_{2}\right]_{\equiv}$. This implies that $x_{1} \equiv x_{2}$. Then, $h\left(g_{1}, x_{1}\right) \equiv h\left(g_{2}, x_{2}\right)$, because \equiv is regular. We obtain

$$
\left[h\left(g_{1}, x_{1}\right)\right]_{\equiv}=\left[h\left(g_{2}, x_{2}\right)\right]_{\equiv}
$$

Also, we have

$$
\begin{aligned}
h^{\oplus}\left(g_{1} \oplus_{\alpha} g_{2},[x]_{\equiv}\right) & =\left[h\left(g_{1} \oplus_{\alpha} g_{2}, x\right)\right]_{\equiv} \\
& =\left[h\left(g_{1}, h\left(g_{2}, x\right)\right)\right]_{\equiv} \\
& =h^{\oplus}\left(g_{1},\left[h\left(g_{2}, x\right)\right]_{\equiv}\right) \\
& =h^{\oplus}\left(g_{1}, h^{\oplus}\left(g_{2},[x]_{\equiv}\right)\right),
\end{aligned}
$$

 \widehat{G}-set.

Example 3.3. Consider the left $(G \times N)$-set $\left[G: N^{*}\right]$ defined in Example 2.5. We obtain

$$
\left[\widehat{G: N^{*}}\right]=\left\{\left[\left([x]_{N^{*}},(g, n), n^{\prime}\right)\right]_{\lambda}:[x]_{N^{*}} \in\left[G: N^{*}\right],(g, n) \in G \times N, n^{\prime} \in \Gamma\right\}
$$

is a left $\widehat{G \times N}$-set as following:
$\widehat{h}:(\widehat{G \times N}) \times\left[\widehat{G: N^{*}}\right] \longrightarrow \mathcal{P}^{*}\left(\left[\widehat{G: N^{*}}\right]\right)$,
$\widehat{h}\left(\left[\left((g, n), n_{1}\right)\right]_{\rho},\left[\left([x]_{N^{*}},\left(g^{\prime}, n^{\prime}\right), n_{2}\right)\right]_{\lambda}\right)=\left[\left(h\left((g, n),[x]_{N^{*}}\right),\left(g^{\prime}, n^{\prime}\right), n_{2}\right)\right]_{\lambda}$.
Also, $\left[\widehat{G: N^{*}}\right]$ is a left $(\widehat{G}, \widehat{N})$-set by the following hyperoperation:
$h^{\prime}:(\widehat{G} \times \widehat{N}) \times\left[\widehat{G: N^{*}}\right] \longrightarrow \mathcal{P}^{*}\left(\left[\widehat{G: N^{*}}\right]\right)$,
$h^{\prime}\left(\left(\left[\left(g, n_{1}\right)\right]_{\rho},\left[\left(n, n_{2}\right)\right]_{\rho}\right),\left[\left([x]_{N^{*}},\left(g^{\prime}, n^{\prime}\right), n_{3}\right)\right]_{\lambda}\right)=$ $\left[\left(h\left((g, n),[x]_{N^{*}}\right),\left(g^{\prime}, n^{\prime}\right), n_{3}\right)\right]_{\lambda}$.

Proposition 3.4. Let X be a left G-set. If e_{α} is a unit of X, then $\left[\left(e_{\alpha}, \alpha\right)\right]_{\rho}$ is a unit of \widehat{X}.
Proof. Suppose that $[(x, g, \beta)]_{\lambda} \in \widehat{X}$. Then,

$$
\begin{aligned}
\widehat{h}\left(\left[\left(e_{\alpha}, \alpha\right)\right]_{\rho},[(x, g, \beta)]_{\lambda}\right) & =\left[\left(h\left(e_{\alpha}, x\right), g, \beta\right)\right]_{\lambda} \\
& =[(x, g, \beta)]_{\lambda}
\end{aligned}
$$

because e_{α} is a unit of X, so $h\left(e_{\alpha}, x\right)=x$. Therefore, $\left[\left(e_{\alpha}, \alpha\right)\right]_{\rho}$ is a unit of \widehat{X}.

Definition 3.5. Let G and H be Γ-semihypergroups such that $G \cap H=\emptyset, X$ be a (G, H)-set by hyperoperations h_{1} and h_{2}, and the equivalence relation λ defined on $X \times G \times \Gamma$ and $X \times H \times \Gamma$. Then,

$$
\widehat{\mathcal{X}}=\left\{[(x, t, \alpha)]_{\lambda}: x \in X, t \in G \cup H, \alpha \in \Gamma\right\},
$$

is a $(\widehat{G}, \widehat{H})$-set by the following hyperoperations:

$$
\begin{array}{lll}
\widehat{h_{1}}: \widehat{G} \times \widehat{\mathcal{X}} \longrightarrow \mathcal{P}^{*}(\widehat{\mathcal{X}}) & : & \widehat{h_{1}}\left([(g, \alpha)]_{\rho},\left[\left(x, g^{\prime}, \beta\right)\right]_{\lambda}\right)=\left[\left(h_{1}(g, x), g^{\prime}, \beta\right)\right]_{\lambda}, \\
\widehat{h_{2}}: \widehat{\mathcal{X}} \times \widehat{H} \longrightarrow \mathcal{P}^{*}(\widehat{\mathcal{X}}) \quad: \quad \widehat{h_{2}}\left(\left[\left(x, h^{\prime}, \beta\right)\right]_{\lambda},[(h, \alpha)]_{\rho}\right)=\left[\left(h_{2}(x, h), h^{\prime}, \beta\right)\right]_{\lambda} .
\end{array}
$$

Because

$$
\begin{aligned}
\left.\widehat{h_{2}} \widehat{h_{1}}\left([(g, \alpha)]_{\rho},\left[\left(x, g^{\prime}, \beta\right)\right]_{\lambda}\right),[(h, \gamma)]_{\rho}\right) & =\widehat{h_{2}}\left(\left[\left(h_{1}(g, x), g^{\prime}, \beta\right)\right]_{\lambda},[(h, \gamma)]_{\rho}\right) \\
& =\left[\left(h_{2}\left(h_{1}(g, x), h\right), g^{\prime}, \beta\right)\right]_{\lambda} \\
& =\left[\left(h_{1}\left(g, h_{2}(x, h)\right), g^{\prime}, \beta\right)\right]_{\lambda} \\
& =\widehat{h_{1}}\left([(g, \alpha)]_{\rho},\left[\left(h_{2}(x, h), g^{\prime}, \beta\right)\right]_{\lambda}\right) \\
& =\widehat{h_{1}}\left([(g, \alpha)]_{\rho}, \widehat{h_{2}}\left(\left[\left(x, g^{\prime}, \beta\right)\right]_{\lambda},[(h, \gamma)]_{\rho}\right)\right) .
\end{aligned}
$$

Proposition 3.6. Let X be a reversible left G-set and G be $a \Gamma$-polygroup. Then, \widehat{X} is a reversible left \widehat{G}-set.
Proof. Let $[(x, g, \alpha)]_{\lambda} \in \widehat{h}\left(\left[\left(g^{\prime}, \gamma\right)\right]_{\rho},\left[\left(y, g^{\prime \prime}, \beta\right)\right]_{\lambda}\right)$, then

$$
[(x, g, \alpha)]_{\lambda} \in\left[\left(h\left(g^{\prime}, y\right), g^{\prime \prime}, \beta\right)\right]_{\lambda} .
$$

So, there is $\left[\left(t, g^{\prime \prime}, \beta\right)\right]_{\lambda} \in \widehat{X}$ such that $t \in h\left(g^{\prime}, y\right)$ and $[(x, g, \alpha)]_{\lambda}=\left[\left(t, g^{\prime \prime}, \beta\right)\right]_{\lambda}$. We conclude that $y \in h\left(\left(g^{\prime}\right)^{-1}, t\right)$, because X is reversible. Then,

$$
\begin{aligned}
{\left[\left(y, g^{\prime \prime}, \beta\right)\right]_{\lambda} \in\left[\left(h\left(\left(y^{\prime}\right)^{-1}, t\right), g^{\prime \prime}, \beta\right)\right]_{\lambda} } & =\widehat{h}\left(\left[\left(\left(g^{\prime}\right)^{-1}, \gamma\right)\right]_{\rho},\left[\left(t, g^{\prime \prime}, \beta\right)\right]_{\lambda}\right) \\
& =\widehat{h}\left(\left[\left(\left(g^{\prime}\right)^{-1}, \gamma\right)\right]_{\rho},[(x, g, \alpha)]_{\lambda}\right) .
\end{aligned}
$$

Therefore, $\left[\left(y, g^{\prime \prime}, \beta\right)\right]_{\lambda} \in \widehat{h}\left(\left[\left(\left(g^{\prime}\right)^{-1}, \gamma\right)\right]_{\rho},[(x, g, \alpha)]_{\lambda}\right)$.
Proposition 3.7. Let G be a commutative Γ-semihypergroup and X be a left G-set. Then, \widehat{X} is a $(\widehat{G}, \widehat{G})$-set.
Proof. It is straightforward.
Example 3.8. By Example 3.2, \equiv is an equivalence relation on reversible left G-set X with unit such that G is a Γ-polygroup. We define the relation \cong on \widehat{X} as follows:

Then, the relation \cong is an equivalence. Suppose that $\left[\left(x, g^{\prime}, \alpha\right)\right]_{\lambda} \in \widehat{X}$. Therefore, $x \in X$. So, $x \equiv x$, because \equiv is an equivalence relation on X. Hence, there is $g \in G$ such that $x \in h(g, x)$. We conclude that

$$
\left[\left(x, g^{\prime}, \alpha\right)\right]_{\lambda} \in\left[\left(h(g, x), g^{\prime}, \alpha\right)\right]_{\lambda} .
$$

This implies that $\left[\left(x, g^{\prime}, \alpha\right)\right]_{\lambda} \cong\left[\left(x, g^{\prime}, \alpha\right)\right]_{\lambda}$. So, the relation \cong is reflexive. Suppose that $[(x, g, \alpha)]_{\lambda} \cong\left[\left(y, g^{\prime}, \beta\right)\right]_{\lambda}$. Hence, there is $g^{\prime \prime} \in G$ such that $[(x, g, \alpha)]_{\lambda} \in\left[\left(h\left(g^{\prime \prime}, y\right), g^{\prime}, \beta\right)\right]_{\lambda}$. So, $[(x, g, \alpha)]_{\lambda} \in \widehat{h}\left(\left[\left(g^{\prime \prime}, \gamma\right)\right]_{\rho},\left[\left(y, g^{\prime}, \beta\right)\right]_{\lambda}\right)$, for every $\gamma \in \Gamma$. We obtain

$$
\begin{aligned}
{\left[\left(y, g^{\prime}, \beta\right)\right]_{\lambda} } & \in \widehat{h}\left(\left[\left(\left(g^{\prime \prime}\right)^{-1}, \gamma\right)\right]_{\rho},[(x, g, \alpha)]_{\lambda}\right) \\
& =\left[\left(h\left(\left(g^{\prime \prime}\right)^{-1}, x\right), g, \alpha\right)\right]_{\lambda} .
\end{aligned}
$$

Then, $\left[\left(y, g^{\prime}, \beta\right)\right]_{\lambda} \cong[(x, g, \alpha)]_{\lambda}$. This implies that \cong is symmetric. Now, we show that the relation \cong is transitive: Suppose that $[(x, g, \alpha)]_{\lambda} \cong\left[\left(y, g^{\prime}, \beta\right)\right]_{\lambda}$ and $\left[\left(y, g^{\prime}, \beta\right)\right]_{\lambda} \cong\left[\left(z, g^{\prime \prime}, \gamma\right)\right]_{\lambda}$. Therefore, there exist $g_{1}, g_{2} \in G$ such that

$$
[(x, g, \alpha)]_{\lambda} \in\left[\left(h\left(g_{1}, y\right), g^{\prime}, \beta\right)\right]_{\lambda}, \quad\left[\left(y, g^{\prime}, \beta\right)\right]_{\lambda} \in\left[\left(h\left(g_{2}, z\right), g^{\prime \prime}, \gamma\right)\right]_{\lambda}
$$

Thus,

$$
\begin{aligned}
{[(x, g, \alpha)]_{\lambda} \in \widehat{h}\left(\left[\left(g_{1}, \gamma^{\prime}\right)\right]_{\rho},\left[\left(y, g^{\prime}, \beta\right)\right]_{\lambda}\right) } & \subseteq \widehat{h}\left(\left[\left(g_{1}, \gamma^{\prime}\right)\right]_{\rho},\left[\left(h\left(g_{2}, z\right), g^{\prime \prime}, \gamma\right)\right]_{\lambda}\right) \\
& =\left[\left(h\left(g_{1}, h\left(g_{2}, z\right)\right), g^{\prime \prime}, \gamma\right)\right]_{\lambda} \\
& =\left[\left(h\left(g_{1} \oplus \gamma_{\gamma^{\prime \prime}} g_{2}, z\right), g^{\prime \prime}, \gamma\right)\right]_{\lambda}, \gamma^{\prime \prime} \in \Gamma .
\end{aligned}
$$

Then, there exists $g^{\prime \prime \prime} \in g_{1} \underset{\gamma^{\prime \prime}}{\oplus} g_{2}$ such that $[(x, g, \alpha)]_{\lambda} \in\left[\left(h\left(g^{\prime \prime \prime}, z\right), g^{\prime \prime}, \gamma\right)\right]_{\lambda}$.
We conclude that $[(x, g, \alpha)]_{\lambda} \cong\left[\left(z, g^{\prime \prime}, \gamma\right)\right]_{\lambda}$.
Definition 3.9. Let X be a left G-set and Θ be an equivalence relation on X. We define the relation $\widehat{\Theta}$ on \widehat{X} as follows:

$$
[(x, g, \alpha)]_{\lambda} \widehat{\Theta}\left[\left(y, g^{\prime}, \beta\right)\right]_{\lambda} \Longleftrightarrow \forall g^{\prime \prime} \in G: h\left(g \oplus_{\alpha} g^{\prime \prime}, x\right) \bar{\Theta} h\left(g^{\prime} \oplus_{\beta} g^{\prime \prime}, y\right)
$$

Proposition 3.10. Let X be a left G-set and Θ be an equivalence relation on X. Then, $\widehat{\Theta}$ is an equivalence relation on \widehat{X}.
Proof. Suppose that $[(x, g, \alpha)]_{\lambda} \in \widehat{X}$ be arbitrary. It's obvious that for every $g^{\prime} \in G$,

$$
\left[h\left(g \oplus_{\alpha} g^{\prime}, x\right)\right]_{\Theta}=\left[h\left(g \oplus_{\alpha} g^{\prime}, x\right)\right]_{\Theta} .
$$

Therefore, $h\left(g \oplus_{\alpha} g^{\prime}, x\right) \bar{\Theta} h\left(g \oplus_{\alpha} g^{\prime}, x\right)$. So,

$$
[(x, g, \alpha)]_{\lambda} \widehat{\Theta}[(x, g, \alpha)]_{\lambda} .
$$

Thus, $\widehat{\Theta}$ is reflexive. Suppose that $[(x, g, \alpha)]_{\lambda} \widehat{\Theta}\left[\left(y, g^{\prime}, \beta\right)\right]_{\lambda}$. Therefore, for every $g^{\prime \prime} \in G$, we have

$$
h\left(g \oplus_{\alpha} g^{\prime \prime}, x\right) \bar{\Theta} h\left(g^{\prime} \oplus_{\beta} g^{\prime \prime}, y\right) .
$$

We obtain

$$
h\left(g^{\prime} \underset{\beta}{\oplus} g^{\prime \prime}, y\right) \bar{\Theta} h\left(g \oplus_{\alpha} g^{\prime \prime}, x\right),
$$

because Θ is symmetric. Then,

$$
\left[\left(y, g^{\prime}, \beta\right)\right]_{\lambda} \widehat{\Theta}[(x, g, \alpha)]_{\lambda} .
$$

So, $\widehat{\Theta}$ is symmetric. Now, we show that $\widehat{\Theta}$ is transitive. Let $[(x, g, \alpha)]_{\lambda} \widehat{\Theta}\left[\left(y, g^{\prime}, \beta\right)\right]_{\lambda}$ and $\left[\left(y, g^{\prime}, \beta\right)\right]_{\lambda} \widehat{\Theta}\left[\left(z, g^{\prime \prime}, \gamma\right)\right]_{\lambda}$. Then,

$$
\forall g_{1} \in G, h\left(g \oplus_{\alpha} g_{1}, x\right) \bar{\Theta} h\left(g^{\prime} \oplus_{\beta} g_{1}, y\right), \quad h\left(g^{\prime} \oplus_{\beta} g_{1}, y\right) \bar{\Theta} h\left(g^{\prime \prime} \oplus_{\beta} g_{1}, z\right)
$$

We obtain

$$
h\left(g \oplus_{\alpha} g_{1}, x\right) \bar{\Theta} h\left(g^{\prime \prime} \oplus_{\beta} g_{1}, z\right)
$$

because Θ is transitive. We conclude that $[(x, g, \alpha)]_{\lambda} \widehat{\Theta}\left[\left(z, g^{\prime \prime}, \gamma\right)\right]_{\lambda}$.
Every regular relation on a left G-set X of commutative Γ-semihypergroup, induce a regular relation on left \widehat{G}-set \widehat{X} as follows:

Proposition 3.11. Let Θ be a regular relation on a left G-set X such that G is a commutative Γ-semihypergroup. Then, $\widehat{\Theta}$ is a regular relation on \widehat{X}.
Proof. Suppose that $\left[\left(x, g_{1}, \alpha_{1}\right)\right]_{\lambda} \widehat{\Theta}\left[\left(y, g_{2}, \alpha_{2}\right)\right]_{\lambda}$ and $[(t, \gamma)]_{\rho} \in \widehat{G}$. We show that

$$
\widehat{h}\left([(t, \gamma)]_{\rho},\left[\left(x, g_{1}, \alpha_{1}\right)\right]_{\lambda}\right) \overline{\widehat{\Theta}} \widehat{h}\left([(t, \gamma)]_{\rho},\left[\left(y, g_{2}, \alpha_{2}\right)\right]_{\lambda}\right)
$$

Let $\left[\left(u, g_{1}, \alpha_{1}\right)\right]_{\lambda} \in \widehat{h}\left([(t, \gamma)]_{\rho},\left[\left(x, g_{1}, \alpha_{1}\right)\right]_{\lambda}\right)$. Then, we have

$$
\widehat{h}\left([(t, \gamma)]_{\rho},\left[\left(x, g_{1}, \alpha_{1}\right)\right]_{\lambda}\right)=\left[\left(h(t, x), g_{1}, \alpha_{1}\right)\right]_{\lambda}
$$

Hence, $u \in h(t, x)$. By the assumption, $h\left(g_{1} \underset{\alpha_{1}}{\oplus} t, x\right) \bar{\Theta} h\left(g_{2} \underset{\alpha_{2}}{\oplus} t, y\right)$, for all $t \in G$. This implies that

$$
h\left(g_{1}, h(t, x)\right) \bar{\Theta} h\left(g_{2}, h(t, y)\right)
$$

There exists $v \in h(t, y)$ such that $h\left(g_{1}, u\right) \bar{\Theta} h\left(g_{2}, v\right)$. For every $z \in G$, $h\left(z, h\left(g_{1}, u\right)\right) \bar{\Theta} h\left(z, h\left(g_{2}, v\right)\right)$. Indeed, Θ is a regular relation. By the commutativity of G, we have $h\left(g_{1}, h(z, u)\right) \bar{\Theta} h\left(g_{2}, h(z, v)\right)$. Hence,

$$
h\left(g_{1}, h(z, h(t, x))\right) \bar{\Theta} h\left(g_{2}, h(z, h(t, y))\right)
$$

Hence, $h\left(g_{1} \underset{\alpha_{1}}{\oplus} z, h(t, x)\right) \bar{\Theta} h\left(g_{2} \underset{\alpha_{2}}{\oplus} z, h(t, y)\right)$. By the definition of $\widehat{\Theta}$, we have

$$
\left[\left(h(t, x), g_{1}, \alpha_{1}\right)\right]_{\lambda} \overline{\widehat{\Theta}}\left[\left(h(t, y), g_{2}, \alpha_{2}\right)\right]_{\lambda}
$$

hence, we conclude that

$$
\widehat{h}\left([(t, \gamma)]_{\rho},\left[\left(x, g_{1}, \alpha_{1}\right)\right]_{\lambda}\right) \widehat{\widehat{\Theta}} \widehat{h}\left([(t, \gamma)]_{\rho},\left[\left(y, g_{2}, \alpha_{2}\right)\right]_{\lambda}\right)
$$

Which means that $\widehat{\Theta}$ is regular.
Proposition 3.12. Let X be a left G-set and Θ be a regular relation on X. Then,

$$
\left[\left([x]_{\Theta}, g, \alpha\right)\right]_{\lambda} \subseteq\left[\left([(x, g, \alpha)]_{\lambda}\right)\right]_{\widehat{\Theta}}
$$

Proof. Suppose that $[(t, g, \alpha)]_{\lambda} \in\left[\left([x]_{\Theta}, g, \alpha\right)\right]_{\lambda}$. Hence, $t \in[x]_{\Theta}$. So, $t \Theta x$. We have $h\left(g^{\prime \prime}, t\right) \bar{\Theta} h\left(g^{\prime \prime}, x\right)$, for every $g^{\prime \prime} \in G$, because Θ is regular. Also, we have

$$
h\left(g, h\left(g^{\prime \prime}, t\right)\right) \bar{\Theta} h\left(g, h\left(g^{\prime \prime}, x\right)\right) .
$$

We conclude that $h\left(g \oplus_{\alpha} g^{\prime \prime}, t\right) \bar{\Theta} h\left(g \oplus_{\alpha} g^{\prime \prime}, x\right)$. This means that

$$
[(t, g, \alpha)]_{\lambda} \widehat{\Theta}[(x, g, \alpha)]_{\lambda},
$$

and we obtain $[(t, g, \alpha)]_{\lambda} \in\left[\left([(x, g, \alpha)]_{\lambda}\right)\right]_{\widehat{\Theta}}$.
Proposition 3.13. Let G be a Γ-polygroup and X be a reversible left G-set with unit and consider relations \equiv and \cong defined in Examples 3.2 and 3.8. Then,

$$
\left[\left(\left[\left(x_{1}, g_{1}, \alpha_{1}\right)\right]_{\lambda}\right)\right]_{\cong}=\left[\left(\left[x_{1}\right]_{\equiv}, g_{1}, \alpha_{1}\right)\right]_{\lambda} .
$$

Proof. By the definition of the equivalence relation \cong, we have

$$
\begin{aligned}
& {\left[\left(\left[\left(x_{1}, g_{1}, \alpha_{1}\right)\right]_{\lambda}\right)\right]_{\equiv}=\left\{\left[\left(x_{2}, g_{2}, \alpha_{2}\right)\right]_{\lambda} \in \widehat{X}:\left[\left(x_{2}, g_{2}, \alpha_{2}\right)\right]_{\lambda} \cong\left[\left(x_{1}, g_{1}, \alpha_{1}\right)\right]_{\lambda}\right\}} \\
& =\left\{\left[\left(x_{2}, g_{2}, \alpha_{2}\right)\right]_{\lambda} \in \widehat{X}: \exists g^{\prime \prime} \in G:\left[\left(x_{2}, g_{2}, \alpha_{2}\right)\right]_{\lambda} \in\left[\left(h\left(g^{\prime \prime}, x_{1}\right), g_{1}, \alpha_{1}\right)\right]_{\lambda}\right\} \\
& =\left[\left(h\left(g^{\prime \prime}, x_{1}\right), g_{1}, \alpha_{1}\right)\right]_{\lambda} \\
& =\bigcup_{t \in h\left(g^{\prime \prime}, x_{1}\right)}\left[\left(t, g_{1}, \alpha_{1}\right)\right]_{\lambda} \\
& =\bigcup_{t \equiv x_{1}}\left[\left(t, g_{1}, \alpha_{1}\right)\right]_{\lambda} \\
& =\bigcup_{\left.t \in\left[x_{1}\right]\right]_{\equiv}}\left[\left(t, g_{1}, \alpha_{1}\right)\right]_{\lambda} \\
& =\left[\left(\left[x_{1}\right]_{\equiv}, g_{1}, \alpha_{1}\right)\right]_{\lambda} .
\end{aligned}
$$

Proposition 3.14. Let X be a left G-set and Θ be a regular relation on X. Then, $[\widehat{X}: \widehat{\Theta}]$ is a left \widehat{G}-set.
Proof. We define $h^{\prime}: \widehat{G} \times[\widehat{X}: \widehat{\Theta}] \longrightarrow \mathcal{P}^{*}([\widehat{X}: \widehat{\Theta}])$ such that

$$
h^{\prime}\left([(g, \alpha)]_{\rho},\left[\left(\left[\left(x, g^{\prime}, \beta\right)\right]_{\lambda}\right)\right]_{\widehat{\Theta}}\right)=\left[\left(\left[\left(h(g, x), g^{\prime}, \beta\right)\right]_{\lambda}\right)\right]_{\widehat{\Theta}}
$$

We have

$$
\begin{aligned}
& h^{\prime}\left(\left[\left(g_{1}, \alpha_{1}\right)\right]_{\rho} \circ\left[\left(g_{2}, \alpha_{2}\right)\right]_{\rho},\left[\left(\left[\left(x, g^{\prime}, \beta\right)\right]_{\lambda}\right)\right]_{\widehat{\Theta}}\right) \\
& =h^{\prime}\left(\left[\left(g_{1} \oplus{ }_{\alpha_{1}}^{\oplus} g_{2}, \alpha_{2}\right)\right]_{\rho},\left[\left(\left[\left(x, g^{\prime}, \beta\right)\right]_{\lambda}\right)\right]_{\widehat{\Theta}}\right) \\
& =\left[\left(\left[\left(h\left(g_{1} \underset{\alpha_{1}}{\oplus} g_{2}, x\right), g^{\prime}, \beta\right)\right]_{\lambda}\right)\right]_{\widehat{\Theta}} \\
& =\left[\left(\left[\left(h\left(g_{1}, h\left(g_{2}, x\right)\right), g^{\prime}, \beta\right)\right]_{\lambda}\right)\right]_{\widehat{\Theta}} \\
& =h^{\prime}\left(\left[\left(g_{1}, \alpha_{1}\right)\right]_{\rho},\left[\left(\left[\left(h\left(g_{2}, x\right), g^{\prime}, \beta\right)\right]_{\lambda}\right)\right]_{\widehat{\Theta}}\right) \\
& =h^{\prime}\left(\left[\left(g_{1}, \alpha_{1}\right)\right]_{\rho}, h^{\prime}\left(\left[\left(g_{2}, \alpha_{2}\right)\right]_{\rho},\left[\left(\left[\left(x, g^{\prime}, \beta\right)\right]_{\lambda}\right)\right]_{\widehat{\Theta}}\right)\right)
\end{aligned}
$$

Theorem 3.15. Let X be a left G-set and Θ be a regular relation on X. Then, $[\widehat{X: \Theta}]$ is a left \widehat{G}-set.
Proof. We have $[\widehat{X: \Theta}]=\left\{\left[\left([x]_{\Theta}, g, \alpha\right)\right]_{\lambda}:[x]_{\Theta} \in[X: \Theta], g \in G, \alpha \in \Gamma\right\}$. We define $h^{*}: \widehat{G} \times[\widehat{X: \Theta}] \longrightarrow \mathcal{P}^{*}([\widehat{X: \Theta}])$ such that

$$
h^{*}\left([(g, \alpha)]_{\rho},\left[\left([x]_{\Theta}, g^{\prime}, \beta\right)\right]_{\lambda}\right)=\left[\left([h(g, x)]_{\Theta}, g^{\prime}, \beta\right)\right]_{\lambda} .
$$

Hence,

$$
\begin{aligned}
& h^{*}\left(\left[\left(g_{1}, \alpha_{1}\right)\right]_{\rho} \circ\left[\left(g_{2}, \alpha_{2}\right)\right]_{\rho},\left[\left([x]_{\Theta}, g^{\prime}, \beta\right)\right]_{\lambda}\right) \\
& =h^{*}\left(\left[\left(g_{1} \oplus_{\alpha_{1}} g_{2}, \alpha_{2}\right)\right]_{\rho},\left[\left([x]_{\Theta}, g^{\prime}, \beta\right)\right]_{\lambda}\right) \\
& =\left[\left(\left[h\left(g_{1} \oplus_{\alpha_{1}} g_{2}, x\right)\right]_{\Theta}, g^{\prime}, \beta\right)\right]_{\lambda} \\
& =\left[\left(\left[h\left(g_{1}, h\left(g_{2}, x\right)\right)\right]_{\Theta}, g^{\prime}, \beta\right)\right]_{\lambda} \\
& =h^{*}\left(\left[\left(g_{1}, \alpha_{1}\right)\right]_{\rho},\left[\left(\left[h\left(g_{2}, x\right)\right]_{\Theta}, g^{\prime}, \beta\right)\right]_{\lambda}\right) \\
& =h^{*}\left(\left[\left(g_{1}, \alpha_{1}\right)\right]_{\rho}, h^{*}\left(\left[\left(g_{2}, \alpha_{2}\right)\right]_{\rho},\left[\left([x]_{\Theta}, g^{\prime}, \beta\right)\right]_{\lambda}\right)\right) .
\end{aligned}
$$

Corollary 3.16. Let X be a left G-set and Θ be an equivalence relation on X. Then,

$$
\left[\left(\left[x_{1}\right]_{\Theta}, g_{1}, \alpha_{1}\right)\right]_{\lambda}=\left[\left(\left[x_{2}\right]_{\Theta}, g_{2}, \alpha_{2}\right)\right]_{\lambda} \Longrightarrow\left[\left(x_{1}, g_{1}, \alpha_{1}\right)\right]_{\lambda} \widehat{\Theta}\left[\left(x_{2}, g_{2}, \alpha_{2}\right)\right]_{\lambda}
$$

Proof. By the definition of λ and $\widehat{\Theta}$, we have

$$
\begin{array}{r}
\left(\left[x_{1}\right]_{\Theta}, g_{1}, \alpha_{1}\right) \lambda\left(\left[x_{2}\right]_{\Theta}, g_{2}, \alpha_{2}\right) \Rightarrow \\
\forall g^{\prime \prime} \in G, h\left(g_{1} \oplus_{\alpha_{1}} g^{\prime \prime},\left[x_{1}\right]_{\Theta}\right)=h\left(g_{2} \oplus_{\alpha_{2}} g^{\prime \prime},\left[x_{2}\right]_{\Theta}\right) .
\end{array}
$$

Hence, for every $t_{1} \in\left[x_{1}\right]_{\Theta}$ there is $t_{2} \in\left[x_{2}\right]_{\Theta}$ such that

$$
h\left(g_{1} \oplus_{\alpha_{1}} g^{\prime \prime}, t_{1}\right)=h\left(g_{2} \oplus_{\alpha_{2}} g^{\prime \prime}, t_{2}\right) .
$$

We obtain $h\left(g_{1} \oplus_{\alpha_{1}} g^{\prime \prime}, t_{1}\right) \bar{\Theta} h\left(g_{1} \oplus_{\alpha_{1}} g^{\prime \prime}, x_{1}\right)$ and $h\left(g_{2} \oplus_{\alpha_{2}} \oplus g^{\prime \prime}, t_{2}\right) \bar{\Theta} h\left(g_{2} \oplus_{\alpha_{2}}\right.$ $\left.\oplus g^{\prime \prime}, x_{2}\right)$, because $t_{1} \Theta x_{1}, t_{2} \Theta x_{2}$. This implies that

$$
h\left(g_{1} \oplus_{\alpha_{1}} g^{\prime \prime}, x_{1}\right) \bar{\Theta} h\left(g_{2} \oplus_{\alpha_{2}} g^{\prime \prime}, x_{2}\right)
$$

We conclude that $\left[\left(x_{1}, g_{1}, \alpha_{1}\right)\right]_{\lambda} \widehat{\Theta}\left[\left(x_{2}, g_{2}, \alpha_{2}\right)\right]_{\lambda}$.
Corollary 3.17. Let G be a Γ-polygroup and X be a reversible left G-set with unit. Then,

$$
\left[\left(\left[x_{1}\right]_{\equiv}, g_{1}, \alpha_{1}\right)\right]_{\lambda}=\left[\left(\left[x_{2}\right]_{\equiv}, g_{2}, \alpha_{2}\right)\right]_{\lambda} \Longleftrightarrow\left[\left(x_{1}, g_{1}, \alpha_{1}\right)\right]_{\lambda} \cong\left[\left(x_{2}, g_{2}, \alpha_{2}\right)\right]_{\lambda} .
$$

Proof. By Proposition 3.13, we have

$$
\begin{aligned}
& {\left[\left(\left[x_{1}\right]_{\equiv}, g_{1}, \alpha_{1}\right)\right]_{\lambda}=\left[\left(\left[x_{2}\right]_{\equiv}, g_{2}, \alpha_{2}\right)\right]_{\lambda}} \\
& \Longleftrightarrow\left[\left(\left[\left(x_{1}, g_{1}, \alpha_{1}\right)\right]_{\lambda}\right)\right]_{\cong}^{\equiv}=\left[\left(\left[\left(x_{2}, g_{2}, \alpha_{2}\right)\right]_{\lambda}\right)\right]_{\equiv} \\
& \Longleftrightarrow\left[\left(x_{1}, g_{1}, \alpha_{1}\right)\right]_{\lambda} \cong\left[\left(x_{2}, g_{2}, \alpha_{2}\right)\right]_{\lambda} .
\end{aligned}
$$

Theorem 3.18. Let X be a left G-set and Θ be an equivalence relation on X. Then, there is an epimorphism between \widehat{G}-sets $[\widehat{X}: \widehat{\Theta}]$ and $[\widehat{X: \Theta}]$.
Proof. We define a relation $\phi:[\widehat{X: \Theta}] \longrightarrow[\widehat{X}: \widehat{\Theta}]$ as follows:

$$
\phi\left(\left[\left([x]_{\Theta}, g, \alpha\right)\right]_{\lambda}\right)=\left[\left([(x, g, \alpha)]_{\lambda}\right)\right]_{\Theta} .
$$

Suppose that $\left[\left([x]_{\Theta}, g, \alpha\right)\right]_{\lambda}=\left[\left([y]_{\Theta}, g^{\prime}, \beta\right)\right]_{\lambda}$. By Corollary 3.16, we conclude that

$$
\left[\left([(x, g, \alpha)]_{\lambda}\right)\right]_{\widehat{\Theta}}=\left[\left(\left[\left(y, g^{\prime}, \beta\right)\right]_{\lambda}\right)\right]_{\widehat{\Theta}}
$$

This means that ϕ is well-defined. Let $\left[\left([(x, g, \alpha)]_{\lambda}\right)\right]_{\widehat{\Theta}} \in[\widehat{X}: \widehat{\Theta}]$. Then, $[(x, g, \alpha)]_{\lambda} \in \widehat{X}$. Thus, $x \in X, g \in G, \alpha \in \Gamma$. This implies that $[x]_{\Theta} \in[X:$ $\Theta]$. So, $\left[\left([x]_{\Theta}, g, \alpha\right)\right]_{\lambda} \in[\widehat{X: \Theta}]$ and ϕ is onto. Also, ϕ is homomorphism:

$$
\begin{aligned}
\phi\left(h^{*}\left([(g, \alpha)]_{\rho},\left[\left([x]_{\Theta}, g^{\prime}, \beta\right)\right]_{\lambda}\right)\right) & =\phi\left(\left[\left([h(g, x)]_{\Theta}, g^{\prime}, \beta\right)\right]_{\lambda}\right) \\
& =\left[\left(\left[\left(h(g, x), g^{\prime}, \beta\right)\right]_{\lambda}\right)\right]_{\Theta} \\
& =h^{\prime}\left([(g, \alpha)]_{\rho},\left[\left(\left[\left(x, g^{\prime}, \beta\right)\right]_{\lambda}\right)\right]_{\Theta}\right) \\
& =h^{\prime}\left([(g, \alpha)]_{\rho}, \phi\left(\left[\left([x]_{\Theta}, g^{\prime}, \beta\right)\right]_{\lambda}\right)\right),
\end{aligned}
$$

for every $[(g, \alpha)]_{\rho} \in \widehat{G}$ and $\left[\left([x]_{\Theta}, g^{\prime}, \beta\right)\right]_{\lambda} \in[\widehat{X: \Theta}]$. We conclude that ϕ is an epimorphism of \widehat{G}-sets.

Theorem 3.19. Let G be a Γ-polygroup and X be a reversible left G-set with unit. Then,

$$
[\widehat{X}: \widehat{\equiv}] \cong \widehat{x: \equiv}] .
$$

Proof. We define $\Psi:[\widehat{X}: \widehat{\equiv}] \longrightarrow \widehat{X: \equiv}]$ such that

$$
\Psi\left(\left[\left([(x, g, \alpha)]_{\lambda}\right)\right]_{仓}^{\equiv}\right)=\left[\left([x]_{\equiv}, g, \alpha\right)\right]_{\lambda} .
$$

By Corollary 3.17, it's obvious that Ψ is well-defined and one to one. Let $\left[\left([x]_{\equiv}, g, \alpha\right)\right]_{\lambda} \in \widehat{X: \equiv]}$ be arbitrary. Hence, $[x]_{\equiv} \in[X: \equiv], g \in G$ and $\alpha \in \Gamma$. Then, $x \in X$. We conclude that $[(x, g, \alpha)]_{\lambda} \in \widehat{X}$. This implies that $\left[\left[[(x, g, \alpha)]_{\lambda}\right)\right]_{\varrho} \in[\widehat{X}: \widehat{\equiv}]$. Thus, Ψ is onto. Also, we have

$$
\begin{aligned}
\Psi\left(h^{\prime}\left([(g, \alpha)]_{\rho},\left[\left(x, g^{\prime}, \beta\right)\right]_{\lambda}\right)\right) & =\Psi\left(\left[\left(\left[\left(x, g \oplus_{\alpha} g^{\prime}, \beta\right)\right]_{\lambda}\right)\right]_{\hat{\equiv}}\right) \\
& =\left[\left([x]_{\equiv}, g \oplus_{\alpha} g^{\prime}, \beta\right)\right]_{\lambda} \\
& =\widehat{h}\left([(g, \alpha)]_{\rho},\left[\left([x]_{\equiv}, g^{\prime}, \beta\right)\right]_{\lambda}\right) \\
& =\widehat{h}\left([(g, \alpha)]_{\rho}, \Psi\left(\left[\left(\left[\left(x, g^{\prime}, \beta\right)\right]_{\lambda}\right)\right]_{\widehat{\equiv}}\right)\right) .
\end{aligned}
$$

So, Ψ is isomorphism.
Proposition 3.20. Let $\phi: X \longrightarrow Y$ be a G-map. Then, there is a \widehat{G}-map $\Psi: \widehat{X} \longrightarrow \widehat{Y}$.

Proof. We define

$$
\begin{gathered}
\Psi: \widehat{X} \longrightarrow \widehat{Y} \\
\Psi\left([(x, g, \alpha)]_{\lambda}\right)=[(\phi(x), g, \alpha)]_{\lambda} .
\end{gathered}
$$

We show that Ψ is \widehat{G}-map:

$$
\begin{aligned}
\Psi\left(\widehat{h_{1}}\left(\left[\left(g^{\prime}, \gamma\right)\right]_{\rho},[(x, g, \alpha)]_{\lambda}\right)\right) & =\Psi\left(\left[\left(h_{1}\left(g^{\prime}, x\right), g, \alpha\right)\right]_{\lambda}\right) \\
& =\left[\left(\phi\left(h_{1}\left(g^{\prime}, x\right)\right), g, \alpha\right)\right]_{\lambda} \\
& =\left[\left(h_{2}\left(g^{\prime}, \phi(x)\right), g, \alpha\right)\right]_{\lambda} \\
& =\widehat{h_{2}}\left[\left(\left(g^{\prime}, \gamma\right)\right]_{\rho},[(\phi(x), g, \alpha)]_{\lambda}\right) \\
& =\widehat{h_{2}}\left(\left[\left(g^{\prime}, \gamma\right)\right]_{\rho}, \Psi\left([(x, g, \alpha)]_{\lambda}\right)\right) .
\end{aligned}
$$

This complete the proof.
Corollary 3.21. $|\operatorname{Mor}(X, Y)| \leq|\operatorname{Mor}(\widehat{X}, \widehat{Y})|$.
Corollary 3.22. $\operatorname{Mor}(\widehat{X}, \widehat{Y})$ is a left \widehat{G}-set.
Proof. It is straightforward.
Definition 3.23. Let X be a left G-set. We have

$$
\widehat{\operatorname{Stab}(x)}=\left\{[(g, \alpha)]_{\rho}: x=h(g, x), \alpha \in \Gamma\right\} .
$$

Proposition 3.24. Let X be a left G-set and $[(x, g, \alpha)]_{\lambda} \in \widehat{X}$. Then,

$$
\left.\operatorname{Stab}\left([(x, g, \alpha)]_{\lambda}\right)=\widehat{\operatorname{Stab}(x}\right) .
$$

Proof. By Definition 3.23, we have

$$
\begin{aligned}
\operatorname{Stab}\left([(x, g, \alpha)]_{\lambda}\right) & =\left\{\left[\left(g^{\prime}, \beta\right)\right]_{\rho} \in \widehat{G}:[(x, g, \alpha)]_{\lambda}=\widehat{h}\left(\left[\left(g^{\prime}, \beta\right)\right]_{\rho},[(x, g, \alpha)]_{\lambda}\right)\right\} \\
& =\left\{\left[\left(g^{\prime}, \beta\right)\right]_{\rho} \in \widehat{G}:[(x, g, \alpha)]_{\lambda}=\left[\left(h\left(g^{\prime}, x\right), g, \alpha\right)\right]_{\lambda}\right\} \\
& =\left\{\left[\left(g^{\prime}, \beta\right)\right]_{\rho} \in \widehat{G}: x=h\left(g^{\prime}, x\right)\right\} \\
& =\left\{\left[\left(g^{\prime}, \beta\right)\right]_{\rho} \in \widehat{G}: g^{\prime} \in \operatorname{Stab}(x)\right\} \\
& =\widehat{\operatorname{Stab}(x)} .
\end{aligned}
$$

4. Relations between direct limit of (G, H)-sets and their ASSOCIATED $(\widehat{G}, \widehat{H})$-SETS

Let G and H be Γ-semihypergroups and $\left\{X_{i}\right\}_{i \in I}$ be a collection of direct system of (G, H)-sets. Then, we construct a direct system of $(\widehat{G}, \widehat{H})$-sets as follows, where \widehat{G} and \widehat{H} are associated semihypergroups. Also, we consider a relation between direct limit of direct systems $\left\{X_{i}\right\}_{i \in I}$ and $\left\{\widehat{\mathcal{X}}_{i}\right\}_{i \in I}$.

Theorem 4.1. Let (I, \leq) be a partially ordered set and $\left\{X_{i}\right\}_{i \in I}$ be a collection of (G, H)-sets, where G and H be Γ-semihypergroups such that $G \cap H=$ \emptyset and $\left(X_{i}, \alpha_{i j}\right)_{i, j \in I}$ be a direct system of (G, H)-sets, then $\left(\widehat{\mathcal{X}_{i}}, \widehat{\alpha_{i j}}\right)_{i, j \in I}$ is a direct system of $(\widehat{G}, \widehat{H})$-sets.
Proof. We conclude that $\left\{\widehat{\mathcal{X}_{i}}\right\}_{i \in I}$ is a collection of $(\widehat{G}, \widehat{H})$-sets, where (\widehat{G}, \circ) and (\widehat{H}, \circ) are semihypergroups.
Therefore, there are $(\widehat{G}, \widehat{H})$-maps $\widehat{\alpha_{i j}}: \widehat{\mathcal{X}_{i}} \longrightarrow \widehat{\mathcal{X}_{j}}$ such that

1) $\widehat{\alpha_{i i}}=I_{\widehat{\mathcal{X}_{i}}}$,
2) $\widehat{\alpha_{i j}} \circ \widehat{\alpha_{j k}}=\widehat{\alpha_{i k}}$.

Because for every $\left[\left(x_{i}, g, \alpha\right)\right]_{\lambda} \in \widehat{\mathcal{X}_{i}}$, we have

$$
\begin{aligned}
\widehat{\alpha_{i i}}\left(\left[\left(x_{i} g, \alpha\right)\right]_{\lambda}\right)=\left[\left(\alpha_{i i}\right.\right. & \left.\left.\left(x_{i}\right), g, \alpha\right)\right]_{\lambda}=\left[\left(x_{i}, g, \alpha\right)\right]_{\lambda} \\
\widehat{\alpha_{i j}} \circ \widehat{\alpha_{j k}}\left(\left[\left(x_{i}, g, \alpha\right)\right]_{\lambda}\right) & =\widehat{\alpha_{i j}}\left(\widehat{\alpha_{j k}}\left(\left[\left(x_{i}, g, \alpha\right)\right]_{\lambda}\right)\right) \\
& =\widehat{\alpha_{i j}}\left(\left[\left(\alpha_{j k}\left(x_{i}\right), g, \alpha\right)\right]_{\lambda}\right) \\
& =\left[\left(\alpha_{i j}\left(\alpha_{j k}\left(x_{i}\right)\right), g, \alpha\right)\right]_{\lambda} \\
& =\left[\left(\alpha_{i k}\left(x_{i}\right), g, \alpha\right)\right]_{\lambda} \\
& =\widehat{\alpha_{i k}}\left([(x, g, \alpha)]_{\lambda}\right)
\end{aligned}
$$

In the following, we show that $\lim _{i \in I} \widehat{\mathcal{X}_{i}}=\left(\widehat{\operatorname{limX}_{i \in I}}\right)$.
Corollary 4.2. Let (G, H)-set X be a direct limit of $\left(X_{i}, \alpha_{i j}\right)_{i, j \in I}$. Then, $\widehat{\mathcal{X}}$ is a direct limit of $\left(\widehat{\mathcal{X}_{i}}, \widehat{\alpha_{i j}}\right)_{i, j \in I}$.

Proof. There exists (G, H)-maps $\beta_{i}: X_{i} \longrightarrow X$ such that $\beta_{j} \circ \alpha_{i j}=\beta_{i}$, because X is direct limit of $\left(X_{i}, \alpha_{i j}\right)_{i, j \in I}$. We know X is a (G, H)-set, so $\widehat{\mathcal{X}}$ is a $(\widehat{G}, \widehat{H})$-set. We conclude that $\widehat{\beta}_{i}: \widehat{\mathcal{X}_{i}} \longrightarrow \widehat{\mathcal{X}}$ are $(\widehat{G}, \widehat{H})$-maps. We have

$$
\begin{aligned}
\widehat{\beta_{j}} \circ \widehat{\alpha_{i j}}\left(\left[\left(x_{i}, g, \alpha\right)\right]_{\lambda}\right) & =\widehat{\beta}_{j}\left(\widehat{\alpha_{i j}}\left(\left[\left(x_{i}, g, \alpha\right)\right]_{\lambda}\right)\right) \\
& =\widehat{\beta}_{j}\left(\left[\left(\alpha_{i j}\left(x_{i}\right), g, \alpha\right)\right]_{\lambda}\right) \\
& =\left[\left(\beta_{j}\left(\alpha_{i j}\left(x_{i}\right)\right)\right)\right]_{\lambda} \\
& =\left[\left(\beta_{i}\left(x_{i}\right), g, \alpha\right)\right]_{\lambda} \\
& =\widehat{\beta}_{i}\left(\left[\left(x_{i}, g, \alpha\right)\right]_{\lambda}\right)
\end{aligned}
$$

Suppose that T be a (G, H)-set and $\gamma_{i}: X_{i} \longrightarrow T$ be (G, H)-maps such that $\gamma_{j} \circ \alpha_{i j}=\gamma_{i}$. Therefore, there exists a unique (G, H)-map $\delta: X \longrightarrow T$ such that $\delta \circ \sigma_{i}=\gamma_{i}$. We conclude that $\widehat{\gamma_{j}} \circ \widehat{\alpha_{i j}}=\widehat{\gamma_{i}}, \widehat{\delta}: \widehat{\mathcal{X}} \longrightarrow \widehat{\mathcal{T}}$ be a $(\widehat{G}, \widehat{H})$-map and $\widehat{\delta} \circ \widehat{\sigma}_{i}=\widehat{\gamma_{i}}$. We show that $\widehat{\delta}$ is unique. Let $\widehat{\delta_{1}}: \widehat{\mathcal{X}} \longrightarrow \widehat{\mathcal{T}}$ be $(\widehat{G}, \widehat{H})$-map with the same properties of $\widehat{\delta}$, therefore

$$
\widehat{\delta_{1}}\left(\beta^{*}(x)\right)=\beta^{*}\left(\delta_{1}(x)\right)=\beta^{*}(\delta(x))=\widehat{\delta}\left(\beta^{*}(x)\right)
$$

5. Conclusion

In this paper, we introduce and consider the concept of left(right) G set in the context of Γ-semihypergroup and is a new research topic of hyperstructure theory. Also, we define the homological concept direct limit of left(right) G-sets. The present study can be further applied to introduce and consider flat Γ-semihyperring. A possible future study could be devoted to the introduction and analysis of fuzzy rough n-ary left(right) G-sets.

References

[1] S. Chattopadhyay, Right inverse Γ-semigroup, Bull. Cal. Math. Soc., 93 (2001), 435-442.
[2] S. Chattopadhyay, Right orthodox Г-semigroup, Southeast Asian Bull. Math., 29 (2005), 23-30.
[3] P. Corsini, Prolegomena of hypergroup theory, Second Edition, Aviani Editore, 1993.
[4] P. Corsini and V. Leoreanu, Applications of hyperstructure theory, Advances in Mathematics, Kluwer Academic Publishers, Dordrecht, 2003.
[5] I. Cristea and M. Snescu, Binary relations and reduced hypergroups, Discrete Mathematics, 30816 (2008), 3537-3544.
[6] S.O. Dehkordi and B. Davvaz, A Strong Regular Relation on Γ-Semihyperrings, J. Sci. I.R. Iran., 223 (2011), 257-266.
[7] S.O. Dehkordi and B. Davvaz, Г-semihyperrings: Approximations and rough ideals, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), 1035-1047.
[8] S.O. Dehkordi and B. Davvaz, Γ-semihyperrings: ideals, homomorphisms and regular relations, Afrika Matematika, 265 (2015), 849-861.
[9] B. Davvaz and T. Vougiouklis, n-ary hypergroups, Iran. J. Sci. Technol. Trans. A, 30(A2) (2006), 165-174.
[10] B. Davvaz, W.A. Dudek and T. Vougiouklis, A generalization of n-ary algebraic systems, Comm. Algebra 37 (2009), 1248-1263.
[11] S. Ostadhadi-Dehkordi and M. Heidari, General Γ - hypergroups: Θ relation, T Functor and Fundamental groups, Bull. Malays. Math. Sci. Soc. (2)37 3(2014), 907-921.
[12] S. Ostadhadi-Dehkordi and K.P. Shum, Quasi-order Γ-semihypergroups: Fundamental relations and complete parts, Journal of Algebra and its Applications, accepted.
[13] M. De Salvo and G. Lo Faro, On the n-complete hypergroups, Discrete Mathematics, 208/209 (1999), 177-188.
[14] W.A. Dudek and K. Glazek, Around the Hosszu Gluskin theorem for n-ary groups, Discrete Math. 308 (2008), 4861-4876.
[15] W.A. Dudek and V,S.Trokhimenko, De Morgan (2, n)-Semigroups of n-Place Functions, Communications in Algebra, 44 (2016), 4430-4437.
[16] W.A. Dudek and I. Grozdzinska On ideals in regular n-semigroups, Mat. Bilten 29 (1980), 29-30.
[17] D. Heidari, S. O. Dehkordi and B. Davvaz, Γ-Semihypergroups and their properties, U.P.B. Sci. Bull., Series A, 72 (2010), 197-210.
[18] K. Hila, On regular, semiprime and quasi-reflexive Γ-semigroup and minimal quasi-ideals, Lobachevski J. Math., 29 (2008), 141-152.
[19] K. Hila, On some classes of le-Г-semigroup, Algebras, Groups Geom., 24 (2007), 485-495.
[20] K. Hila, B. Davvaz and J. Dine, Study on the structure of Γ-semihypergroups, Communication in Algebra, 408 (2012), 2932-2948.
[21] J.M. Howie, An introduction to semigroup theory, Academic Press, (1976).
[22] F. Marty, Sur une generalization de la notion de group, $8^{\text {th }}$ Congres Math. Scandinaves (1934), 45-49.
[23] M.K. Sen On Γ-semigroups, Proc. of the Int. Conf. on Algebra and it's Appl. (1981), 301-308. New York, Decker Publication.
[24] M.K. Sen and N.K. Saha On Γ-semigroup, I. Bull. Cal. Math. Soc., 78 (1986), 180-186.
[25] A. Seth, Γ-group congruences on regular Γ-semigroups, Internat. J. Math. Math. Sci., 15 (1992), 103-106

N. Rakhsh Khorshid

Department of Mathematics, University of Hormozgan, P.O.Box 3995, Bandar Abbas, Iran.
Email: n.rakhshkhorshid.phd@hormozgan.ac.ir

S. Ostadhadi-Dehkordi

Department of Mathematics, University of Hormozgan, P.O.Box 3995, Bandar Abbas, Iran.
Email: Ostadhadi@hormozgan.ac.ir

