Journal of Algebra and Related Topics

Vol. 8, No 2, (2020), pp 57-74

ON PROPERTY (\mathcal{A}) OF RINGS AND MODULES ALONG AN IDEAL

S. BOUCHIBA * AND Y. ARSSI

Abstract

This paper introduces and studies the notion of Prop$\operatorname{erty}(\mathcal{A})$ of a ring R or an R-module M along an ideal I of R. For instance, any module M over R satisfying the $\operatorname{Property}(\mathcal{A})$ do satisfy the Property (\mathcal{A}) along any ideal I of R. We are also interested in ideals I which are \mathcal{A}-module along themselves. In particular, we prove that if I is contained in the nilradical of R, then any R module is an \mathcal{A}-module along I and, thus, I is an \mathcal{A}-module along itself. Also, we present an example of a ring R possessing an ideal I which is an \mathcal{A}-module along itself while I is not an \mathcal{A}-module. Moreover, we totally characterize rings R satisfying the Property (\mathcal{A}) along an ideal I in both cases where $I \subseteq \mathrm{Z}(R)$ and where $I \nsubseteq \mathrm{Z}(R)$. Finally, we investigate the behavior of the $\operatorname{Property}(\mathcal{A})$ along an ideal with respect to direct products.

1. Introduction

Throughout this paper, all rings are supposed to be commutative with unit element and all R-modules are unital. Let R be a commutative ring and M an R-module. We denote by $\mathrm{Z}_{R}(M)=\{r \in R: r m=0$ for some nonzero element $m \in M\}$ the set of zero divisors of R on M and by $\mathrm{Z}(R):=\mathrm{Z}_{R}(R)$ the set of zero divisors of the ring R. In [3], the notions of \mathcal{A}-module and $\mathcal{S} \mathcal{A}$-module are extensively studied. In fact, an R-module M satisfies Property (\mathcal{A}), or M is an \mathcal{A}-module over R (or \mathcal{A}-module if no confusion is likely), if for every finitely generated ideal I of R with $I \subseteq \mathrm{Z}_{R}(M)$), there exists a nonzero $m \in M$ with $I m=0$,

Keywords: \mathcal{A}-ring; \mathcal{A}-ring along an ideal; \mathcal{A}-module along an ideal; zero divisor. Received: 14 April 2020, Accepted: 18 October 2020.
$*$ Corresponding author .
or equivalently, $\operatorname{ann}_{M}(I) \neq 0 . M$ is said to satisfy strong Property (\mathcal{A}), or is an $\mathcal{S A}$-module over R (or an $\mathcal{S A}$-module if no confusion is likely), if for any $r_{1}, \cdots, r_{n} \in \mathrm{Z}_{R}(M)$, there exists a nonzero $m \in M$ such that $r_{1} m=\cdots=r_{n} m=0$. The ring R is said to satisfy Property (\mathcal{A}), or an \mathcal{A}-ring, (respectively, $\mathcal{S} \mathcal{A}$-ring) if R is an \mathcal{A}-module (resp., an $\mathcal{S A}$-module). One may easily check that M is an $\mathcal{S A}$-module if and only if M is an \mathcal{A}-module and $\mathrm{Z}_{R}(M)$ is an ideal of R. It is worthwhile reminding the reader that the $\operatorname{Property}(\mathcal{A})$ for commutative rings was introduced by Quentel in [21] who called it Property (C) and Huckaba used the term Property (\mathcal{A}) in [14, 15]. In [12], Faith called rings satisfying Property (\mathcal{A}) McCoy rings. The Property (\mathcal{A}) for modules was introduced by Darani [10] who called such modules F-McCoy modules (for Faith McCoy terminology). He also introduced the strong Property (\mathcal{A}) under the name super coprimal and called a module M coprimal if $\mathrm{Z}_{R}(M)$ is an ideal. In [18], the strong $\operatorname{Property}(\mathcal{A})$ for commutative rings was independently introduced by Mahdou and Hassani in [18] and further studied by Dobbs and Shapiro in [11]. Note that a finitely generated module over a Noetherian ring is an \mathcal{A}-module (for example, see [16, Theorem 82]) and thus a Noetherian ring is an \mathcal{A}-ring. Also, it is well known that a zero-dimensional ring R is an \mathcal{A}-ring as well as any ring R whose total quotient ring $Q(R)$ is zero-dimensional. In fact, it is easy to see that R is an \mathcal{A}-ring if and only if so is $Q(R)[9$, Corollary 2.6]. Any polynomial ring $R[X]$ is an \mathcal{A}-ring [14] as well as any reduced ring with a finite number of minimal prime ideals [14]. In [5], we generalize a result of T.G. Lucas which states that if R is a reduced commutative ring and M is a flat R-module, then the idealization $R \ltimes M$ is an \mathcal{A}-ring if and only if R is an \mathcal{A}-ring [17, Proposition 3.5]. In effect, we drop the reduceness hypotheses and prove that, given an arbitrary commutative ring R and any submodule M of a flat R module $F, R \ltimes M$ is an \mathcal{A}-ring (resp., $\mathcal{S} \mathcal{A}$-ring) if and only if R is an \mathcal{A}-ring (resp., $\mathcal{S} \mathcal{A}$-ring). In [6], we present an answer to a problem raised by D.D. Anderson and S. Chun in [3] on characterizing when is the idealization $R \ltimes M$ of a ring R on an R-module M an \mathcal{A}-ring (resp., an $\mathcal{S} \mathcal{A}$-ring) in terms of module-theoretic properties of R and M. Also, we were concerned with presenting a complete answer to an open question asked by these two authors which reads the following: What modules over a given ring R are homomorphic images of modules satisfying the strong Property (\mathcal{A}) ? [3, Question 4.4 (1)]. The main theorem of [7] extends a result of Hong, Kim, Lee and Ryu in [13] which proves that a direct product $\prod R_{i}$ of rings is an \mathcal{A}-ring if and only if so is any R_{i}. In this regard, we show that if $\left\{R_{i}\right\}_{i \in I}$ is a family of rings and $\left\{M_{i}\right\}_{i \in I}$ is a family of modules such that each M_{i} is an R_{i}-module,
then the direct product $\prod_{i \in I} M_{i}$ of the M_{i} is an \mathcal{A}-module over $\prod_{i \in I} R_{i}$ if and only if each M_{i} is an \mathcal{A}-module over $R_{i}, i \in I$. Finally, our main concern in [8] is to introduce and investigate a new class of rings lying properly between the class of \mathcal{A}-rings and the class of $\mathcal{S} \mathcal{A}$-rings. The new class of rings, termed the class of $\mathcal{P S} \mathcal{A}$-rings, turns out to share common characteristics with both \mathcal{A}-rings and $\mathcal{S} \mathcal{A}$-rings. Numerous properties and characterizations of this class are given as well as the module-theoretic version of $\mathcal{P S} \mathcal{A}$-rings is introduced and studied. For further works related to the $\operatorname{Property}(\mathcal{A})$ and $(\mathcal{S} \mathcal{A})$, we refer the reader to $[1,2,3,4,13,17,19,20]$.

The main goal of this paper is to introduce and investigate the new notions of an \mathcal{A}-ring R and \mathcal{A}-module M along an ideal I of R. Our interest in these concepts stems from our next proved theorem that if the amalgamated duplication $R \bowtie I$ of a ring R along an ideal I is an \mathcal{A}-ring, then I is an \mathcal{A}-module along itself. It is worth noting that any \mathcal{A}-ring (resp., any \mathcal{A}-module) is, in particular, an \mathcal{A}-ring (resp., an \mathcal{A}-module) along any ideal I of R. In particular, we show interest in those ideals of R which satisfy the $\operatorname{Property}(\mathcal{A})$ along themselves. For instance, we prove that if R is Noetherian or a zero-dimensional ring, then any ideal I is an \mathcal{A}-module along itself. Also, if R is a ring and I is an ideal of R such that either I is contained in the nilradical $\operatorname{Rad}(R)$ of R or $\mathrm{Z}_{R}(I)=\mathrm{Z}(R)$, then I is an \mathcal{A}-module along itself. Moreover, through Example 2.19, we provide a case of a ring R admitting an ideal I which is an \mathcal{A}-module along itself while I is not an \mathcal{A}-module. The two main theorems of Section 2 totally characterize when a ring R (resp., an R-module M) is an \mathcal{A}-ring (resp., an \mathcal{A}-module) along a given ideal I. These two theorems tackle the two possible cases $I \subseteq \mathrm{Z}(R)$ and $I \nsubseteq \mathrm{Z}(R)$ and they read the following:

Theorem 1.1. Let R be a ring and I an ideal of R. Let M be an R-module.

1) Assume that $I \nsubseteq \mathrm{Z}(R)$. Then the following assertions are equivalent:
a) R is an \mathcal{A}-ring;
b) R is an \mathcal{A}-ring along I;
c) I is an \mathcal{A}-module;
d) I is an \mathcal{A}-module along itself.
2) Assume that $I \nsubseteq \mathrm{Z}_{R}(M)$. Then M is an \mathcal{A}-module along I if and only if M is an \mathcal{A}-module.

Theorem 1.2. Let R be a ring and I an ideal of R.

1) Assume that $I \subseteq \mathrm{Z}(R)$ and that $Q(R)=R$. Then the following assertions are equivalent.
a) R is an \mathcal{A}-ring along I;
b) For each proper finitely generated ideal J of R such that $I+J=R$, $\operatorname{ann}(J) \neq(0)$;
c) For each proper finitely generated ideal J of R such that $J \nsubseteq$
$\bigcup_{\operatorname{Max}_{I}(R)} m, \operatorname{ann}(J) \neq(0)$.
2) Let M be an R-module such that $I \subseteq \mathrm{Z}_{R}(M)$. Assume that $Q_{R}(M)=$ R. Then the following assertions are equivalent.
a) M is an \mathcal{A}-module along I;
b) For each proper finitely generated ideal J of R such that $I+J=R$, $\operatorname{ann}_{M}(J) \neq(0)$;
c) For each proper finitely generated ideal J of R such that $J \nsubseteq$ $\bigcup_{\operatorname{Max}_{I}(R)} m, \operatorname{ann}_{M}(J) \neq(0)$.

Finally, in Section 3, we investigate the behavior of the $\operatorname{Property}(\mathcal{A})$ along an ideal with respect to direct products. This allows us to generalize, via Theorem 3.3, a proposition of Hong-Kim-Lee-Ryu stating that the direct product $\prod R_{i}$ of a family of rings $\left(R_{i}\right)_{i}$ is an \mathcal{A}-ring if and only if each R_{i} is an \mathcal{A}-ring [13, Proposition 1.3].

2. Property (\mathcal{A}) along an ideal

This section introduces and investigates the new concepts of an \mathcal{A} ring R and \mathcal{A}-module M along an ideal I of R. The new classes turn out to encompass the classical ones of \mathcal{A}-rings and \mathcal{A}-modules. In particular, we seek conditions under which an ideal I of a ring R is an \mathcal{A}-module along itself.

Throughout, given a ring R and an R-module M, we denote by $\operatorname{Spec}(\mathrm{Z}(R))$ (resp., $\operatorname{Max}(\mathrm{Z}(R)))$ the set of prime ideals (resp., maximal ideals) of R contained in $\mathrm{Z}(R)$ and by $\operatorname{Spec}\left(\mathrm{Z}_{R}(M)\right)$ (resp., $\left.\operatorname{Max}\left(\mathrm{Z}_{R}(M)\right)\right)$ the set of prime ideals (resp., maximal ideals) of R contained in $\mathrm{Z}_{R}(M)$. According to [16], $\operatorname{Max}\left(\mathrm{Z}_{R}(M)\right)$ stands for the set of the maximal primes of the R-module M.

We begin by giving the definition of the new concepts.
Definition 2.1. Let R be a ring and I an ideal of R. Let M be an R-module. Let $S:=R \backslash \mathrm{Z}(R)$ and $S_{R}(M)=R \backslash \mathrm{Z}_{R}(M)$. Then

1) R is said to be an \mathcal{A}-ring along I if for each finitely generated ideal $J \subseteq \mathrm{Z}(R)$ such that $(J+I) \cap S \neq \emptyset$, we have ann $(J) \neq(0)$.
2) M is said to be an \mathcal{A}-module along I if for each finitely generated
ideal $J \subseteq \mathrm{Z}_{R}(M)$ such that $(J+I) \cap S_{R}(M) \neq \emptyset$, we have $\operatorname{ann}_{M}(J) \neq$ (0).

The vacuous case of a ring R and an ideal I of R such that $(\mathrm{Z}(R)+$ $I) \cap S=\emptyset$ is considered of course an \mathcal{A}-ring along I. For instance, any ring R is an \mathcal{A}-ring along (0) as $\mathrm{Z}(R) \cap S=\emptyset$. Also, any R-module M such that $\left(\mathrm{Z}_{R}(M)+I\right) \cap S_{R}(M)=\emptyset$ is (vacuously) an \mathcal{A}-module along I. Our first result allows to construct further examples of vacuously \mathcal{A}-rings and \mathcal{A}-modules along an ideal.

Proposition 2.2. Let R be a ring and I an ideal of R. Let M be an R-module.

1) Assume that $\mathrm{Z}(R)$ is an ideal of R and that $I \subseteq \mathrm{Z}(R)$. Then R is an \mathcal{A}-ring along I.
2) Assume that $\mathrm{Z}_{R}(M)$ is an ideal of R and that $I \subseteq \mathrm{Z}_{R}(M)$. Then M is an \mathcal{A}-module along I.
Proof. 1) It suffices to note that $(\mathrm{Z}(R)+I) \cap S=\emptyset$.
3) Note that $\left(\mathrm{Z}_{R}(M)+I\right) \cap S_{R}(M)=\emptyset$.

We deduce from Proposition 2.2 the first case of an ideal of a ring R which is an \mathcal{A}-module along itself.
Corollary 2.3. Let R be a ring and I an ideal of R such that $\mathrm{Z}_{R}(I)$ is an ideal of R and $I \subseteq \mathrm{Z}_{R}(I)$. Then I is an \mathcal{A}-module along itself.

Recall that, given a ring R and an ideal I of R, the amalgamated duplication of R along I (see [9]) is the subring $R \bowtie I$ of $R \times R$ defined by $R \bowtie I:=\{(r, r+i): r \in R$ and $i \in I\}$. In this context, it is well known that if the amalgamated duplication $R \bowtie I$ of R along I is an \mathcal{A}-ring, then R is an \mathcal{A}-ring. Our first theorem proves that " I is an \mathcal{A}-module along itself" is a further necessary condition for $R \bowtie I$ to be an \mathcal{A}-ring. This fact accounts for our terminology of the new Property (\mathcal{A}).
Theorem 2.4. Let R be a ring and I an ideal of R. Assume that $R \bowtie I$ is an \mathcal{A}-ring. Then I is an \mathcal{A}-module along itself.
Proof. Let J be a finitely generated ideal of R such that $J \subseteq \mathrm{Z}_{R}(I)$ and $(J+I) \cap S \neq \emptyset$. Put $J=\left(b_{1}, \cdots, b_{n}\right)$ and let $b \in S$ and $j \in$ I such that $b+j \in J$. Consider the finitely generated ideal $H=$ $\left(\left(b_{1}, b_{1}\right), \cdots,\left(b_{n}, b_{n}\right),(b, b+j)\right)$ of $R \bowtie I$. Let $t \in H$. Then

$$
\begin{aligned}
t & =\sum_{r=1}^{n}\left(\alpha_{r}, \alpha_{r}+i_{r}\right)\left(b_{r}, b_{r}\right)+(\alpha, \alpha+i)(b, b+j) \\
& =\left(\sum_{r=1}^{n} \alpha_{r} b_{r}+\alpha b, \sum_{r=1}^{n}\left(\alpha_{r}+i_{r}\right) b_{r}+(\alpha+i)(b+j)\right)
\end{aligned}
$$

for any $\left(\alpha_{r}, \alpha_{r}+i_{r}\right),(\alpha, \alpha+i) \in R \bowtie I$ and any $r \in\{1,2, \cdots, n\}$. Note that

$$
\sum_{r=1}^{n}\left(\alpha_{r}+i_{r}\right) b_{r}+(\alpha+i)(b+j) \in J
$$

Since $J \subseteq \mathrm{Z}_{R}(I)$, we obtain $\sum_{r=1}^{n}\left(\alpha_{r}+i_{r}\right) b_{r}+(\alpha+i)(b+j) \in \mathrm{Z}_{R}(I)$.
Hence, there exists $\omega \in I \backslash\{0\}$ such that

$$
\left(\sum_{r=1}^{n}\left(\alpha_{r}+i_{r}\right) b_{r}+(\alpha+i)(b+j)\right) \omega=0
$$

Therefore $t(0, \omega)=0$ and $(0, \omega) \neq(0,0)$, and thus $t \in \mathrm{Z}(R \bowtie I)$. It follows that $H \subseteq \mathrm{Z}(R \bowtie I)$ and thus, since $R \bowtie I$ is an \mathcal{A}-ring, there exists $(a, a+e) \in R \bowtie I \backslash\{(0,0)\}$ such that $H(a, a+e)=(0,0)$. In particular, $(b, b+j)(a, a+e)=(0,0)$, so that $b a=0=(b+j)(a+e)$. As $b \in S:=R \backslash \mathrm{Z}(R)$, we get $a=0$. It follows that $e \in I \backslash\{0\}$ and $J e=(0)$ since $H(0, e)=(0)$. Consequently, $\operatorname{ann}_{I}(J) \neq(0)$ and thus J is an \mathcal{A}-module along itself completing the proof of the theorem.

The following two propositions records the fact that the $\operatorname{Property}(\mathcal{A})$ along a fixed ideal I of a ring R is a weaker notion than the Property (\mathcal{A}) of R and that in the Noetherian setting any ideal I of R is an \mathcal{A}-module along itself.

Proposition 2.5. Let R be a ring and M be an R-module. Then

1) The following assertions are equivalent:
a) R is an \mathcal{A}-ring;
b) R is an \mathcal{A}-ring along R.
2) The following assertions are equivalent:
a) M is an \mathcal{A}-module;
b) M is an \mathcal{A}-module along R.

Proof. It is direct from Definition 2.1 as $\mathrm{Z}(R)+R=\mathrm{Z}_{R}(M)+R=$ R.

Proposition 2.6. Let R be a ring and I an ideal of R. Then

1) Any \mathcal{A}-module M over R is an \mathcal{A}-module along I. In particular, if R is an \mathcal{A}-ring, then R is an \mathcal{A}-ring along I.
2) If R is Noetherian, then I is an \mathcal{A}-module, and thus I is an \mathcal{A} module along itself.
3) If R is zero-dimensional, then I is an \mathcal{A}-module along itself.

Proof. 1) It is clear from Definition 2.1.
2) Assume that R is Noetherian. Then I is a Noetherian module over
R. Therefore, by [3, Theorem $2.2(5)], I$ is an \mathcal{A}-module. Hence, by (1), I is an \mathcal{A}-module along itself.
3) Assume that $\operatorname{dim}(R)=0$. By [3, Theorem 2.2], any R-module is an \mathcal{A}-module. Then, using (1), we get that I is an \mathcal{A}-module along itself.

It is known that a ring R (resp., an R-module M) is an \mathcal{A}-ring (resp., an \mathcal{A}-module over R) if and only if the total quotient ring $Q(R)$ (resp., the total quotient module $Q(M)$) is an \mathcal{A}-ring (resp., an \mathcal{A}-module over $Q(R)$). Next, we handle the transfer of this result to the $\operatorname{Property}(\mathcal{A})$ along an ideal.

Proposition 2.7. Let R be a ring and I an ideal of R. Let M be an R-module.

1) Assume that $I \subseteq \mathrm{Z}(R)$. Then the following assertions are equivalent.
a) R is an \mathcal{A}-ring along I;
b) $Q(R)$ is an \mathcal{A}-ring along $S^{-1} I$.
2) Assume that $I \subseteq \mathrm{Z}_{R}(M)$. Let $Q(M)=S_{R}(M)^{-1} M$ denote the total quotient module of M. Then the following assertions are equivalent.
a) M is an \mathcal{A}-module along I;
b) $Q(M)$ is an \mathcal{A}-module along $S_{R}(M)^{-1} I$.

Proof. 1) a) $\Rightarrow \mathrm{b}$) Assume that R is an \mathcal{A}-ring along I. Note that the multiplicative set of regular elements of $Q(R)$ is

$$
Q(R) \backslash \mathrm{Z}(Q(R))=S^{-1} S:=\left\{\frac{t}{s} \in Q(R): s, t \in S\right\}=U(Q(R))
$$

the set of units of $Q(R)$. Let K be a proper finitely generated ideal of $Q(R)$ such that $\left(K+S^{-1} I\right) \cap U(Q(R)) \neq \emptyset$. Then there exists a finitely generated ideal $J \subseteq \mathrm{Z}(R)$ of R such that $K=S^{-1} J$. Hence $S^{-1}((J+I) \cap S) \neq \emptyset$ and thus $(J+I) \cap S \neq \emptyset$. Therefore, as R is an \mathcal{A} ring, $\operatorname{ann}(J) \neq(0)$. It follows, since $K=S^{-1} J$, that $\operatorname{ann}_{Q(R)}(K) \neq(0)$. Consequently, $Q(R)$ is an \mathcal{A}-ring along $S^{-1} I$, as desired.
b) \Rightarrow a) Assume that $Q(R)$ is an \mathcal{A}-ring along $S^{-1} I$. Let $J \subseteq \mathrm{Z}(R)$ be a finitely generated ideal of R such that $(J+I) \cap S \neq \emptyset$. Then $S^{-1} J$ is a proper finitely generated ideal of $Q(R)$ and $\left(S^{-1} J+S^{-1} I\right) \cap S^{-1} S \neq \emptyset$, that is, $\left(S^{-1} J+S^{-1} I\right) \cap U(Q(R)) \neq \emptyset$. Hence, as $Q(R)$ is an \mathcal{A}-ring along $S^{-1} I$, we get $\operatorname{ann}_{Q(R)}\left(S^{-1} J\right) \neq(0)$. It follows, as S consists of regular elements of R, that $\operatorname{ann}(J) \neq(0)$. Consequently, R is an \mathcal{A}-ring along I, as desired.
2) The proof is similar to that of (1).

Corollary 2.8. Let R be a ring and I an ideal of R such that $I \subseteq$ $\mathrm{Z}_{R}(I)$. Then I is an \mathcal{A}-module along itself if and only if the ideal $S_{R}(I)^{-1} I$ of $Q_{R}(I)$ is an \mathcal{A}-module along itself.

Through the next bunch of results we seek conditions under which an ideal I of a ring R is an \mathcal{A}-module along itself.

Let R be a ring and M an R-module. We denote by $J(R):=$ $\bigcap_{m \in \operatorname{Max}(R)} m$ the Jacobson radical of R and by $J\left(\mathrm{Z}_{R}(M)\right):=\bigcap_{m \in \operatorname{Max}\left(\mathrm{Z}_{R}(M)\right)} m$ the intersection of all maximal primes of M.

Proposition 2.9. Let R be a ring and I an ideal of R. Let M be an R-module such that $I \subseteq J\left(\mathrm{Z}_{R}(M)\right)$. Then M is an \mathcal{A}-module along I. In particular, if $I \subseteq J\left(\mathrm{Z}_{R}(I)\right)$, then I is an \mathcal{A}-module along itself.

Proof. Let J be a finitely generated ideal of R such that $J \subseteq \mathrm{Z}_{R}(M)$. Then there exists a maximal prime $m \in \operatorname{Max}\left(\mathrm{Z}_{R}(M)\right)$ such that $J \subseteq m$. Hence, as $I \subseteq m$, we get $J+I \subseteq m$. This means that $J+I \subseteq \mathrm{Z}_{R}(M)$ and thus $(J+I) \cap S_{R}(M)=\emptyset$. It follows that M is (vacuously) an \mathcal{A}-module along I, as desired.

Let R be a ring. We denote by $\operatorname{Rad}(R)$ the nilradical of R. We record the following lemma.
Lemma 2.10. Let R be a ring. Then $\operatorname{Rad}(R) \subseteq J\left(\mathrm{Z}_{R}(M)\right)$ for any R-module M.

Proof. It is direct as

$$
\operatorname{Rad}(R)=\bigcap_{p \in \operatorname{Spec}(R)} p \text { and } J\left(\mathrm{Z}_{R}(M)\right):=\bigcap_{m \in \operatorname{Max}\left(\mathrm{Z}_{R}(M)\right)} m
$$

for a given R-module M.

Proposition 2.11. Let R be a ring and I an ideal of R. Assume that $I \subseteq \operatorname{Rad}(R)$. Then any R-module M is an \mathcal{A}-module along I. In particular, I is an \mathcal{A}-module along itself.

Proof. Let M be an R-module. By Lemma 2.10, $\operatorname{Rad}(R) \subseteq J\left(\mathrm{Z}_{R}(M)\right)$. It follows by Proposition 2.9 that M is an \mathcal{A}-module along I completing the proof of the proposition.

Corollary 2.12. Let R be a ring and I a nilpotent ideal of R, that is, there exists $n \geq 1$ such that $I^{n}=(0)$. Then any R-module M is an \mathcal{A}-module along I. In particular, I is an \mathcal{A}-module along itself.

Proof. It suffices to note that $I \subseteq \operatorname{Rad}(R)$ and then to apply Proposition 2.11.

Corollary 2.13. Let R be a ring and M an R-module. Consider the idealization $R \ltimes M$ of M. Then the ideal $I:=(0) \ltimes M$ of $R \ltimes M$ is an \mathcal{A}-module along itself.
Proof. Note that $I^{2}=(0)$. Then, by Corollary 2.12, I is an \mathcal{A}-module along itself.

Proposition 2.14. Let R be an \mathcal{A}-ring and I an ideal of R such that $\mathrm{Z}_{R}(I)=\mathrm{Z}(R)$. Then I is an \mathcal{A}-module along itself.
Proof. Let $J \subseteq \mathrm{Z}_{R}(I)$ be a finitely generated ideal of R such that $(J+I) \cap S_{R}(I) \neq \emptyset$. Then, as $J \subseteq \mathrm{Z}_{R}(I) \subseteq \mathrm{Z}(R)$ and R is an \mathcal{A} ring, we get $\operatorname{ann}(J) \neq(0)$ and thus there exists $a \in R \backslash\{0\}$ such that $a J=(0)$. Also, there exists $i \in I$ and $s \in S_{R}(I)$ such that $s+i \in J$. Hence $a(s+i)=0$, so that as $=-a i$. Note that, as $\mathrm{Z}_{R}(I)=\mathrm{Z}(R)$, we have $S_{R}(I)=S$. This ensures that $s \in S$ is a regular element of R. Assume that $a i=0$. Therefore $a s=0$ and thus, as s is a regular element, we get $a=0$ which is absurd. Hence $j:=a i \in I \backslash\{0\}$. It follows that $j J=(0)$ and $j \in I \backslash\{0\}$ which means that $\operatorname{ann}_{I}(J) \neq(0)$. Consequently, I is an \mathcal{A}-module along itself, as desired.

Corollary 2.15. Let R be an $\mathcal{S A}$-ring. Put $I:=\mathrm{Z}(R)$. Then I is an \mathcal{A}-module along itself.
Proof. Let us first prove that $\mathrm{Z}_{R}(I)=\mathrm{Z}(R)$. In effect, the inequality $\mathrm{Z}_{R}(I) \subseteq \mathrm{Z}(R)$ always holds. Let $0 \neq x \in \mathrm{Z}(R)$. Then there exists $0 \neq$ $a \in R$ such that $a x=0$. Hence $a \in \mathrm{Z}(R)=I$ and thus $x \in \mathrm{Z}_{R}(I)$. It follows that $\mathrm{Z}(R) \subseteq \mathrm{Z}_{R}(I)$ yeilding the desired equality $\mathrm{Z}_{R}(I)=\mathrm{Z}(R)$. Now, Proposition 2.14 completes the proof.
Proposition 2.16. Let R be an \mathcal{A}-ring and I an ideal of R. Assume that $\operatorname{ann}(I) \subseteq I$. Then I is an \mathcal{A}-module along itself.
Proof. Let $J \subseteq \mathrm{Z}_{R}(I)$ be a finitely generated ideal of R such that $(J+I) \cap S_{R}(I) \neq \emptyset$. As R is an \mathcal{A}-ring, we get $\operatorname{ann}(J) \neq(0)$ and thus there exists $a \in R$ such that $a \neq 0$ and $a J=(0)$. If $a \in I$, then $\operatorname{ann}_{I}(J) \neq(0)$. Assume that $a \notin I$. Then, as ann $(I) \subseteq I, a \notin \operatorname{ann}(I)$. Hence there exists $i \in I$ such that $j:=a i \neq 0$. It follows that $j J=(0)$ and $j \in I \backslash\{0\}$, so that $\operatorname{ann}_{I}(J) \neq(0)$. Consequently, I is an \mathcal{A}-module along itself.

Corollary 2.17. Let R be an \mathcal{A}-ring and I an ideal of R such that $\operatorname{ann}(I)=(0)$. Then I is an \mathcal{A}-module along itself.

Corollary 2.18. Let R be an \mathcal{A}-ring and I an ideal of R. Assume that $\mathrm{Z}_{R}(I) \subseteq I$. Then I is an \mathcal{A}-module along itself.
Proof. It is direct from Proposition 2.16 as $\operatorname{ann}(I) \subseteq \mathrm{Z}_{R}(I)$.

Next, we give an example of an \mathcal{A}-ring R which admits an ideal I such that I is an \mathcal{A}-module along itself while I is not an \mathcal{A}-module.

Example 2.19. We resume the example [3, Example 2.14] of Anderson and Chun. Let k be a countable field and $D=k\left[X_{1}, X_{2}, \cdots, X_{n}\right]$ with $n \geq 2$. There exists D-modules A_{1} and A_{2} such that $A_{1} \oplus A_{2}$ is an \mathcal{A}-module as a D-module while neither A_{1} nor A_{2} has Property (\mathcal{A}) over D. Let $R:=\left(D \ltimes A_{1}\right) \ltimes A_{2} \cong D \ltimes\left(A_{1} \oplus A_{2}\right)$. By [3, Theorem 2.12], R is an \mathcal{A}-ring as D is a domain and $A_{1} \oplus A_{2}$ is an \mathcal{A}-module over D. Also, by Corollary 2.13, the ideal $I=(0) \ltimes A_{2}$ of R is an \mathcal{A}-module along itself. Moreover, observe that the natural ring homomorphisms $D \ltimes A_{1} \longrightarrow D$ and $R \longrightarrow D \ltimes A_{1}$ are surjective. Then, by two applications of [3, Theorem 2.1(1)(b)], we get that A_{2} is not an \mathcal{A}-module as an R-module, where $\left(\left(d, a_{1}\right), a_{2}\right) x=d x$ for any $d \in D, a_{1} \in A_{1}, a_{2} \in A_{2}$ and any $x \in A_{2}$. On the other hand, it is easy to see that the natural map $\varphi: A_{2} \longrightarrow I=(0) \ltimes A_{2}$ such that $\varphi(a)=(0, a)$ for each $a \in A_{2}$ is an isomorphism of R-modules. It follows that $I=(0) \ltimes A_{2}$ is not an \mathcal{A}-module, as desired.

Our second theorem of this section characterizes the Property (\mathcal{A}) along an ideal I of a ring R in the case where $I \nsubseteq \mathrm{Z}(R)$. We prove that in this setting the two notions of $\operatorname{Property}(\mathcal{A})$ and $\operatorname{Property}(\mathcal{A})$ along I collapse.

First, we prove the following lemma.
Lemma 2.20. Let R be a ring and I is an ideal such that $I \nsubseteq \mathrm{Z}(R)$. Then

$$
\mathrm{Z}_{R}(I)=\mathrm{Z}(R)
$$

Proof. First, note that $\mathrm{Z}_{R}(I) \subseteq \mathrm{Z}(R)$. Also, as $I \nsubseteq \mathrm{Z}(R)$, we get $S^{-1} I=Q(R)$. Let $a \in \mathrm{Z}(R)$. Then there exists $r \in R$ such that $r \neq 0$ and $r a=0$. Hence there exists $\frac{i}{s} \in S^{-1} I$ with $i \in I \backslash\{0\}$ and $s \in S$ such that $\frac{r}{1}=\frac{i}{s}$ and thus $\frac{i}{s} \frac{a}{1}=0$. Therefore there exists $t \in S$ such
that tia $=0$. Then $i a=0$ and $i \in I \backslash\{0\}$. It follows that $a \in \mathrm{Z}_{R}(I)$. Consequently, $\mathrm{Z}_{R}(I)=\mathrm{Z}(R)$, as desired.

Theorem 2.21. Let R be a ring and I an ideal of R. Let M be an R-module.

1) Assume that $I \nsubseteq \mathrm{Z}(R)$. Then the following assertions are equivalent:
a) R is an \mathcal{A}-ring.
b) R is an \mathcal{A}-ring along I
c) I is an \mathcal{A}-module;
d) I is an \mathcal{A}-module along itself.
2) Assume that $I \nsubseteq \mathrm{Z}_{R}(M)$. Then M is an \mathcal{A}-module along I if and only if M is an \mathcal{A}-module.

Proof. 1) Assume that $I \nsubseteq \mathrm{Z}(R)$, that is $I \cap S \neq \emptyset$. Then $0 \in S+I$ and thus $J \cap(S+I) \neq \emptyset$ for any ideal J of R. Hence, by Definition 2.1, the equivalence a) $\Leftrightarrow \mathrm{b}$) holds. Also, since by Lemma $2.20, \mathrm{Z}(R)=\mathrm{Z}_{R}(I)$, we get $S=S_{R}(I)$ and thus for any ideal J of $R, J \cap\left(S_{R}(I)+I\right) \neq \emptyset$. Therefore, by Definition 2.1, the equivalence c) $\Leftrightarrow \mathrm{d})$ holds as well. It remains to prove the equivalence a) \Leftrightarrow c).
a) \Rightarrow c) Assume that R is an \mathcal{A}-ring. Let $J \subseteq \mathrm{Z}_{R}(I)$ be a finitely generated ideal of R. As $\mathrm{Z}_{R}(I) \subseteq \mathrm{Z}(R)$ and as R is an \mathcal{A}-ring, there exists $r \in R$ such that $r \neq 0$ and $r J=(0)$. Since $I \nsubseteq \mathrm{Z}(R)$, we get $S^{-1} I=Q(R)$. Hence there exists $i \in I \backslash\{0\}$ and $s \in S$ such that $\frac{r}{1}=\frac{i}{s}$ and thus $\frac{i}{s} \frac{j}{1}=(0)$ for each $j \in J$. Therefore, for each $j \in J$, there exists $t_{j} \in S$ such that $t_{j} i j=(0)$, so that $i j=0$ for each $j \in J$. Hence $i J=(0)$ and $i \in I \backslash\{0\}$ yielding $\operatorname{ann}_{I}(J) \neq(0)$. It follows that I is an \mathcal{A}-module proving c).
c) \Rightarrow a) Assume that I is an \mathcal{A}-module. Let $J \subseteq \mathrm{Z}(R)$ be a finitely generated ideal of R. Then, as, by Lemma $2.20, \mathrm{Z}(R)=\mathrm{Z}_{R}(I)$, we get $J \subseteq \mathrm{Z}_{R}(I)$. Hence, since I is an \mathcal{A}-module, there exists $i \in I \backslash\{0\}$ such that $i J=(0)$, so that $\operatorname{ann}(J) \neq(0)$. It follows that R is an \mathcal{A}-ring proving a).
2) It is similar to the proof of the equivalence $a) \Leftrightarrow b$) of (1) completing the proof.

We deduce the following cases of ideals which are \mathcal{A}-modules along themselves.

Corollary 2.22. Let R be a ring and I an ideal of R. Then any ideal I of $R[X]$ such that $X \in I$ is an \mathcal{A}-module along itself.

Proof. Let I be an ideal of $R[X]$ such that $X \in I$. Then $I \nsubseteq \mathrm{Z}(R[X])$. It follows, since $R[X]$ is an \mathcal{A}-ring, and using Theorem 2.21, that I is an \mathcal{A}-module along itself

Corollary 2.23. Let R be a ring and I an ideal of R. Assume that $I \nsubseteq \mathrm{Z}_{R}(I)$. Then I is an \mathcal{A}-module along itself if and only if I is an \mathcal{A}-module.

Next, we prove a sort of descent behavior of the $\operatorname{Property}(\mathcal{A})$ along an ideal.

Proposition 2.24. Let R be a ring and M an R-module. Let $I_{1} \subseteq I_{2}$ be ideals of R. Then

1) If R is an \mathcal{A}-ring along I_{2}, then R is an \mathcal{A}-ring along I_{1}.
2) If M is an \mathcal{A}-module along I_{2}, then M is an \mathcal{A}-module along I_{1}.

Proof. 1) Assume that R is an \mathcal{A}-ring along I_{2}. Let J be a finitely generated ideal of R such that $J \subseteq \mathrm{Z}(R)$ and $\left(J+I_{1}\right) \cap S \neq \emptyset$. Then, as $I_{1} \subseteq I_{2},\left(J+I_{2}\right) \cap S \neq \emptyset$. Now, since R is an \mathcal{A}-ring along I_{2}, it follows that $\operatorname{ann}(J) \neq(0)$. Therefore R is an \mathcal{A}-ring along I_{1}, as desired.
2) It is similar to (1).

The following theorem and corollary characterize the \mathcal{A}-rings R (resp., \mathcal{A}-modules M) along a given ideal I of R in th crucial case when $I \subseteq \mathrm{Z}(R)$ (resp., $I \subseteq \mathrm{Z}_{R}(M)$). Given a ring R and an ideal I of R, we denote by $\operatorname{Max}_{I}(R)$ the set of maximal ideals of R containing I and we denote by $\operatorname{Max}_{I}(\mathrm{Z}(R))$ the set of prime ideals of R which are maximal among the prime ideals in $\mathrm{Z}(R)$ and which contain I, in other words, the elements of $\operatorname{Max}_{I}(\mathrm{Z}(R))$ are the maximal primes of R containing I. Also, given an R-module M, let $\operatorname{Max}_{I}\left(\mathrm{Z}_{R}(M)\right)$ denote the set of prime ideals of R which are maximal among the prime ideals in $\mathrm{Z}_{R}(M)$ and which contain I.

Theorem 2.25. Let R be a ring and I an ideal of R.

1) Assume that $I \subseteq \mathrm{Z}(R)$ and that $Q(R)=R$. Then the following assertions are equivalent.
a) R is an \mathcal{A}-ring along I;
b) For each proper finitely generated ideal J of R such that $I+J=R$, $\operatorname{ann}(J) \neq(0)$;
c) For each proper finitely generated ideal J of R such that $J \nsubseteq$ $\bigcup_{\operatorname{Max}_{I}(R)} m, \operatorname{ann}(J) \neq(0)$.
2) Let M be an R-module such that $I \subseteq \mathrm{Z}_{R}(M)$. Assume that $Q_{R}(M)=$ R. Then the following assertions are equivalent.
a) M is an \mathcal{A}-module along I;
b) For each proper finitely generated ideal J of R such that $I+J=R$, $\operatorname{ann}_{M}(J) \neq(0)$;
c) For each proper finitely generated ideal J of R such that $J \nsubseteq$ $\bigcup_{\operatorname{Max}_{I}(R)} m, \operatorname{ann}_{M}(J) \neq(0)$.
Proof. 1) a) \Rightarrow b) Note that, as $Q(R)=R, \mathrm{Z}(R)=\underset{m \in \operatorname{Max}(R)}{ } m$. Let
J be a proper finitely generated ideal of R such that $I+J=R$. Then $J \subseteq \mathrm{Z}(R)$ and $1=i+j$ for some $i \in I$ and some $j \in J$. Hence $(J+I) \cap S \neq \emptyset$. It follows, as R is an \mathcal{A}-ring along I, that $\operatorname{ann}(J) \neq(0)$, as desired.
b) \Leftrightarrow c) It is straightforward as, for any ideal J of R, it is easy to check that $I+J=R$ if and only if $J \nsubseteq \underset{m \in \operatorname{Max}_{I}(R)}{\bigcup} m$.
b) \Rightarrow a) Assume that (b) holds. Let J be a proper finitely generated ideal of R such that $(J+I) \cap S \neq \emptyset$. Note that S is the set of invertible elements of R. Then there exists $s \in S$ such that $s \in I+J$ and thus $s \in I+J$. Therefore $I+J=R$. It follows, applying (b), that $\operatorname{ann}(J) \neq(0)$. Consequently, R is an \mathcal{A}-ring along I, as desired.
3) The proof is similar to the treatment of (1).

Corollary 2.26. Let R be a ring and I an ideal of R.

1) Assume that $I \subseteq \mathrm{Z}(R)$. Then the following assertions are equivalent.
a) R is an \mathcal{A}-ring along I;
b) For each finitely generated ideal $J \subseteq \mathrm{Z}(R)$ of R such that $S^{-1} I+$ $S^{-1} J=Q(R), \operatorname{ann}(J) \neq(0) ;$
c) For each finitely generated ideal $J \subseteq \mathrm{Z}(R)$ of R such that $J \nsubseteq$ $\bigcup m, \operatorname{ann}(J) \neq(0)$.
$m \in \operatorname{Max}_{I}(\mathrm{Z}(R))$
2) Let M be an R-module such that $I \subseteq \mathrm{Z}_{R}(M)$. Then the following assertions are equivalent.
a) M is an \mathcal{A}-module along I;
b) For each finitely generated ideal $J \subseteq \mathrm{Z}_{R}(M)$ such that $S_{R}(M)^{-1} I+$ $S_{R}(M)^{-1} J=Q_{R}(M), \operatorname{ann}_{M}(J) \neq(0)$;
c) For each finitely generated ideal $J \subseteq \mathrm{Z}_{R}(M)$ of R such that $J \nsubseteq$ $\bigcup_{\mathrm{ax}_{I}\left(\mathrm{Z}_{R}(M)\right)} m, \operatorname{ann}_{M}(J) \neq(0)$.
$m \in \operatorname{Max}_{I}\left(\mathrm{Z}_{R}(M)\right)$
Proof. It follows easily from the combination of Theorem 2.25 and Proposition 2.7.

It is noted above that any \mathcal{A}-ring R is an \mathcal{A}-ring along any ideal I of R as well as any \mathcal{A}-module M is an \mathcal{A}-module along any ideal I of R. Next, we seek when the converse of this result holds.

Proposition 2.27. Let R be a ring which is a not field and such that the Jacobson radical $J(R):=\bigcap_{m \in \operatorname{Max}(R)} m=(0)$. Then

1) Assume that $R=Q(R)$. Then the following assertions are equivalent:
a) R is an \mathcal{A}-ring;
b) R is an \mathcal{A}-ring along any ideal I of R;
c) R is an \mathcal{A}-ring along any maximal ideal m of R.
2) Let M be an R-module such that $Q_{R}(M)=R$. Then the following assertions are equivalent:
a) M is an \mathcal{A}-module;
b) M is an \mathcal{A}-module along any ideal I of R;
c) M is an \mathcal{A}-module along any maximal ideal m of R.

Proof. 1) a) \Rightarrow b) It holds by Proposition 2.6.
b) \Rightarrow c) It is direct.
c) \Rightarrow a) Assume that R is an \mathcal{A}-ring along any maximal ideal m of R. Let J be a nonzero proper finitely generated ideal of R. Then, as $J(R) \neq(0)$, there exists $m \in \operatorname{Max}(R)$ such that $J \nsubseteq m$ and thus $J+m=R$. Therefore, since R is an \mathcal{A}-ring along m, we get by Theorem 2.25 that $\operatorname{ann}(J) \neq(0)$. It follows that R is an \mathcal{A}-ring proving (a), as desired.
2) It is similar to the proof of (1).

3. Property (\mathcal{A}) along an ideal and direct products

This section investigates the behavior of the $\operatorname{Property}(\mathcal{A})$ along an ideal with respect to direct products. Given a family of rings $\left(R_{k}\right)_{k \in \Lambda}$, we characterize when a direct product $\prod_{k} M_{k}$ is an \mathcal{A}-module along the direct product of ideals $\prod_{k} I_{k}$ with each M_{k} an R_{k}-module and each I_{k} is an ideal of R_{k} for any $k \in \Lambda$. This allows to generalize, via Theorem 3.3, a proposition of Hong-Kim-Lee-Ryu stating that the direct product $\prod R_{i}$ of a family of rings $\left(R_{i}\right)_{i}$ is an \mathcal{A}-ring if and only if each R_{i} is an \mathcal{A}-ring [13, Proposition 1.3].

We need the following lemmas.

Lemma 3.1. Let $\left(R_{i}\right)_{i \in \Lambda}$ be a family of rings and let $R=\prod_{i \in \Lambda} R_{i}$. Let M_{i} be an R_{i}-module for each $i \in \Lambda$. Let $J=\left(a_{1}, a_{2}, \cdots, a_{n}\right) R$ be a finitely generated ideal of R and let $J_{i}=\left(a_{1 i}, a_{2 i}, \cdots, a_{n i}\right) R_{i}$ be the projection of J on R_{i} for each $i \in \Lambda$, where $a_{k}=\left(a_{k i}\right)_{i \in \Lambda}$. Assume that $J \subseteq \mathrm{Z}_{R}\left(\prod_{i \in \Lambda} M_{i}\right)$. Then there exists $i \in \Lambda$ such that $J_{i} \subseteq \mathrm{Z}_{R_{i}}\left(M_{i}\right)$.

Proof. Assume, by way of contradiction, that $J_{i} \nsubseteq \mathrm{Z}_{R_{i}}\left(M_{i}\right)$ for each $i \in \Lambda$. Then, for each $i \in \Lambda$, there exists $b_{i}=\alpha_{1 i} a_{1 i}+\alpha_{2 i} a_{2 i}+\cdots+$ $\alpha_{n i} a_{n i} \in J_{i}$ such that $b_{i} \notin \mathrm{Z}_{R_{i}}\left(M_{i}\right)$. Put $t_{k}=\left(\alpha_{k i}\right)_{i}$ for $k=1, \cdots, n$. Now, take $x=t_{1} a_{1}+t_{2} a_{2}+\cdots+t_{n} a_{n}$. Then $x \in J$, as J is an ideal, and $x_{i}=b_{i}$ for each $i \in \Lambda$. Therefore $x_{i} \notin \mathrm{Z}_{R_{i}}\left(M_{i}\right)$ for each $i \in \Lambda$ and thus $x \notin \mathrm{Z}_{R}\left(\prod_{i \in \Lambda} M_{i}\right)$. This leads to a contradiction as $J \subseteq \mathrm{Z}_{R}\left(\prod_{i} M_{i}\right)$. It follows that there exists $i \in \Lambda$ such that $J_{i} \subseteq \mathrm{Z}_{R_{i}}\left(M_{i}\right)$, as desired.

Lemma 3.2. Let $\left(R_{k}\right)_{k}$ be a family of rings and let $\left(M_{k}\right)_{k}$ be a family of modules such that each M_{k} is an R_{k}-module. Let $R=\prod R_{k}$ and let $M=\prod M_{k}$. Then $S_{R}(M)=\prod_{k} S_{R_{k}}\left(M_{k}\right)$.

Proof. It is direct.
Now, we announce the main theorem of this section.
Theorem 3.3. Let $\left(R_{k}\right)_{k \in \Lambda}$ be a family of commutative rings. Let $R=\prod_{k \in \Lambda} R_{k}$. Let I_{k} be an ideal of R_{k} for each $k \in \Lambda$ and let $I:=\prod I_{k}$. Let M_{k} be an R_{k}-module for each $k \in \Lambda$ and $M:=\prod_{k} M_{k}$. Then the following assertions are equivalent.

1) M is an \mathcal{A}-module along I;
2) M_{k} is an \mathcal{A}-module along I_{k} for each $k \in \Lambda$.

Proof. 1) $\Rightarrow 2$) Assume that M is an \mathcal{A}-module along I. Fix $t \in \Lambda$ and let $J \subseteq \mathrm{Z}_{R_{t}}\left(M_{t}\right)$ be a finitely generated ideal such that $\left(J+I_{t}\right) \cap$ $S_{R_{t}}\left(M_{t}\right) \neq \emptyset$. Let $j+i_{t}=: s_{t} \in\left(J+I_{t}\right) \cap S_{R_{t}}\left(M_{t}\right)$ with $j \in J$ and $i_{t} \in I_{t}$. Consider the ideal $K=J R+\left(\cdots, 1,1,1,0_{R_{t}}, 1,1,1, \cdots\right) R$ of R generated by $J R$ and $\left(\cdots, 1,1,1,0_{R_{t}}, 1,1,1, \cdots\right)$. Then K is a finitely generated ideal of R. Let $\left(a_{k}\right)_{k} \in K$. Then $a_{t} \in J$ and thus there exists $0 \neq m_{t} \in M_{t}$ such that $a_{t} m_{t}=0$. Therefore

$$
\begin{aligned}
\left(a_{k}\right)_{k}\left(\cdots, 0, m_{t}, 0, \cdots\right) & =\left(\cdots, 0,0, a_{t} m_{t}, 0,0, \cdots\right) \\
& =0
\end{aligned}
$$

so that $\left(a_{k}\right)_{k} \in \mathrm{Z}_{R}(M)$. Hence $K \subseteq \mathrm{Z}_{R}(M)$. Also, observe that $\left(\cdots, 1,1,1, s_{t}, 1,1,1, \cdots\right) \in S_{R}(M)$ and that

$$
\begin{aligned}
\left(\cdots, 1,1, s_{t}, 1,1, \cdots\right)= & \left(\cdots, 0,0, s_{t}, 0,0, \cdots\right)+\left(\cdots, 1,1,0_{R_{t}}, 1,1, \cdots\right) \\
= & (\cdots, 0,0, j, 0,0, \cdots)+\left(\cdots, 0,0, i_{t}, 0,0 \cdots\right)+ \\
& \left(\cdots, 1,1,0_{R_{t}}, 1,1, \cdots\right) \\
= & \left(j(\cdots, 0,0,1,0,0, \cdots)+\left(\cdots, 1,1,0_{R_{t}}, 1,1, \cdots\right)\right)+ \\
& \left(\cdots, 0,0, i_{t}, 0,0, \cdots\right) .
\end{aligned}
$$

and thus $\left(\cdots, 1,1, s_{t}, 1,1, \cdots\right) \in K+I$. Therefore $(K+I) \cap S_{R}(M) \neq$ \emptyset. Hence, since M is an \mathcal{A}-module along I, there exists $0 \neq m^{\prime} \in M$ such that $K m^{\prime}=0$. Put $m^{\prime}=\left(m_{k}^{\prime}\right)_{k}$. Then $\left(\cdots, 1,1,0_{R_{t}}, 1,1, \cdots\right) m^{\prime}=$ 0 , as $\left(\cdots, 1,1,0_{R_{t}}, 1,1, \cdots\right) \in K$, and thus $m_{k}^{\prime}=0$ for each $k \neq t$. It follows that $m_{t}^{\prime} \neq 0$ and $J m_{t}^{\prime}=(0)$, so that, $\operatorname{ann}_{M_{t}}(J) \neq(0)$. Consequently, M_{k} is an \mathcal{A}-module along I_{t}, as desired.
2) $\Rightarrow 1)$ Assume that each M_{k} is an \mathcal{A}-module along I_{k}. Let $J=$ $\left(a_{1}, a_{2}, \cdots, a_{n}\right) R \subseteq \mathrm{Z}_{R}(M)$ be a finitely generated ideal of R such that $(J+I) \cap S_{R}(M) \neq \emptyset$. Let $a_{k}=\left(a_{k i}\right)_{i \in \Lambda}$ for each $k=1, \cdots, n$ and let $J_{i}:=\left(a_{1 i}, a_{2 i}, \cdots, a_{n i}\right) R_{i}$ be the ith projection of J for each $i \in \Lambda$. Then, by Lemma 3.2, $\left(J_{k}+I_{k}\right) \cap S_{R_{k}}\left(M_{k}\right) \neq \emptyset$ for each $k \in \Lambda$. Also, by Lemma 3.1, there exists $k \in \Lambda$ such that $J_{k} \subseteq \mathrm{Z}_{R_{k}}\left(M_{k}\right)$ for each $k \in \Lambda$. Since M_{k} is an \mathcal{A}-module along I_{k}, we get that $\operatorname{ann}_{M_{k}}\left(J_{k}\right) \neq(0)$, that is, there exists $0 \neq m_{k} \in M_{k}$ such that $J_{k} m_{k}=(0)$. Hence, it is easily verified that

$$
\begin{aligned}
J m_{k} & \subseteq\left(\prod_{i \in \Lambda} J_{i}\right)\left(\cdots, 0,0, m_{k}, 0,0, \cdots\right) \\
& =\cdots \times(0) \times(0) \times J_{k} m_{k} \times(0) \times(0) \times \cdots \\
& =(0)
\end{aligned}
$$

that is, $\operatorname{ann}_{M}(J) \neq(0)$. Therefore M is an \mathcal{A}-module along I completing the proof.

Next, we list some consequences of Theorem 3.3.
Corollary 3.4. Let $\left(R_{k}\right)_{k \in \Lambda}$ be a family of commutative rings. Let $R=\prod_{k \in \Lambda} R_{k}$. Let I_{k} be an ideal of R_{k} for each $k \in \Lambda$ and let $I:=\prod I_{k}$. Then R is an \mathcal{A}-ring along I if and only if R_{k} is an \mathcal{A}-ring along I_{k} for each $k \in \Lambda$.

Corollary 3.5. Let R_{1} and R_{2} be rings. Let I_{1} and I_{2} be ideals of R_{1} and R_{2}, respectively. Then $R_{1} \times R_{2}$ is an \mathcal{A}-ring along $I_{1} \times I_{2}$ if and only if R_{1} is an \mathcal{A}-ring along I_{1} and R_{2} is an \mathcal{A}-ring along I_{2}.
Corollary 3.6. Let $\left(R_{k}\right)_{k \in \Lambda}$ be a family of commutative rings. Let $R=\prod_{k \in \Lambda} R_{k}$. Let I_{k} be an ideal of R_{k} for each $k \in \Lambda$ and let $I:=\prod I_{k}$. Then I is an \mathcal{A}-module along itself if and only if I_{k} is an \mathcal{A}-module along itself for each $k \in \Lambda$.

Acknowledgements

The authors would like to thank the referee for careful reading.

References

[1] D. D. Anderson and S. Chun, The set of torsion elements of a module, Commun. Algebra, 42 (2014) 1835-1843.
[2] D. D. Anderson and S. Chun, Zero-divisors, torsion elements, and unions of annihilators, Commun. Algebra, 43 (2015) 76-83.
[3] D. D. Anderson and S. Chun, Annihilator conditions on modules over commutative rings, J. Alg. Applications, (7) 16 (2017) 1750143.
[4] D. D. Anderson and S. Chun, McCoy modules and related modules over commutative rings, (6) 45 (2017), 2593-2601.
[5] S. Bouchiba, On the vanishing of annihilators of modules, Commun. Algebra, (2) 48 (2020), 879-890.
[6] S. Bouchiba, M. El-Arabi and M. Khaloui, When is the idealization $R \ltimes M$ an \mathcal{A}-ring?, J. Alg. Applications, (12) 19 (2020), 2050227.
[7] S. Bouchiba and M. El-Arabi, On Property (\mathcal{A}) for modules over direct products of rings, Quaestiones Mathematicae, to appear.
[8] A. Ait Ouahi, S. Bouchiba and M. El-Arabi, On proper strong Property (A) for rings and modules, J. Alg. Applications, (12) 9 (2020), 2050239.
[9] M. D'Anna, A construction of Gorenstein rings, J. Algebra, 306 (2006), 507-519.
[10] A. Y. Darani, Notes on annihilator conditions in modules over commutative rings, An. Stinnt. Univ. Ovidius Constanta, 18 (2010), 59-72.
[11] D. E. Dobbs and J. Shapiro, On the strong (A)-ring of Mahdou and Hassani, Mediterr. J. Math. 10 (2013), 1995-1997.
[12] C. Faith, Annihilator ideals, associated primes, and Kasch?McCoy commutative rings, Comm. Algebra, 19 (1991), 1867-1892.
[13] C. Y. Hong, N. K. Kim, Y. Lee and S. T. Ryu, Rings with Property (A) and their extensions, J. Algebra, 315 (2007), 612-628.
[14] J. A. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker, Inc., New York and Basel, 1988.
[15] J. A. Huckaba and J. M. Keller, Annihilation of ideals in commutative rings, Pacific J. Math. 83 (1979), 375-379.
[16] I. Kaplansky, Commutative Rings, Polygonal Publishing House, Washington, New Jersey, 1994.
[17] T. G. Lucas, Two annihilator conditions: Property (A) and (A.C.), Commun. Algebra 14 (1986), 557-580.
[18] N. Mahdou and A. R. Hassani, On strong (A)-rings, Mediterr. J. Math. 9 (2012), 393-402.
[19] N. Mahdou and M. Moutui, On (A)-rings and (SA)-rings issued from amalgamations, Studia Scientiarum Mathematicarum Hungarica, (2) 55 (2018), 270-279.
[20] R. Mohammadi, A. Moussavi and M. Zahiri, On rings with annihilator condition, Studia Scientiarum Mathematicarum Hungarica, 54 (2017), 82-96.
[21] Y. Quentel, Sur la compacité du spectre minimal d'un anneau, Bull. Soc. Math. France, 99 (1971), 265-272.

S. Bouchiba

Department of Mathematics, Faculty of Sciences, Moulay Ismail university of Meknes, Meknes, Morocco
Email: s.bouchiba@fs.umi.ac.ma

Y. Arssi

Department of Mathematics, Faculty of Sciences, Moulay Ismail university of Meknes, Meknes, Morocco
Email: youssefarssi4@gmail.com

