Journal of Algebra and Related Topics Vol. 8, No 2, (2020), pp 57-74

ON PROPERTY (\mathcal{A}) OF RINGS AND MODULES ALONG AN IDEAL

S. BOUCHIBA * AND Y. ARSSI

ABSTRACT. This paper introduces and studies the notion of Property (\mathcal{A}) of a ring R or an R-module M along an ideal I of R. For instance, any module M over R satisfying the Property (\mathcal{A}) do satisfy the Property (\mathcal{A}) along any ideal I of R. We are also interested in ideals I which are \mathcal{A} -module along themselves. In particular, we prove that if I is contained in the nilradical of R, then any R-module is an \mathcal{A} -module along I and, thus, I is an \mathcal{A} -module along itself. Also, we present an example of a ring R possessing an ideal I which is an \mathcal{A} -module along itself while I is not an \mathcal{A} -module. Moreover, we totally characterize rings R satisfying the Property (\mathcal{A}) along an ideal I in both cases where $I \subseteq Z(R)$ and where $I \notin Z(R)$. Finally, we investigate the behavior of the Property (\mathcal{A}) along an ideal with respect to direct products.

1. INTRODUCTION

Throughout this paper, all rings are supposed to be commutative with unit element and all *R*-modules are unital. Let *R* be a commutative ring and *M* an *R*-module. We denote by $Z_R(M) = \{r \in R : rm = 0$ for some nonzero element $m \in M\}$ the set of zero divisors of *R* on *M* and by $Z(R) := Z_R(R)$ the set of zero divisors of the ring *R*. In [3], the notions of *A*-module and *SA*-module are extensively studied. In fact, an *R*-module *M* satisfies Property (*A*), or *M* is an *A*-module over *R* (or *A*-module if no confusion is likely), if for every finitely generated ideal *I* of *R* with $I \subseteq Z_R(M)$), there exists a nonzero $m \in M$ with Im = 0,

MSC(2010): 13C13, 13A99.

Keywords: A-ring; A-ring along an ideal; A-module along an ideal; zero divisor.

Received: 14 April 2020, Accepted: 18 October 2020.

^{*}Corresponding author .

or equivalently, $\operatorname{ann}_M(I) \neq 0$. M is said to satisfy strong Property (\mathcal{A}) , or is an \mathcal{SA} -module over R (or an \mathcal{SA} -module if no confusion is likely), if for any $r_1, \dots, r_n \in \mathbb{Z}_R(M)$, there exists a nonzero $m \in M$ such that $r_1m = \cdots = r_nm = 0$. The ring R is said to satisfy Property (\mathcal{A}) , or an \mathcal{A} -ring, (respectively, $\mathcal{S}\mathcal{A}$ -ring) if R is an \mathcal{A} -module (resp., an \mathcal{SA} -module). One may easily check that M is an \mathcal{SA} -module if and only if M is an A-module and $Z_R(M)$ is an ideal of R. It is worthwhile reminding the reader that the Property (\mathcal{A}) for commutative rings was introduced by Quentel in [21] who called it Property (C) and Huckaba used the term Property (\mathcal{A}) in [14, 15]. In [12], Faith called rings satisfying Property (\mathcal{A}) McCoy rings. The Property (\mathcal{A}) for modules was introduced by Darani [10] who called such modules F-McCoy modules (for Faith McCoy terminology). He also introduced the strong Property (\mathcal{A}) under the name super coprimal and called a module M coprimal if $Z_R(M)$ is an ideal. In [18], the strong Property (\mathcal{A}) for commutative rings was independently introduced by Mahdou and Hassani in [18] and further studied by Dobbs and Shapiro in [11]. Note that a finitely generated module over a Noetherian ring is an \mathcal{A} -module (for example, see [16, Theorem 82]) and thus a Noetherian ring is an \mathcal{A} -ring. Also, it is well known that a zero-dimensional ring R is an A-ring as well as any ring R whose total quotient ring Q(R) is zero-dimensional. In fact, it is easy to see that R is an A-ring if and only if so is Q(R) [9, Corollary 2.6]. Any polynomial ring R[X] is an \mathcal{A} -ring [14] as well as any reduced ring with a finite number of minimal prime ideals [14]. In [5], we generalize a result of T.G. Lucas which states that if R is a reduced commutative ring and M is a flat R-module, then the idealization $R \ltimes M$ is an \mathcal{A} -ring if and only if R is an \mathcal{A} -ring [17, Proposition 3.5]. In effect, we drop the reduceness hypotheses and prove that, given an arbitrary commutative ring R and any submodule M of a flat Rmodule F, $R \ltimes M$ is an \mathcal{A} -ring (resp., $\mathcal{S}\mathcal{A}$ -ring) if and only if R is an \mathcal{A} -ring (resp., $\mathcal{S}\mathcal{A}$ -ring). In [6], we present an answer to a problem raised by D.D. Anderson and S. Chun in [3] on characterizing when is the idealization $R \ltimes M$ of a ring R on an R-module M an \mathcal{A} -ring (resp., an \mathcal{SA} -ring) in terms of module-theoretic properties of R and M. Also, we were concerned with presenting a complete answer to an open question asked by these two authors which reads the following: What modules over a given ring R are homomorphic images of modules satisfying the strong Property (\mathcal{A}) ? [3, Question 4.4 (1)]. The main theorem of [7] extends a result of Hong, Kim, Lee and Ryu in [13] which proves that a direct product $\prod R_i$ of rings is an \mathcal{A} -ring if and only if so is any R_i . In this regard, we show that if $\{R_i\}_{i \in I}$ is a family of rings and $\{M_i\}_{i \in I}$ is a family of modules such that each M_i is an R_i -module, then the direct product $\prod_{i \in I} M_i$ of the M_i is an \mathcal{A} -module over $\prod_{i \in I} R_i$ if and only if each M_i is an \mathcal{A} -module over R_i , $i \in I$. Finally, our main concern in [8] is to introduce and investigate a new class of rings lying properly between the class of \mathcal{A} -rings and the class of $\mathcal{S}\mathcal{A}$ -rings. The new class of rings, termed the class of \mathcal{PSA} -rings, turns out to share common characteristics with both \mathcal{A} -rings and \mathcal{SA} -rings. Numerous properties and characterizations of this class are given as well as the module-theoretic version of \mathcal{PSA} -rings is introduced and studied. For further works related to the Property (\mathcal{A}) and (\mathcal{SA}), we refer the reader to [1, 2, 3, 4, 13, 17, 19, 20].

The main goal of this paper is to introduce and investigate the new notions of an \mathcal{A} -ring R and \mathcal{A} -module M along an ideal I of R. Our interest in these concepts stems from our next proved theorem that if the amalgamated duplication $R \bowtie I$ of a ring R along an ideal I is an \mathcal{A} -ring, then I is an \mathcal{A} -module along itself. It is worth noting that any \mathcal{A} -ring (resp., any \mathcal{A} -module) is, in particular, an \mathcal{A} -ring (resp., an \mathcal{A} -module) along any ideal I of R. In particular, we show interest in those ideals of R which satisfy the Property (\mathcal{A}) along themselves. For instance, we prove that if R is Noetherian or a zero-dimensional ring, then any ideal I is an \mathcal{A} -module along itself. Also, if R is a ring and I is an ideal of R such that either I is contained in the nilradical $\operatorname{Rad}(R)$ of R or $Z_R(I) = Z(R)$, then I is an A-module along itself. Moreover, through Example 2.19, we provide a case of a ring R admitting an ideal I which is an \mathcal{A} -module along itself while I is not an \mathcal{A} -module. The two main theorems of Section 2 totally characterize when a ring R(resp., an *R*-module *M*) is an \mathcal{A} -ring (resp., an \mathcal{A} -module) along a given ideal I. These two theorems tackle the two possible cases $I \subseteq Z(R)$ and $I \not\subseteq Z(R)$ and they read the following:

Theorem 1.1. Let R be a ring and I an ideal of R. Let M be an R-module.

1) Assume that $I \nsubseteq Z(R)$. Then the following assertions are equivalent: a) R is an A-ring;

- b) R is an A-ring along I;
- c) I is an A-module;
- d) I is an A-module along itself.

2) Assume that $I \nsubseteq Z_R(M)$. Then M is an \mathcal{A} -module along I if and only if M is an \mathcal{A} -module.

Theorem 1.2. Let R be a ring and I an ideal of R.

1) Assume that $I \subseteq Z(R)$ and that Q(R) = R. Then the following assertions are equivalent.

a) R is an A-ring along I;

b) For each proper finitely generated ideal J of R such that I+J=R, ann $(J) \neq (0)$;

c) For each proper finitely generated ideal J of R such that $J \not\subseteq \bigcup$ m, $\operatorname{ann}(J) \neq (0)$.

 $m \in Max_I(R)$

2) Let M be an R-module such that $I \subseteq Z_R(M)$. Assume that $Q_R(M) = R$. Then the following assertions are equivalent.

a) M is an A-module along I;

b) For each proper finitely generated ideal J of R such that I+J=R, ann_M(J) \neq (0);

c) For each proper finitely generated ideal J of R such that $J \not\subseteq \bigcup_{m, n \in M} m, \operatorname{ann}_M(J) \neq (0).$

 $m \in \operatorname{Max}_I(R)$

Finally, in Section 3, we investigate the behavior of the Property (\mathcal{A}) along an ideal with respect to direct products. This allows us to generalize, via Theorem 3.3, a proposition of Hong-Kim-Lee-Ryu stating that the direct product $\prod R_i$ of a family of rings $(R_i)_i$ is an \mathcal{A} -ring if and only if each R_i is an \mathcal{A} -ring [13, Proposition 1.3].

2. Property (\mathcal{A}) along an ideal

This section introduces and investigates the new concepts of an \mathcal{A} -ring R and \mathcal{A} -module M along an ideal I of R. The new classes turn out to encompass the classical ones of \mathcal{A} -rings and \mathcal{A} -modules. In particular, we seek conditions under which an ideal I of a ring R is an \mathcal{A} -module along itself.

Throughout, given a ring R and an R-module M, we denote by $\operatorname{Spec}(\operatorname{Z}(R))$ (resp., $\operatorname{Max}(\operatorname{Z}(R))$) the set of prime ideals (resp., maximal ideals) of R contained in $\operatorname{Z}(R)$ and by $\operatorname{Spec}(\operatorname{Z}_R(M))$ (resp., $\operatorname{Max}(\operatorname{Z}_R(M))$) the set of prime ideals (resp., maximal ideals) of R contained in $\operatorname{Z}_R(M)$. According to [16], $\operatorname{Max}(\operatorname{Z}_R(M))$ stands for the set of the maximal primes of the R-module M.

We begin by giving the definition of the new concepts.

Definition 2.1. Let R be a ring and I an ideal of R. Let M be an R-module. Let $S := R \setminus Z(R)$ and $S_R(M) = R \setminus Z_R(M)$. Then 1) R is said to be an \mathcal{A} -ring along I if for each finitely generated ideal $J \subseteq Z(R)$ such that $(J + I) \cap S \neq \emptyset$, we have $\operatorname{ann}(J) \neq (0)$. 2) M is said to be an \mathcal{A} -module along I if for each finitely generated

ideal $J \subseteq \mathbb{Z}_R(M)$ such that $(J+I) \cap S_R(M) \neq \emptyset$, we have $\operatorname{ann}_M(J) \neq (0)$.

The vacuous case of a ring R and an ideal I of R such that $(\mathbb{Z}(R) + I) \cap S = \emptyset$ is considered of course an \mathcal{A} -ring along I. For instance, any ring R is an \mathcal{A} -ring along (0) as $\mathbb{Z}(R) \cap S = \emptyset$. Also, any R-module M such that $(\mathbb{Z}_R(M) + I) \cap S_R(M) = \emptyset$ is (vacuously) an \mathcal{A} -module along I. Our first result allows to construct further examples of vacuously \mathcal{A} -rings and \mathcal{A} -modules along an ideal.

Proposition 2.2. Let R be a ring and I an ideal of R. Let M be an R-module.

1) Assume that Z(R) is an ideal of R and that $I \subseteq Z(R)$. Then R is an A-ring along I.

2) Assume that $Z_R(M)$ is an ideal of R and that $I \subseteq Z_R(M)$. Then M is an A-module along I.

Proof. 1) It suffices to note that $(Z(R) + I) \cap S = \emptyset$. 2) Note that $(Z_R(M) + I) \cap S_R(M) = \emptyset$.

We deduce from Proposition 2.2 the first case of an ideal of a ring R which is an \mathcal{A} -module along itself.

Corollary 2.3. Let R be a ring and I an ideal of R such that $Z_R(I)$ is an ideal of R and $I \subseteq Z_R(I)$. Then I is an A-module along itself.

Recall that, given a ring R and an ideal I of R, the amalgamated duplication of R along I (see [9]) is the subring $R \bowtie I$ of $R \times R$ defined by $R \bowtie I := \{(r, r + i) : r \in R \text{ and } i \in I\}$. In this context, it is well known that if the amalgamated duplication $R \bowtie I$ of R along I is an \mathcal{A} -ring, then R is an \mathcal{A} -ring. Our first theorem proves that "I is an \mathcal{A} -module along itself" is a further necessary condition for $R \bowtie I$ to be an \mathcal{A} -ring. This fact accounts for our terminology of the new Property (\mathcal{A}) .

Theorem 2.4. Let R be a ring and I an ideal of R. Assume that $R \bowtie I$ is an A-ring. Then I is an A-module along itself.

Proof. Let J be a finitely generated ideal of R such that $J \subseteq Z_R(I)$ and $(J + I) \cap S \neq \emptyset$. Put $J = (b_1, \dots, b_n)$ and let $b \in S$ and $j \in I$ such that $b + j \in J$. Consider the finitely generated ideal $H = ((b_1, b_1), \dots, (b_n, b_n), (b, b + j))$ of $R \bowtie I$. Let $t \in H$. Then

$$t = \sum_{r=1}^{n} (\alpha_r, \alpha_r + i_r)(b_r, b_r) + (\alpha, \alpha + i)(b, b + j)$$
$$= \left(\sum_{r=1}^{n} \alpha_r b_r + \alpha b, \sum_{r=1}^{n} (\alpha_r + i_r)b_r + (\alpha + i)(b + j)\right)$$

for any $(\alpha_r, \alpha_r + i_r), (\alpha, \alpha + i) \in R \bowtie I$ and any $r \in \{1, 2, \dots, n\}$. Note that

$$\sum_{r=1}^{n} (\alpha_r + i_r)b_r + (\alpha + i)(b+j) \in J.$$

Since $J \subseteq Z_R(I)$, we obtain $\sum_{r=1}^n (\alpha_r + i_r)b_r + (\alpha + i)(b + j) \in Z_R(I)$. Hence, there exists $\omega \in I \setminus \{0\}$ such that

$$\Big(\sum_{r=1}^{n} (\alpha_r + i_r)b_r + (\alpha + i)(b+j)\Big)\omega = 0.$$

Therefore $t(0, \omega) = 0$ and $(0, \omega) \neq (0, 0)$, and thus $t \in \mathbb{Z}(R \bowtie I)$. It follows that $H \subseteq \mathbb{Z}(R \bowtie I)$ and thus, since $R \bowtie I$ is an \mathcal{A} -ring, there exists $(a, a + e) \in R \bowtie I \setminus \{(0, 0)\}$ such that H(a, a + e) = (0, 0). In particular, (b, b + j)(a, a + e) = (0, 0), so that ba = 0 = (b + j)(a + e). As $b \in S := R \setminus \mathbb{Z}(R)$, we get a = 0. It follows that $e \in I \setminus \{0\}$ and Je = (0) since H(0, e) = (0). Consequently, $\operatorname{ann}_I(J) \neq (0)$ and thus Jis an \mathcal{A} -module along itself completing the proof of the theorem. \Box

The following two propositions records the fact that the Property (\mathcal{A}) along a fixed ideal I of a ring R is a weaker notion than the Property (\mathcal{A}) of R and that in the Noetherian setting any ideal I of R is an \mathcal{A} -module along itself.

Proposition 2.5. Let R be a ring and M be an R-module. Then 1) The following assertions are equivalent:

- a) R is an A-ring;
- b) R is an A-ring along R.
- 2) The following assertions are equivalent:
 - a) M is an A-module;
 - b) M is an A-module along R.

Proof. It is direct from Definition 2.1 as $Z(R) + R = Z_R(M) + R = R$.

Proposition 2.6. Let R be a ring and I an ideal of R. Then

1) Any A-module M over R is an A-module along I. In particular, if R is an A-ring, then R is an A-ring along I.

2) If R is Noetherian, then I is an A-module, and thus I is an A-module along itself.

3) If R is zero-dimensional, then I is an A-module along itself.

Proof. 1) It is clear from Definition 2.1.

2) Assume that R is Noetherian. Then I is a Noetherian module over

R. Therefore, by [3, Theorem 2.2(5)], *I* is an \mathcal{A} -module. Hence, by (1), *I* is an \mathcal{A} -module along itself.

3) Assume that dim(R) = 0. By [3, Theorem 2.2], any *R*-module is an \mathcal{A} -module. Then, using (1), we get that *I* is an \mathcal{A} -module along itself.

It is known that a ring R (resp., an R-module M) is an A-ring (resp., an A-module over R) if and only if the total quotient ring Q(R) (resp., the total quotient module Q(M)) is an A-ring (resp., an A-module over Q(R)). Next, we handle the transfer of this result to the Property (A) along an ideal.

Proposition 2.7. Let R be a ring and I an ideal of R. Let M be an R-module.

Assume that I ⊆ Z(R). Then the following assertions are equivalent.
 a) R is an A-ring along I;

b) Q(R) is an \mathcal{A} -ring along $S^{-1}I$.

2) Assume that $I \subseteq Z_R(M)$. Let $Q(M) = S_R(M)^{-1}M$ denote the total quotient module of M. Then the following assertions are equivalent.

a) M is an A-module along I;

b) Q(M) is an \mathcal{A} -module along $S_R(M)^{-1}I$.

Proof. 1) a) \Rightarrow b) Assume that *R* is an *A*-ring along *I*. Note that the multiplicative set of regular elements of Q(R) is

$$Q(R) \setminus \mathcal{Z}(Q(R)) = S^{-1}S := \left\{\frac{t}{s} \in Q(R) : s, t \in S\right\} = U(Q(R))$$

the set of units of Q(R). Let K be a proper finitely generated ideal of Q(R) such that $(K + S^{-1}I) \cap U(Q(R)) \neq \emptyset$. Then there exists a finitely generated ideal $J \subseteq Z(R)$ of R such that $K = S^{-1}J$. Hence $S^{-1}((J+I)\cap S) \neq \emptyset$ and thus $(J+I)\cap S \neq \emptyset$. Therefore, as R is an \mathcal{A} ring, $\operatorname{ann}(J) \neq (0)$. It follows, since $K = S^{-1}J$, that $\operatorname{ann}_{Q(R)}(K) \neq (0)$. Consequently, Q(R) is an \mathcal{A} -ring along $S^{-1}I$, as desired.

b) \Rightarrow a) Assume that Q(R) is an \mathcal{A} -ring along $S^{-1}I$. Let $J \subseteq \mathbb{Z}(R)$ be a finitely generated ideal of R such that $(J+I) \cap S \neq \emptyset$. Then $S^{-1}J$ is a proper finitely generated ideal of Q(R) and $(S^{-1}J + S^{-1}I) \cap S^{-1}S \neq \emptyset$, that is, $(S^{-1}J + S^{-1}I) \cap U(Q(R)) \neq \emptyset$. Hence, as Q(R) is an \mathcal{A} -ring along $S^{-1}I$, we get $\operatorname{ann}_{Q(R)}(S^{-1}J) \neq (0)$. It follows, as S consists of regular elements of R, that $\operatorname{ann}(J) \neq (0)$. Consequently, R is an \mathcal{A} -ring along I, as desired.

2) The proof is similar to that of (1).

BOUCHIBA AND ARSSI

Corollary 2.8. Let R be a ring and I an ideal of R such that $I \subseteq Z_R(I)$. Then I is an A-module along itself if and only if the ideal $S_R(I)^{-1}I$ of $Q_R(I)$ is an A-module along itself.

Through the next bunch of results we seek conditions under which an ideal I of a ring R is an \mathcal{A} -module along itself.

Let R be a ring and M an R-module. We denote by $J(R) := \bigcap_{m \in \operatorname{Max}(R)} m$ the Jacobson radical of R and by $J(\mathbb{Z}_R(M)) := \bigcap_{m \in \operatorname{Max}(\mathbb{Z}_R(M))} m$ the intersection of all maximal primes of M.

Proposition 2.9. Let R be a ring and I an ideal of R. Let M be an R-module such that $I \subseteq J(\mathbb{Z}_R(M))$. Then M is an \mathcal{A} -module along I. In particular, if $I \subseteq J(\mathbb{Z}_R(I))$, then I is an \mathcal{A} -module along itself.

Proof. Let J be a finitely generated ideal of R such that $J \subseteq Z_R(M)$. Then there exists a maximal prime $m \in Max(Z_R(M))$ such that $J \subseteq m$. Hence, as $I \subseteq m$, we get $J + I \subseteq m$. This means that $J + I \subseteq Z_R(M)$ and thus $(J + I) \cap S_R(M) = \emptyset$. It follows that M is (vacuously) an \mathcal{A} -module along I, as desired.

Let R be a ring. We denote by $\operatorname{Rad}(R)$ the nilradical of R. We record the following lemma.

Lemma 2.10. Let R be a ring. Then $\operatorname{Rad}(R) \subseteq J(\mathbb{Z}_R(M))$ for any R-module M.

Proof. It is direct as

 $\operatorname{Rad}(R) = \bigcap_{p \in \operatorname{Spec}(R)} p$ and $J(\mathbb{Z}_R(M)) := \bigcap_{m \in \operatorname{Max}(\mathbb{Z}_R(M))} m$

for a given R-module M.

Proposition 2.11. Let R be a ring and I an ideal of R. Assume that $I \subseteq \text{Rad}(R)$. Then any R-module M is an A-module along I. In particular, I is an A-module along itself.

Proof. Let M be an R-module. By Lemma 2.10, $\operatorname{Rad}(R) \subseteq J(\mathbb{Z}_R(M))$. It follows by Proposition 2.9 that M is an \mathcal{A} -module along I completing the proof of the proposition.

Corollary 2.12. Let R be a ring and I a nilpotent ideal of R, that is, there exists $n \ge 1$ such that $I^n = (0)$. Then any R-module M is an A-module along I. In particular, I is an A-module along itself.

64

Proof. It suffices to note that $I \subseteq \operatorname{Rad}(R)$ and then to apply Proposition 2.11.

Corollary 2.13. Let R be a ring and M an R-module. Consider the idealization $R \ltimes M$ of M. Then the ideal $I := (0) \ltimes M$ of $R \ltimes M$ is an \mathcal{A} -module along itself.

Proof. Note that $I^2 = (0)$. Then, by Corollary 2.12, I is an \mathcal{A} -module along itself.

Proposition 2.14. Let R be an A-ring and I an ideal of R such that $Z_R(I) = Z(R)$. Then I is an A-module along itself.

Proof. Let $J \subseteq Z_R(I)$ be a finitely generated ideal of R such that $(J+I) \cap S_R(I) \neq \emptyset$. Then, as $J \subseteq Z_R(I) \subseteq Z(R)$ and R is an \mathcal{A} -ring, we get $\operatorname{ann}(J) \neq (0)$ and thus there exists $a \in R \setminus \{0\}$ such that aJ = (0). Also, there exists $i \in I$ and $s \in S_R(I)$ such that $s + i \in J$. Hence a(s+i) = 0, so that as = -ai. Note that, as $Z_R(I) = Z(R)$, we have $S_R(I) = S$. This ensures that $s \in S$ is a regular element of R. Assume that ai = 0. Therefore as = 0 and thus, as s is a regular element of R. Assume that jJ = (0) and $j \in I \setminus \{0\}$ which means that $\operatorname{ann}_I(J) \neq (0)$. Consequently, I is an \mathcal{A} -module along itself, as desired.

Corollary 2.15. Let R be an SA-ring. Put I := Z(R). Then I is an A-module along itself.

Proof. Let us first prove that $Z_R(I) = Z(R)$. In effect, the inequality $Z_R(I) \subseteq Z(R)$ always holds. Let $0 \neq x \in Z(R)$. Then there exists $0 \neq a \in R$ such that ax = 0. Hence $a \in Z(R) = I$ and thus $x \in Z_R(I)$. It follows that $Z(R) \subseteq Z_R(I)$ yeilding the desired equality $Z_R(I) = Z(R)$. Now, Proposition 2.14 completes the proof.

Proposition 2.16. Let R be an A-ring and I an ideal of R. Assume that $\operatorname{ann}(I) \subseteq I$. Then I is an A-module along itself.

Proof. Let $J \subseteq Z_R(I)$ be a finitely generated ideal of R such that $(J+I) \cap S_R(I) \neq \emptyset$. As R is an \mathcal{A} -ring, we get $\operatorname{ann}(J) \neq (0)$ and thus there exists $a \in R$ such that $a \neq 0$ and aJ = (0). If $a \in I$, then $\operatorname{ann}_I(J) \neq (0)$. Assume that $a \notin I$. Then, as $\operatorname{ann}(I) \subseteq I$, $a \notin \operatorname{ann}(I)$. Hence there exists $i \in I$ such that $j := ai \neq 0$. It follows that jJ = (0) and $j \in I \setminus \{0\}$, so that $\operatorname{ann}_I(J) \neq (0)$. Consequently, I is an \mathcal{A} -module along itself.

Corollary 2.17. Let R be an A-ring and I an ideal of R such that $\operatorname{ann}(I) = (0)$. Then I is an A-module along itself.

Corollary 2.18. Let R be an A-ring and I an ideal of R. Assume that $Z_R(I) \subseteq I$. Then I is an A-module along itself.

Proof. It is direct from Proposition 2.16 as $\operatorname{ann}(I) \subseteq \mathbb{Z}_R(I)$.

Next, we give an example of an \mathcal{A} -ring R which admits an ideal I such that I is an \mathcal{A} -module along itself while I is not an \mathcal{A} -module.

Example 2.19. We resume the example [3, Example 2.14] of Anderson and Chun. Let k be a countable field and $D = k[X_1, X_2, \dots, X_n]$ with $n \geq 2$. There exists D-modules A_1 and A_2 such that $A_1 \oplus A_2$ is an \mathcal{A} -module as a D-module while neither A_1 nor A_2 has Property (\mathcal{A}) over D. Let $R := (D \ltimes A_1) \ltimes A_2 \cong D \ltimes (A_1 \oplus A_2)$. By [3, Theorem 2.12], R is an \mathcal{A} -ring as D is a domain and $A_1 \oplus A_2$ is an \mathcal{A} -module over D. Also, by Corollary 2.13, the ideal $I = (0) \ltimes A_2$ of R is an \mathcal{A} -module along itself. Moreover, observe that the natural ring homomorphisms $D \ltimes A_1 \longrightarrow D$ and $R \longrightarrow D \ltimes A_1$ are surjective. Then, by two applications of [3, Theorem 2.1(1)(b)], we get that A_2 is not an \mathcal{A} -module as an R-module, where $((d, a_1), a_2)x = dx$ for any $d \in D, a_1 \in A_1, a_2 \in A_2$ and any $x \in A_2$. On the other hand, it is easy to see that the natural map $\varphi : A_2 \longrightarrow I = (0) \ltimes A_2$ such that $\varphi(a) = (0, a)$ for each $a \in A_2$ is an isomorphism of R-modules. It follows that $I = (0) \ltimes A_2$ is not an \mathcal{A} -module, as desired.

Our second theorem of this section characterizes the Property (\mathcal{A}) along an ideal I of a ring R in the case where $I \nsubseteq \mathbb{Z}(R)$. We prove that in this setting the two notions of Property (\mathcal{A}) and Property (\mathcal{A}) along I collapse.

First, we prove the following lemma.

Lemma 2.20. Let R be a ring and I is an ideal such that $I \nsubseteq Z(R)$. Then

$$\mathbf{Z}_R(I) = \mathbf{Z}(R).$$

Proof. First, note that $Z_R(I) \subseteq Z(R)$. Also, as $I \nsubseteq Z(R)$, we get $S^{-1}I = Q(R)$. Let $a \in Z(R)$. Then there exists $r \in R$ such that $r \neq 0$ and ra = 0. Hence there exists $\frac{i}{s} \in S^{-1}I$ with $i \in I \setminus \{0\}$ and $s \in S$ such that $\frac{r}{1} = \frac{i}{s}$ and thus $\frac{i}{s} \frac{a}{1} = 0$. Therefore there exists $t \in S$ such

that tia = 0. Then ia = 0 and $i \in I \setminus \{0\}$. It follows that $a \in Z_R(I)$. Consequently, $Z_R(I) = Z(R)$, as desired.

Theorem 2.21. Let R be a ring and I an ideal of R. Let M be an R-module.

1) Assume that $I \nsubseteq Z(R)$. Then the following assertions are equivalent: a) R is an A-ring.

b) R is an A-ring along I

c) I is an A-module;

d) I is an A-module along itself.

2) Assume that $I \nsubseteq Z_R(M)$. Then M is an \mathcal{A} -module along I if and only if M is an \mathcal{A} -module.

Proof. 1) Assume that $I \nsubseteq Z(R)$, that is $I \cap S \neq \emptyset$. Then $0 \in S+I$ and thus $J \cap (S+I) \neq \emptyset$ for any ideal J of R. Hence, by Definition 2.1, the equivalence a) \Leftrightarrow b) holds. Also, since by Lemma 2.20, $Z(R) = Z_R(I)$, we get $S = S_R(I)$ and thus for any ideal J of R, $J \cap (S_R(I) + I) \neq \emptyset$. Therefore, by Definition 2.1, the equivalence c) \Leftrightarrow d) holds as well. It remains to prove the equivalence a) \Leftrightarrow c).

a) \Rightarrow c) Assume that R is an \mathcal{A} -ring. Let $J \subseteq \mathbb{Z}_R(I)$ be a finitely generated ideal of R. As $\mathbb{Z}_R(I) \subseteq \mathbb{Z}(R)$ and as R is an \mathcal{A} -ring, there exists $r \in R$ such that $r \neq 0$ and rJ = (0). Since $I \notin \mathbb{Z}(R)$, we get $S^{-1}I = Q(R)$. Hence there exists $i \in I \setminus \{0\}$ and $s \in S$ such that $\frac{r}{1} = \frac{i}{s}$ and thus $\frac{ij}{s1} = (0)$ for each $j \in J$. Therefore, for each $j \in J$, there exists $t_j \in S$ such that $t_j i j = (0)$, so that i j = 0 for each $j \in J$. Hence iJ = (0) and $i \in I \setminus \{0\}$ yielding $\operatorname{ann}_I(J) \neq (0)$. It follows that I is an \mathcal{A} -module proving c).

c) \Rightarrow a) Assume that I is an \mathcal{A} -module. Let $J \subseteq Z(R)$ be a finitely generated ideal of R. Then, as, by Lemma 2.20, $Z(R) = Z_R(I)$, we get $J \subseteq Z_R(I)$. Hence, since I is an \mathcal{A} -module, there exists $i \in I \setminus \{0\}$ such that iJ = (0), so that $\operatorname{ann}(J) \neq (0)$. It follows that R is an \mathcal{A} -ring proving a).

2) It is similar to the proof of the equivalence a) \Leftrightarrow b) of (1) completing the proof.

We deduce the following cases of ideals which are \mathcal{A} -modules along themselves.

Corollary 2.22. Let R be a ring and I an ideal of R. Then any ideal I of R[X] such that $X \in I$ is an A-module along itself.

BOUCHIBA AND ARSSI

Proof. Let I be an ideal of R[X] such that $X \in I$. Then $I \nsubseteq \mathbb{Z}(R[X])$. It follows, since R[X] is an \mathcal{A} -ring, and using Theorem 2.21, that I is an \mathcal{A} -module along itself

Corollary 2.23. Let R be a ring and I an ideal of R. Assume that $I \not\subseteq Z_R(I)$. Then I is an \mathcal{A} -module along itself if and only if I is an \mathcal{A} -module.

Next, we prove a sort of descent behavior of the Property (\mathcal{A}) along an ideal.

Proposition 2.24. Let R be a ring and M an R-module. Let $I_1 \subseteq I_2$ be ideals of R. Then

1) If R is an A-ring along I_2 , then R is an A-ring along I_1 .

2) If M is an A-module along I_2 , then M is an A-module along I_1 .

Proof. 1) Assume that R is an \mathcal{A} -ring along I_2 . Let J be a finitely generated ideal of R such that $J \subseteq Z(R)$ and $(J + I_1) \cap S \neq \emptyset$. Then, as $I_1 \subseteq I_2$, $(J + I_2) \cap S \neq \emptyset$. Now, since R is an \mathcal{A} -ring along I_2 , it follows that $\operatorname{ann}(J) \neq (0)$. Therefore R is an \mathcal{A} -ring along I_1 , as desired.

2) It is similar to (1).

The following theorem and corollary characterize the \mathcal{A} -rings R (resp., \mathcal{A} -modules M) along a given ideal I of R in the crucial case when $I \subseteq \mathbb{Z}(R)$ (resp., $I \subseteq \mathbb{Z}_R(M)$). Given a ring R and an ideal I of R, we denote by $\operatorname{Max}_I(R)$ the set of maximal ideals of R containing I and we denote by $\operatorname{Max}_I(Z(R))$ the set of prime ideals of R which are maximal among the prime ideals in $\mathbb{Z}(R)$ and which contain I, in other words, the elements of $\operatorname{Max}_I(\mathbb{Z}(R))$ are the maximal primes of R containing I. Also, given an R-module M, let $\operatorname{Max}_I(\mathbb{Z}_R(M))$ denote the set of prime ideals of R which are maximal among the prime ideals in $\mathbb{Z}_R(M)$ and which contain I.

Theorem 2.25. Let R be a ring and I an ideal of R.

1) Assume that $I \subseteq Z(R)$ and that Q(R) = R. Then the following assertions are equivalent.

a) R is an A-ring along I;

b) For each proper finitely generated ideal J of R such that I+J=R, ann $(J) \neq (0)$;

c) For each proper finitely generated ideal J of R such that $J \not\subseteq \bigcup_{m, n \in \mathbb{N}} m, \operatorname{ann}(J) \neq (0).$

 $m \in Max_I(R)$

2) Let M be an R-module such that $I \subseteq Z_R(M)$. Assume that $Q_R(M) = R$. Then the following assertions are equivalent.

a) M is an A-module along I;

b) For each proper finitely generated ideal J of R such that I+J=R, ann_M(J) \neq (0);

c) For each proper finitely generated ideal J of R such that $J \not\subseteq \bigcup_{m, n \in M} m, \operatorname{ann}_M(J) \neq (0).$

 $m{\in}\mathrm{Max}_I(R)$

Proof. 1) a) \Rightarrow b) Note that, as Q(R) = R, $Z(R) = \bigcup_{m \in Max(R)} m$. Let J be a proper finitely generated ideal of R such that I + J = R. Then $J \subseteq Z(R)$ and 1 = i + j for some $i \in I$ and some $j \in J$. Hence

 $(J+I)\cap \overline{S} \neq \emptyset$. It follows, as R is an \mathcal{A} -ring along I, that $\operatorname{ann}(J) \neq (0)$, as desired.

b) \Leftrightarrow c) It is straightforward as, for any ideal J of R, it is easy to check that I + J = R if and only if $J \not\subseteq \bigcup_{m \in I} m$.

$$m \in \operatorname{Max}_I(R)$$

b) \Rightarrow a) Assume that (b) holds. Let J be a proper finitely generated ideal of R such that $(J+I) \cap S \neq \emptyset$. Note that S is the set of invertible elements of R. Then there exists $s \in S$ such that $s \in I + J$ and thus $s \in I + J$. Therefore I + J = R. It follows, applying (b), that $\operatorname{ann}(J) \neq (0)$. Consequently, R is an \mathcal{A} -ring along I, as desired. 2) The proof is similar to the treatment of (1).

Corollary 2.26. Let R be a ring and I an ideal of R.

Assume that I ⊆ Z(R). Then the following assertions are equivalent.
 a) R is an A-ring along I;

b) For each finitely generated ideal $J \subseteq Z(R)$ of R such that $S^{-1}I + S^{-1}J = Q(R)$, $\operatorname{ann}(J) \neq (0)$;

c) For each finitely generated ideal $J \subseteq Z(R)$ of R such that $J \nsubseteq \bigcup m$, $\operatorname{ann}(J) \neq (0)$.

 $m \in \operatorname{Max}_I(\mathbf{Z}(R))$

2) Let M be an R-module such that $I \subseteq Z_R(M)$. Then the following assertions are equivalent.

a) M is an A-module along I;

b) For each finitely generated ideal $J \subseteq Z_R(M)$ such that $S_R(M)^{-1}I + S_R(M)^{-1}J = Q_R(M)$, $\operatorname{ann}_M(J) \neq (0)$;

c) For each finitely generated ideal $J \subseteq Z_R(M)$ of R such that $J \not\subseteq \bigcup_{m, \text{ ann}_M(J) \neq (0)} m$, ann_M(J) $\neq (0)$.

 $m \in \operatorname{Max}_I(\operatorname{Z}_R(M))$

Proof. It follows easily from the combination of Theorem 2.25 and Proposition 2.7.

It is noted above that any \mathcal{A} -ring R is an \mathcal{A} -ring along any ideal I of R as well as any \mathcal{A} -module M is an \mathcal{A} -module along any ideal I of R. Next, we seek when the converse of this result holds.

Proposition 2.27. Let R be a ring which is a not field and such that the Jacobson radical $J(R) := \bigcap m = (0)$. Then

$$m \in Max(R)$$

1) Assume that R = Q(R). Then the following assertions are equivalent:

a) R is an A-ring;

70

b) R is an A-ring along any ideal I of R;

c) R is an A-ring along any maximal ideal m of R.

2) Let M be an R-module such that $Q_R(M) = R$. Then the following assertions are equivalent:

- a) M is an A-module;
- b) M is an A-module along any ideal I of R;
- c) M is an A-module along any maximal ideal m of R.

Proof. 1) a) \Rightarrow b) It holds by Proposition 2.6. b) \Rightarrow c) It is direct.

c) \Rightarrow a) Assume that R is an \mathcal{A} -ring along any maximal ideal m of R. Let J be a nonzero proper finitely generated ideal of R. Then, as $J(R) \neq (0)$, there exists $m \in \operatorname{Max}(R)$ such that $J \nsubseteq m$ and thus J+m=R. Therefore, since R is an \mathcal{A} -ring along m, we get by Theorem 2.25 that $\operatorname{ann}(J) \neq (0)$. It follows that R is an \mathcal{A} -ring proving (a), as desired.

2) It is similar to the proof of (1).

3. PROPERTY (\mathcal{A}) ALONG AN IDEAL AND DIRECT PRODUCTS

This section investigates the behavior of the Property (\mathcal{A}) along an ideal with respect to direct products. Given a family of rings $(R_k)_{k \in \Lambda}$, we characterize when a direct product $\prod_k M_k$ is an \mathcal{A} -module along the direct product of ideals $\prod_k I_k$ with each M_k an R_k -module and each I_k is an ideal of R_k for any $k \in \Lambda$. This allows to generalize, via Theorem 3.3, a proposition of Hong-Kim-Lee-Ryu stating that the direct product $\prod R_i$ of a family of rings $(R_i)_i$ is an \mathcal{A} -ring if and only if each R_i is an \mathcal{A} -ring [13, Proposition 1.3].

We need the following lemmas.

Lemma 3.1. Let $(R_i)_{i \in \Lambda}$ be a family of rings and let $R = \prod_{i \in \Lambda} R_i$. Let M_i be an R_i -module for each $i \in \Lambda$. Let $J = (a_1, a_2, \dots, a_n)R$ be a finitely generated ideal of R and let $J_i = (a_{1i}, a_{2i}, \dots, a_{ni})R_i$ be the projection of J on R_i for each $i \in \Lambda$, where $a_k = (a_{ki})_{i \in \Lambda}$. Assume that $J \subseteq Z_R(\prod_{i \in \Lambda} M_i)$. Then there exists $i \in \Lambda$ such that $J_i \subseteq Z_{R_i}(M_i)$.

Proof. Assume, by way of contradiction, that $J_i \not\subseteq Z_{R_i}(M_i)$ for each $i \in \Lambda$. Then, for each $i \in \Lambda$, there exists $b_i = \alpha_{1i}a_{1i} + \alpha_{2i}a_{2i} + \cdots + \alpha_{ni}a_{ni} \in J_i$ such that $b_i \notin Z_{R_i}(M_i)$. Put $t_k = (\alpha_{ki})_i$ for $k = 1, \cdots, n$. Now, take $x = t_1a_1 + t_2a_2 + \cdots + t_na_n$. Then $x \in J$, as J is an ideal, and $x_i = b_i$ for each $i \in \Lambda$. Therefore $x_i \notin Z_{R_i}(M_i)$ for each $i \in \Lambda$ and thus $x \notin Z_R(\prod_{i \in \Lambda} M_i)$. This leads to a contradiction as $J \subseteq Z_R(\prod_i M_i)$. It follows that there exists $i \in \Lambda$ such that $J_i \subseteq Z_{R_i}(M_i)$, as desired.

It follows that there exists $i \in \Lambda$ such that $J_i \subseteq Z_{R_i}(M_i)$, as desired.

Lemma 3.2. Let $(R_k)_k$ be a family of rings and let $(M_k)_k$ be a family of modules such that each M_k is an R_k -module. Let $R = \prod R_k$ and let $M = \prod M_k$. Then $S_R(M) = \prod_k S_{R_k}(M_k)$.

Proof. It is direct.

Now, we announce the main theorem of this section.

Theorem 3.3. Let $(R_k)_{k \in \Lambda}$ be a family of commutative rings. Let $R = \prod_{k \in \Lambda} R_k$. Let I_k be an ideal of R_k for each $k \in \Lambda$ and let $I := \prod I_k$. Let M_k be an R_k -module for each $k \in \Lambda$ and $M := \prod_k M_k$. Then the following assertions are equivalent.

- 1) M is an A-module along I;
- 2) M_k is an \mathcal{A} -module along I_k for each $k \in \Lambda$.

Proof. 1) \Rightarrow 2) Assume that M is an \mathcal{A} -module along I. Fix $t \in \Lambda$ and let $J \subseteq \mathbb{Z}_{R_t}(M_t)$ be a finitely generated ideal such that $(J + I_t) \cap S_{R_t}(M_t) \neq \emptyset$. Let $j + i_t =: s_t \in (J + I_t) \cap S_{R_t}(M_t)$ with $j \in J$ and $i_t \in I_t$. Consider the ideal $K = JR + (\cdots, 1, 1, 1, 0_{R_t}, 1, 1, 1, \cdots)R$ of Rgenerated by JR and $(\cdots, 1, 1, 1, 0_{R_t}, 1, 1, 1, \cdots)$. Then K is a finitely generated ideal of R. Let $(a_k)_k \in K$. Then $a_t \in J$ and thus there exists $0 \neq m_t \in M_t$ such that $a_t m_t = 0$. Therefore

$$(a_k)_k(\cdots, 0, m_t, 0, \cdots) = (\cdots, 0, 0, a_t m_t, 0, 0, \cdots)$$

= 0

so that $(a_k)_k \in \mathbb{Z}_R(M)$. Hence $K \subseteq \mathbb{Z}_R(M)$. Also, observe that $(\cdots, 1, 1, 1, s_t, 1, 1, 1, \cdots) \in S_R(M)$ and that

$$(\cdots, 1, 1, s_t, 1, 1, \cdots) = (\cdots, 0, 0, s_t, 0, 0, \cdots) + (\cdots, 1, 1, 0_{R_t}, 1, 1, \cdots)$$
$$= (\cdots, 0, 0, j, 0, 0, \cdots) + (\cdots, 0, 0, i_t, 0, 0, \cdots) +$$
$$(\cdots, 1, 1, 0_{R_t}, 1, 1, \cdots)$$
$$= (j(\cdots, 0, 0, 1, 0, 0, \cdots) + (\cdots, 1, 1, 0_{R_t}, 1, 1, \cdots)) +$$
$$(\cdots, 0, 0, i_t, 0, 0, \cdots).$$

and thus $(\cdots, 1, 1, s_t, 1, 1, \cdots) \in K + I$. Therefore $(K+I) \cap S_R(M) \neq \emptyset$. Hence, since M is an \mathcal{A} -module along I, there exists $0 \neq m' \in M$ such that Km' = 0. Put $m' = (m'_k)_k$. Then $(\cdots, 1, 1, 0_{R_t}, 1, 1, \cdots)m' =$ 0, as $(\cdots, 1, 1, 0_{R_t}, 1, 1, \cdots) \in K$, and thus $m'_k = 0$ for each $k \neq t$. It follows that $m'_t \neq 0$ and $Jm'_t = (0)$, so that, $\operatorname{ann}_{M_t}(J) \neq (0)$. Consequently, M_k is an \mathcal{A} -module along I_t , as desired.

2) \Rightarrow 1) Assume that each M_k is an \mathcal{A} -module along I_k . Let $J = (a_1, a_2, \cdots, a_n)R \subseteq \mathbb{Z}_R(M)$ be a finitely generated ideal of R such that $(J + I) \cap S_R(M) \neq \emptyset$. Let $a_k = (a_{ki})_{i \in \Lambda}$ for each $k = 1, \cdots, n$ and let $J_i := (a_{1i}, a_{2i}, \cdots, a_{ni})R_i$ be the *i*th projection of J for each $i \in \Lambda$. Then, by Lemma 3.2, $(J_k + I_k) \cap S_{R_k}(M_k) \neq \emptyset$ for each $k \in \Lambda$. Also, by Lemma 3.1, there exists $k \in \Lambda$ such that $J_k \subseteq \mathbb{Z}_{R_k}(M_k)$ for each $k \in \Lambda$. Since M_k is an \mathcal{A} -module along I_k , we get that $\operatorname{ann}_{M_k}(J_k) \neq (0)$, that is, there exists $0 \neq m_k \in M_k$ such that $J_k m_k = (0)$. Hence, it is easily verified that

$$Jm_k \subseteq (\prod_{i \in \Lambda} J_i)(\cdots, 0, 0, m_k, 0, 0, \cdots)$$

= $\cdots \times (0) \times (0) \times J_k m_k \times (0) \times (0) \times \cdots$
= (0)

that is, $\operatorname{ann}_M(J) \neq (0)$. Therefore M is an \mathcal{A} -module along I completing the proof.

Next, we list some consequences of Theorem 3.3.

Corollary 3.4. Let $(R_k)_{k \in \Lambda}$ be a family of commutative rings. Let $R = \prod_{k \in \Lambda} R_k$. Let I_k be an ideal of R_k for each $k \in \Lambda$ and let $I := \prod I_k$. Then R is an A-ring along I if and only if R_k is an A-ring along I_k for each $k \in \Lambda$.

Corollary 3.5. Let R_1 and R_2 be rings. Let I_1 and I_2 be ideals of R_1 and R_2 , respectively. Then $R_1 \times R_2$ is an \mathcal{A} -ring along $I_1 \times I_2$ if and only if R_1 is an \mathcal{A} -ring along I_1 and R_2 is an \mathcal{A} -ring along I_2 .

Corollary 3.6. Let $(R_k)_{k \in \Lambda}$ be a family of commutative rings. Let $R = \prod_{k \in \Lambda} R_k$. Let I_k be an ideal of R_k for each $k \in \Lambda$ and let $I := \prod I_k$. Then I is an \mathcal{A} -module along itself if and only if I_k is an \mathcal{A} -module along itself for each $k \in \Lambda$.

Acknowledgements

The authors would like to thank the referee for careful reading.

References

- D. D. Anderson and S. Chun, The set of torsion elements of a module, Commun. Algebra, 42 (2014) 1835-1843.
- [2] D. D. Anderson and S. Chun, Zero-divisors, torsion elements, and unions of annihilators, Commun. Algebra, 43 (2015) 76-83.
- [3] D. D. Anderson and S. Chun, Annihilator conditions on modules over commutative rings, J. Alg. Applications, (7) 16 (2017) 1750143.
- [4] D. D. Anderson and S. Chun, McCoy modules and related modules over commutative rings, (6) 45 (2017), 2593-2601.
- [5] S. Bouchiba, On the vanishing of annihilators of modules, Commun. Algebra,
 (2) 48 (2020), 879-890.
- [6] S. Bouchiba, M. El-Arabi and M. Khaloui, When is the idealization R K M an A-ring?, J. Alg. Applications, (12) 19 (2020), 2050227.
- [7] S. Bouchiba and M. El-Arabi, On Property (A) for modules over direct products of rings, Quaestiones Mathematicae, to appear.
- [8] A. Ait Ouahi, S. Bouchiba and M. El-Arabi, On proper strong Property (A) for rings and modules, J. Alg. Applications, (12) 9 (2020), 2050239.
- [9] M. D'Anna, A construction of Gorenstein rings, J. Algebra, 306 (2006), 507-519.
- [10] A. Y. Darani, Notes on annihilator conditions in modules over commutative rings, An. Stinnt. Univ. Ovidius Constanta, 18 (2010), 59-72.
- [11] D. E. Dobbs and J. Shapiro, On the strong (A)-ring of Mahdou and Hassani, Mediterr. J. Math. 10 (2013), 1995-1997.
- [12] C. Faith, Annihilator ideals, associated primes, and Kasch?McCoy commutative rings, Comm. Algebra, 19 (1991), 1867-1892.
- [13] C. Y. Hong, N. K. Kim, Y. Lee and S. T. Ryu, Rings with Property (A) and their extensions, J. Algebra, 315 (2007), 612-628.
- [14] J. A. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker, Inc., New York and Basel, 1988.
- [15] J. A. Huckaba and J. M. Keller, Annihilation of ideals in commutative rings, Pacific J. Math. 83 (1979), 375-379.
- [16] I. Kaplansky, *Commutative Rings*, Polygonal Publishing House, Washington, New Jersey, 1994.
- [17] T. G. Lucas, Two annihilator conditions: Property (A) and (A.C.), Commun. Algebra 14 (1986), 557-580.

BOUCHIBA AND ARSSI

- [18] N. Mahdou and A. R. Hassani, On strong (A)-rings, Mediterr. J. Math. 9 (2012), 393-402.
- [19] N. Mahdou and M. Moutui, On (A)-rings and (SA)-rings issued from amalgamations, Studia Scientiarum Mathematicarum Hungarica, (2) 55 (2018), 270-279.
- [20] R. Mohammadi, A. Moussavi and M. Zahiri, On rings with annihilator condition, Studia Scientiarum Mathematicarum Hungarica, 54 (2017), 82-96.
- [21] Y. Quentel, Sur la compacité du spectre minimal d'un anneau, Bull. Soc. Math. France, 99 (1971), 265-272.

S. Bouchiba

Department of Mathematics, Faculty of Sciences, Moulay Ismail university of Meknes, Meknes, Morocco Email: s.bouchiba@fs.umi.ac.ma

Y. Arssi

Department of Mathematics, Faculty of Sciences, Moulay Ismail university of Meknes, Meknes, Morocco Email: youssefarssi4@gmail.com