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ON PROPERTY (A) OF RINGS AND MODULES
ALONG AN IDEAL

S. BOUCHIBA ∗ AND Y. ARSSI

Abstract. This paper introduces and studies the notion of Prop-
erty (A) of a ring R or an R-module M along an ideal I of R. For
instance, any module M over R satisfying the Property (A) do sat-
isfy the Property (A) along any ideal I of R. We are also interested
in ideals I which are A-module along themselves. In particular,
we prove that if I is contained in the nilradical of R, then any R-
module is an A-module along I and, thus, I is an A-module along
itself. Also, we present an example of a ring R possessing an ideal
I which is an A-module along itself while I is not an A-module.
Moreover, we totally characterize rings R satisfying the Property
(A) along an ideal I in both cases where I ⊆ Z(R) and where
I * Z(R). Finally, we investigate the behavior of the Property (A)
along an ideal with respect to direct products.

1. Introduction

Throughout this paper, all rings are supposed to be commutative
with unit element and all R-modules are unital. Let R be a commuta-
tive ring andM anR-module. We denote by ZR(M) = {r ∈ R : rm = 0
for some nonzero element m ∈ M} the set of zero divisors of R on M
and by Z(R) := ZR(R) the set of zero divisors of the ring R. In [3], the
notions of A-module and SA-module are extensively studied. In fact,
an R-module M satisfies Property (A), or M is an A-module over R (or
A-module if no confusion is likely), if for every finitely generated ideal
I of R with I ⊆ ZR(M)), there exists a nonzero m ∈ M with Im = 0,
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or equivalently, annM(I) 6= 0. M is said to satisfy strong Property
(A), or is an SA-module over R (or an SA-module if no confusion is
likely), if for any r1, · · · , rn ∈ ZR(M), there exists a nonzero m ∈ M
such that r1m = · · · = rnm = 0. The ring R is said to satisfy Property
(A), or an A-ring, (respectively, SA-ring) if R is an A-module (resp.,
an SA-module). One may easily check that M is an SA-module if and
only if M is an A-module and ZR(M) is an ideal of R. It is worthwhile
reminding the reader that the Property (A) for commutative rings was
introduced by Quentel in [21] who called it Property (C) and Huckaba
used the term Property (A) in [14, 15]. In [12], Faith called rings sat-
isfying Property (A) McCoy rings. The Property (A) for modules was
introduced by Darani [10] who called such modules F-McCoy modules
(for Faith McCoy terminology). He also introduced the strong Property
(A) under the name super coprimal and called a module M coprimal
if ZR(M) is an ideal. In [18], the strong Property (A) for commutative
rings was independently introduced by Mahdou and Hassani in [18]
and further studied by Dobbs and Shapiro in [11]. Note that a finitely
generated module over a Noetherian ring is an A-module (for example,
see [16, Theorem 82]) and thus a Noetherian ring is an A-ring. Also,
it is well known that a zero-dimensional ring R is an A-ring as well
as any ring R whose total quotient ring Q(R) is zero-dimensional. In
fact, it is easy to see that R is an A-ring if and only if so is Q(R) [9,
Corollary 2.6]. Any polynomial ring R[X] is an A-ring [14] as well as
any reduced ring with a finite number of minimal prime ideals [14]. In
[5], we generalize a result of T.G. Lucas which states that if R is a
reduced commutative ring and M is a flat R-module, then the idealiza-
tion RnM is an A-ring if and only if R is an A-ring [17, Proposition
3.5]. In effect, we drop the reduceness hypotheses and prove that, given
an arbitrary commutative ring R and any submodule M of a flat R-
module F , R n M is an A-ring (resp., SA-ring) if and only if R is
an A-ring (resp., SA-ring). In [6], we present an answer to a problem
raised by D.D. Anderson and S. Chun in [3] on characterizing when
is the idealization R nM of a ring R on an R-module M an A-ring
(resp., an SA-ring) in terms of module-theoretic properties of R and
M . Also, we were concerned with presenting a complete answer to an
open question asked by these two authors which reads the following:
What modules over a given ring R are homomorphic images of modules
satisfying the strong Property (A)? [3, Question 4.4 (1)]. The main
theorem of [7] extends a result of Hong, Kim, Lee and Ryu in [13] which
proves that a direct product

∏
Ri of rings is an A-ring if and only if

so is any Ri. In this regard, we show that if {Ri}i∈I is a family of rings
and {Mi}i∈I is a family of modules such that each Mi is an Ri-module,
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then the direct product
∏
i∈I
Mi of the Mi is an A-module over

∏
i∈I
Ri if

and only if each Mi is an A-module over Ri, i ∈ I. Finally, our main
concern in [8] is to introduce and investigate a new class of rings lying
properly between the class of A-rings and the class of SA-rings. The
new class of rings, termed the class of PSA-rings, turns out to share
common characteristics with both A-rings and SA-rings. Numerous
properties and characterizations of this class are given as well as the
module-theoretic version of PSA-rings is introduced and studied. For
further works related to the Property (A) and (SA), we refer the reader
to [1, 2, 3, 4, 13, 17, 19, 20].

The main goal of this paper is to introduce and investigate the new
notions of an A-ring R and A-module M along an ideal I of R. Our
interest in these concepts stems from our next proved theorem that if
the amalgamated duplication R ./ I of a ring R along an ideal I is
an A-ring, then I is an A-module along itself. It is worth noting that
any A-ring (resp., any A-module) is, in particular, an A-ring (resp., an
A-module) along any ideal I of R. In particular, we show interest in
those ideals of R which satisfy the Property (A) along themselves. For
instance, we prove that if R is Noetherian or a zero-dimensional ring,
then any ideal I is an A-module along itself. Also, if R is a ring and I
is an ideal of R such that either I is contained in the nilradical Rad(R)
of R or ZR(I) = Z(R), then I is an A-module along itself. Moreover,
through Example 2.19, we provide a case of a ring R admitting an
ideal I which is an A-module along itself while I is not an A-module.
The two main theorems of Section 2 totally characterize when a ring R
(resp., an R-module M) is anA-ring (resp., anA-module) along a given
ideal I. These two theorems tackle the two possible cases I ⊆ Z(R)
and I * Z(R) and they read the following:

Theorem 1.1. Let R be a ring and I an ideal of R. Let M be an
R-module.
1) Assume that I * Z(R). Then the following assertions are equivalent:

a) R is an A-ring;
b) R is an A-ring along I;
c) I is an A-module;
d) I is an A-module along itself.

2) Assume that I * ZR(M). Then M is an A-module along I if and
only if M is an A-module.

Theorem 1.2. Let R be a ring and I an ideal of R.
1) Assume that I ⊆ Z(R) and that Q(R) = R. Then the following
assertions are equivalent.
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a) R is an A-ring along I;
b) For each proper finitely generated ideal J of R such that I+J = R,

ann(J) 6= (0);
c) For each proper finitely generated ideal J of R such that J *⋃

m∈MaxI(R)

m, ann(J) 6= (0).

2) Let M be an R-module such that I ⊆ ZR(M). Assume that QR(M) =
R. Then the following assertions are equivalent.

a) M is an A-module along I;
b) For each proper finitely generated ideal J of R such that I+J = R,

annM(J) 6= (0);
c) For each proper finitely generated ideal J of R such that J *⋃

m∈MaxI(R)

m, annM(J) 6= (0).

Finally, in Section 3, we investigate the behavior of the Property (A)
along an ideal with respect to direct products. This allows us to gen-
eralize, via Theorem 3.3, a proposition of Hong-Kim-Lee-Ryu stating
that the direct product

∏
Ri of a family of rings (Ri)i is an A-ring if

and only if each Ri is an A-ring [13, Proposition 1.3].

2. Property (A) along an ideal

This section introduces and investigates the new concepts of an A-
ring R and A-module M along an ideal I of R. The new classes turn
out to encompass the classical ones of A-rings and A-modules. In par-
ticular, we seek conditions under which an ideal I of a ring R is an
A-module along itself.

Throughout, given a ring R and an R-module M , we denote by
Spec(Z(R)) (resp., Max(Z(R))) the set of prime ideals (resp., maximal
ideals) ofR contained in Z(R) and by Spec(ZR(M)) (resp., Max(ZR(M)))
the set of prime ideals (resp., maximal ideals) of R contained in ZR(M).
According to [16], Max(ZR(M)) stands for the set of the maximal
primes of the R-module M .

We begin by giving the definition of the new concepts.

Definition 2.1. Let R be a ring and I an ideal of R. Let M be an
R-module. Let S := R \ Z(R) and SR(M) = R \ ZR(M). Then
1) R is said to be an A-ring along I if for each finitely generated ideal
J ⊆ Z(R) such that (J + I) ∩ S 6= ∅, we have ann(J) 6= (0).
2) M is said to be an A-module along I if for each finitely generated
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ideal J ⊆ ZR(M) such that (J + I) ∩ SR(M) 6= ∅, we have annM(J) 6=
(0).

The vacuous case of a ring R and an ideal I of R such that (Z(R) +
I)∩S = ∅ is considered of course an A-ring along I. For instance, any
ring R is an A-ring along (0) as Z(R)∩ S = ∅. Also, any R-module M
such that (ZR(M) + I)∩SR(M) = ∅ is (vacuously) an A-module along
I. Our first result allows to construct further examples of vacuously
A-rings and A-modules along an ideal.

Proposition 2.2. Let R be a ring and I an ideal of R. Let M be an
R-module.
1) Assume that Z(R) is an ideal of R and that I ⊆ Z(R). Then R is
an A-ring along I.
2) Assume that ZR(M) is an ideal of R and that I ⊆ ZR(M). Then M
is an A-module along I.

Proof. 1) It suffices to note that (Z(R) + I) ∩ S = ∅.
2) Note that (ZR(M) + I) ∩ SR(M) = ∅. �

We deduce from Proposition 2.2 the first case of an ideal of a ring R
which is an A-module along itself.

Corollary 2.3. Let R be a ring and I an ideal of R such that ZR(I)
is an ideal of R and I ⊆ ZR(I). Then I is an A-module along itself.

Recall that, given a ring R and an ideal I of R, the amalgamated
duplication of R along I (see [9]) is the subring R ./ I of R×R defined
by R ./ I := {(r, r + i) : r ∈ R and i ∈ I}. In this context, it is well
known that if the amalgamated duplication R ./ I of R along I is an
A-ring, then R is an A-ring. Our first theorem proves that ”I is an
A-module along itself” is a further necessary condition for R ./ I to be
an A-ring. This fact accounts for our terminology of the new Property
(A).

Theorem 2.4. Let R be a ring and I an ideal of R. Assume that
R ./ I is an A-ring. Then I is an A-module along itself.

Proof. Let J be a finitely generated ideal of R such that J ⊆ ZR(I)
and (J + I) ∩ S 6= ∅. Put J = (b1, · · · , bn) and let b ∈ S and j ∈
I such that b + j ∈ J . Consider the finitely generated ideal H =
((b1, b1), · · · , (bn, bn), (b, b+ j)) of R ./ I. Let t ∈ H. Then

t =
n∑

r=1

(αr, αr + ir)(br, br) + (α, α + i)(b, b+ j)

=
( n∑

r=1

αrbr + αb,

n∑
r=1

(αr + ir)br + (α + i)(b+ j)
)
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for any (αr, αr + ir), (α, α+ i) ∈ R ./ I and any r ∈ {1, 2, · · · , n}. Note
that

n∑
r=1

(αr + ir)br + (α + i)(b+ j) ∈ J.

Since J ⊆ ZR(I), we obtain
n∑

r=1

(αr + ir)br + (α + i)(b + j) ∈ ZR(I).

Hence, there exists ω ∈ I \ {0} such that( n∑
r=1

(αr + ir)br + (α + i)(b+ j)
)
ω = 0.

Therefore t(0, ω) = 0 and (0, ω) 6= (0, 0), and thus t ∈ Z(R ./ I). It
follows that H ⊆ Z(R ./ I) and thus, since R ./ I is an A-ring, there
exists (a, a + e) ∈ R ./ I \ {(0, 0)} such that H(a, a + e) = (0, 0). In
particular, (b, b+ j)(a, a+ e) = (0, 0), so that ba = 0 = (b+ j)(a+ e).
As b ∈ S := R \ Z(R), we get a = 0. It follows that e ∈ I \ {0} and
Je = (0) since H(0, e) = (0). Consequently, annI(J) 6= (0) and thus J
is an A-module along itself completing the proof of the theorem. �

The following two propositions records the fact that the Property (A)
along a fixed ideal I of a ring R is a weaker notion than the Property
(A) of R and that in the Noetherian setting any ideal I of R is an
A-module along itself.

Proposition 2.5. Let R be a ring and M be an R-module. Then
1) The following assertions are equivalent:

a) R is an A-ring;
b) R is an A-ring along R.

2) The following assertions are equivalent:
a) M is an A-module;
b) M is an A-module along R.

Proof. It is direct from Definition 2.1 as Z(R) + R = ZR(M) + R =
R. �

Proposition 2.6. Let R be a ring and I an ideal of R. Then
1) Any A-module M over R is an A-module along I. In particular, if
R is an A-ring, then R is an A-ring along I.
2) If R is Noetherian, then I is an A-module, and thus I is an A-
module along itself.
3) If R is zero-dimensional, then I is an A-module along itself.

Proof. 1) It is clear from Definition 2.1.
2) Assume that R is Noetherian. Then I is a Noetherian module over
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R. Therefore, by [3, Theorem 2.2(5)], I is an A-module. Hence, by
(1), I is an A-module along itself.
3) Assume that dim(R) = 0. By [3, Theorem 2.2], any R-module is
an A-module. Then, using (1), we get that I is an A-module along
itself. �

It is known that a ring R (resp., an R-module M) is an A-ring (resp.,
an A-module over R) if and only if the total quotient ring Q(R) (resp.,
the total quotient module Q(M)) is an A-ring (resp., an A-module over
Q(R)). Next, we handle the transfer of this result to the Property (A)
along an ideal.

Proposition 2.7. Let R be a ring and I an ideal of R. Let M be an
R-module.
1) Assume that I ⊆ Z(R). Then the following assertions are equivalent.

a) R is an A-ring along I;
b) Q(R) is an A-ring along S−1I.

2) Assume that I ⊆ ZR(M). Let Q(M) = SR(M)−1M denote the total
quotient module of M . Then the following assertions are equivalent.

a) M is an A-module along I;
b) Q(M) is an A-module along SR(M)−1I.

Proof. 1) a) ⇒ b) Assume that R is an A-ring along I. Note that the
multiplicative set of regular elements of Q(R) is

Q(R) \ Z(Q(R)) = S−1S :=
{ t
s
∈ Q(R) : s, t ∈ S

}
= U(Q(R))

the set of units of Q(R). Let K be a proper finitely generated ideal
of Q(R) such that (K + S−1I) ∩ U(Q(R)) 6= ∅. Then there exists a
finitely generated ideal J ⊆ Z(R) of R such that K = S−1J . Hence

S−1
(

(J+I)∩S
)
6= ∅ and thus (J+I)∩S 6= ∅. Therefore, as R is an A-

ring, ann(J) 6= (0). It follows, since K = S−1J , that annQ(R)(K) 6= (0).
Consequently, Q(R) is an A-ring along S−1I, as desired.
b) ⇒ a) Assume that Q(R) is an A-ring along S−1I. Let J ⊆ Z(R) be
a finitely generated ideal of R such that (J+I)∩S 6= ∅. Then S−1J is a
proper finitely generated ideal of Q(R) and (S−1J +S−1I)∩S−1S 6= ∅,
that is, (S−1J + S−1I) ∩ U(Q(R)) 6= ∅. Hence, as Q(R) is an A-ring
along S−1I, we get annQ(R)(S

−1J) 6= (0). It follows, as S consists of
regular elements of R, that ann(J) 6= (0). Consequently, R is an A-ring
along I, as desired.
2) The proof is similar to that of (1).

�
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Corollary 2.8. Let R be a ring and I an ideal of R such that I ⊆
ZR(I). Then I is an A-module along itself if and only if the ideal
SR(I)−1I of QR(I) is an A-module along itself.

Through the next bunch of results we seek conditions under which
an ideal I of a ring R is an A-module along itself.

Let R be a ring and M an R-module. We denote by J(R) :=⋂
m∈Max(R)

m the Jacobson radical ofR and by J(ZR(M)) :=
⋂

m∈Max(ZR(M))

m

the intersection of all maximal primes of M .

Proposition 2.9. Let R be a ring and I an ideal of R. Let M be an
R-module such that I ⊆ J(ZR(M)). Then M is an A-module along I.
In particular, if I ⊆ J(ZR(I)), then I is an A-module along itself.

Proof. Let J be a finitely generated ideal of R such that J ⊆ ZR(M).
Then there exists a maximal prime m ∈ Max(ZR(M)) such that J ⊆ m.
Hence, as I ⊆ m, we get J + I ⊆ m. This means that J + I ⊆ ZR(M)
and thus (J + I) ∩ SR(M) = ∅. It follows that M is (vacuously) an
A-module along I, as desired.

�

Let R be a ring. We denote by Rad(R) the nilradical of R. We
record the following lemma.

Lemma 2.10. Let R be a ring. Then Rad(R) ⊆ J(ZR(M)) for any
R-module M .

Proof. It is direct as

Rad(R) =
⋂

p∈Spec(R) p and J(ZR(M)) :=
⋂

m∈Max(ZR(M))m

for a given R-module M .
�

Proposition 2.11. Let R be a ring and I an ideal of R. Assume that
I ⊆ Rad(R). Then any R-module M is an A-module along I. In
particular, I is an A-module along itself.

Proof. Let M be an R-module. By Lemma 2.10, Rad(R) ⊆ J(ZR(M)).
It follows by Proposition 2.9 that M is an A-module along I completing
the proof of the proposition.

�

Corollary 2.12. Let R be a ring and I a nilpotent ideal of R, that is,
there exists n ≥ 1 such that In = (0). Then any R-module M is an
A-module along I. In particular, I is an A-module along itself.
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Proof. It suffices to note that I ⊆ Rad(R) and then to apply Proposi-
tion 2.11.

�

Corollary 2.13. Let R be a ring and M an R-module. Consider the
idealization RnM of M . Then the ideal I := (0)nM of RnM is an
A-module along itself.

Proof. Note that I2 = (0). Then, by Corollary 2.12, I is an A-module
along itself.

�

Proposition 2.14. Let R be an A-ring and I an ideal of R such that
ZR(I) = Z(R). Then I is an A-module along itself.

Proof. Let J ⊆ ZR(I) be a finitely generated ideal of R such that
(J + I) ∩ SR(I) 6= ∅. Then, as J ⊆ ZR(I) ⊆ Z(R) and R is an A-
ring, we get ann(J) 6= (0) and thus there exists a ∈ R \ {0} such that
aJ = (0). Also, there exists i ∈ I and s ∈ SR(I) such that s + i ∈ J .
Hence a(s + i) = 0, so that as = −ai. Note that, as ZR(I) = Z(R),
we have SR(I) = S. This ensures that s ∈ S is a regular element of
R. Assume that ai = 0. Therefore as = 0 and thus, as s is a regular
element, we get a = 0 which is absurd. Hence j := ai ∈ I \ {0}. It
follows that jJ = (0) and j ∈ I \ {0} which means that annI(J) 6= (0).
Consequently, I is an A-module along itself, as desired.

�

Corollary 2.15. Let R be an SA-ring. Put I := Z(R). Then I is an
A-module along itself.

Proof. Let us first prove that ZR(I) = Z(R). In effect, the inequality
ZR(I) ⊆ Z(R) always holds. Let 0 6= x ∈ Z(R). Then there exists 0 6=
a ∈ R such that ax = 0. Hence a ∈ Z(R) = I and thus x ∈ ZR(I). It
follows that Z(R) ⊆ ZR(I) yeilding the desired equality ZR(I) = Z(R).
Now, Proposition 2.14 completes the proof. �

Proposition 2.16. Let R be an A-ring and I an ideal of R. Assume
that ann(I) ⊆ I. Then I is an A-module along itself.

Proof. Let J ⊆ ZR(I) be a finitely generated ideal of R such that
(J + I) ∩ SR(I) 6= ∅. As R is an A-ring, we get ann(J) 6= (0) and
thus there exists a ∈ R such that a 6= 0 and aJ = (0). If a ∈ I, then
annI(J) 6= (0). Assume that a 6∈ I. Then, as ann(I) ⊆ I, a 6∈ ann(I).
Hence there exists i ∈ I such that j := ai 6= 0. It follows that jJ = (0)
and j ∈ I \{0}, so that annI(J) 6= (0). Consequently, I is an A-module
along itself.

�
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Corollary 2.17. Let R be an A-ring and I an ideal of R such that
ann(I) = (0). Then I is an A-module along itself.

Corollary 2.18. Let R be an A-ring and I an ideal of R. Assume
that ZR(I) ⊆ I. Then I is an A-module along itself.

Proof. It is direct from Proposition 2.16 as ann(I) ⊆ ZR(I).
�

Next, we give an example of an A-ring R which admits an ideal I
such that I is an A-module along itself while I is not an A-module.

Example 2.19. We resume the example [3, Example 2.14] of Anderson
and Chun. Let k be a countable field and D = k[X1, X2, · · · , Xn] with
n ≥ 2. There exists D-modules A1 and A2 such that A1 ⊕ A2 is
an A-module as a D-module while neither A1 nor A2 has Property
(A) over D. Let R := (D n A1) n A2

∼= D n (A1 ⊕ A2). By [3,
Theorem 2.12], R is an A-ring as D is a domain and A1 ⊕ A2 is an
A-module over D. Also, by Corollary 2.13, the ideal I = (0) n A2

of R is an A-module along itself. Moreover, observe that the natural
ring homomorphisms D n A1−→D and R−→D n A1 are surjective.
Then, by two applications of [3, Theorem 2.1(1)(b)], we get that A2

is not an A-module as an R-module, where ((d, a1), a2)x = dx for any
d ∈ D, a1 ∈ A1, a2 ∈ A2 and any x ∈ A2. On the other hand, it is
easy to see that the natural map ϕ : A2−→ I = (0) n A2 such that
ϕ(a) = (0, a) for each a ∈ A2 is an isomorphism of R-modules. It
follows that I = (0) n A2 is not an A-module, as desired.

Our second theorem of this section characterizes the Property (A)
along an ideal I of a ring R in the case where I * Z(R). We prove
that in this setting the two notions of Property (A) and Property (A)
along I collapse.

First, we prove the following lemma.

Lemma 2.20. Let R be a ring and I is an ideal such that I * Z(R).
Then

ZR(I) = Z(R).

Proof. First, note that ZR(I) ⊆ Z(R). Also, as I * Z(R), we get
S−1I = Q(R). Let a ∈ Z(R). Then there exists r ∈ R such that r 6= 0

and ra = 0. Hence there exists
i

s
∈ S−1I with i ∈ I \ {0} and s ∈ S

such that
r

1
=
i

s
and thus

i

s

a

1
= 0. Therefore there exists t ∈ S such
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that tia = 0. Then ia = 0 and i ∈ I \ {0}. It follows that a ∈ ZR(I).
Consequently, ZR(I) = Z(R), as desired.

�

Theorem 2.21. Let R be a ring and I an ideal of R. Let M be an
R-module.
1) Assume that I * Z(R). Then the following assertions are equivalent:

a) R is an A-ring.
b) R is an A-ring along I
c) I is an A-module;
d) I is an A-module along itself.

2) Assume that I * ZR(M). Then M is an A-module along I if and
only if M is an A-module.

Proof. 1) Assume that I * Z(R), that is I∩S 6= ∅. Then 0 ∈ S+I and
thus J ∩ (S+ I) 6= ∅ for any ideal J of R. Hence, by Definition 2.1, the
equivalence a) ⇔ b) holds. Also, since by Lemma 2.20, Z(R) = ZR(I),
we get S = SR(I) and thus for any ideal J of R, J ∩ (SR(I) + I) 6= ∅.
Therefore, by Definition 2.1, the equivalence c) ⇔ d) holds as well. It
remains to prove the equivalence a) ⇔ c).
a) ⇒ c) Assume that R is an A-ring. Let J ⊆ ZR(I) be a finitely
generated ideal of R. As ZR(I) ⊆ Z(R) and as R is an A-ring, there
exists r ∈ R such that r 6= 0 and rJ = (0). Since I * Z(R), we get
S−1I = Q(R). Hence there exists i ∈ I \ {0} and s ∈ S such that
r

1
=
i

s
and thus

i

s

j

1
= (0) for each j ∈ J . Therefore, for each j ∈ J ,

there exists tj ∈ S such that tjij = (0), so that ij = 0 for each j ∈ J .
Hence iJ = (0) and i ∈ I \ {0} yielding annI(J) 6= (0). It follows that
I is an A-module proving c).
c) ⇒ a) Assume that I is an A-module. Let J ⊆ Z(R) be a finitely
generated ideal of R. Then, as, by Lemma 2.20, Z(R) = ZR(I), we get
J ⊆ ZR(I). Hence, since I is an A-module, there exists i ∈ I \{0} such
that iJ = (0), so that ann(J) 6= (0). It follows that R is an A-ring
proving a).
2) It is similar to the proof of the equivalence a)⇔ b) of (1) completing
the proof. �

We deduce the following cases of ideals which are A-modules along
themselves.

Corollary 2.22. Let R be a ring and I an ideal of R. Then any ideal
I of R[X] such that X ∈ I is an A-module along itself.
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Proof. Let I be an ideal of R[X] such that X ∈ I. Then I * Z(R[X]).
It follows, since R[X] is an A-ring, and using Theorem 2.21, that I is
an A-module along itself

�

Corollary 2.23. Let R be a ring and I an ideal of R. Assume that
I 6⊆ ZR(I). Then I is an A-module along itself if and only if I is an
A-module.

Next, we prove a sort of descent behavior of the Property (A) along
an ideal.

Proposition 2.24. Let R be a ring and M an R-module. Let I1 ⊆ I2

be ideals of R. Then
1) If R is an A-ring along I2, then R is an A-ring along I1.
2) If M is an A-module along I2, then M is an A-module along I1.

Proof. 1) Assume that R is an A-ring along I2. Let J be a finitely
generated ideal of R such that J ⊆ Z(R) and (J + I1) ∩ S 6= ∅. Then,
as I1 ⊆ I2, (J + I2) ∩ S 6= ∅. Now, since R is an A-ring along I2,
it follows that ann(J) 6= (0). Therefore R is an A-ring along I1, as
desired.
2) It is similar to (1).

�

The following theorem and corollary characterize theA-ringsR (resp.,
A-modules M) along a given ideal I of R in th crucial case when
I ⊆ Z(R) (resp., I ⊆ ZR(M)). Given a ring R and an ideal I of R, we
denote by MaxI(R) the set of maximal ideals of R containing I and we
denote by MaxI(Z(R)) the set of prime ideals of R which are maximal
among the prime ideals in Z(R) and which contain I, in other words,
the elements of MaxI(Z(R)) are the maximal primes of R containing I.
Also, given an R-module M , let MaxI(ZR(M)) denote the set of prime
ideals of R which are maximal among the prime ideals in ZR(M) and
which contain I.

Theorem 2.25. Let R be a ring and I an ideal of R.
1) Assume that I ⊆ Z(R) and that Q(R) = R. Then the following
assertions are equivalent.

a) R is an A-ring along I;
b) For each proper finitely generated ideal J of R such that I+J = R,

ann(J) 6= (0);
c) For each proper finitely generated ideal J of R such that J *⋃

m∈MaxI(R)

m, ann(J) 6= (0).
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2) Let M be an R-module such that I ⊆ ZR(M). Assume that QR(M) =
R. Then the following assertions are equivalent.

a) M is an A-module along I;
b) For each proper finitely generated ideal J of R such that I+J = R,

annM(J) 6= (0);
c) For each proper finitely generated ideal J of R such that J *⋃

m∈MaxI(R)

m, annM(J) 6= (0).

Proof. 1) a) ⇒ b) Note that, as Q(R) = R, Z(R) =
⋃

m∈Max(R)

m. Let

J be a proper finitely generated ideal of R such that I + J = R.
Then J ⊆ Z(R) and 1 = i + j for some i ∈ I and some j ∈ J . Hence
(J+I)∩S 6= ∅. It follows, as R is an A-ring along I, that ann(J) 6= (0),
as desired.
b)⇔ c) It is straightforward as, for any ideal J of R, it is easy to check
that I + J = R if and only if J *

⋃
m∈MaxI(R)

m.

b) ⇒ a) Assume that (b) holds. Let J be a proper finitely generated
ideal of R such that (J+I)∩S 6= ∅. Note that S is the set of invertible
elements of R. Then there exists s ∈ S such that s ∈ I + J and
thus s ∈ I + J . Therefore I + J = R. It follows, applying (b), that
ann(J) 6= (0). Consequently, R is an A-ring along I, as desired.
2) The proof is similar to the treatment of (1).

�

Corollary 2.26. Let R be a ring and I an ideal of R.
1) Assume that I ⊆ Z(R). Then the following assertions are equivalent.

a) R is an A-ring along I;
b) For each finitely generated ideal J ⊆ Z(R) of R such that S−1I +

S−1J = Q(R), ann(J) 6= (0);
c) For each finitely generated ideal J ⊆ Z(R) of R such that J *⋃

m∈MaxI(Z(R))

m, ann(J) 6= (0).

2) Let M be an R-module such that I ⊆ ZR(M). Then the following
assertions are equivalent.

a) M is an A-module along I;
b) For each finitely generated ideal J ⊆ ZR(M) such that SR(M)−1I+

SR(M)−1J = QR(M), annM(J) 6= (0);
c) For each finitely generated ideal J ⊆ ZR(M) of R such that J *⋃

m∈MaxI(ZR(M))

m, annM(J) 6= (0).

Proof. It follows easily from the combination of Theorem 2.25 and
Proposition 2.7.
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�

It is noted above that any A-ring R is an A-ring along any ideal I
of R as well as any A-module M is an A-module along any ideal I of
R. Next, we seek when the converse of this result holds.

Proposition 2.27. Let R be a ring which is a not field and such that
the Jacobson radical J(R) :=

⋂
m∈Max(R)

m = (0). Then

1) Assume that R = Q(R). Then the following assertions are equiva-
lent:

a) R is an A-ring;
b) R is an A-ring along any ideal I of R;
c) R is an A-ring along any maximal ideal m of R.

2) Let M be an R-module such that QR(M) = R. Then the following
assertions are equivalent:

a) M is an A-module;
b) M is an A-module along any ideal I of R;
c) M is an A-module along any maximal ideal m of R.

Proof. 1) a) ⇒ b) It holds by Proposition 2.6.
b) ⇒ c) It is direct.
c) ⇒ a) Assume that R is an A-ring along any maximal ideal m of
R. Let J be a nonzero proper finitely generated ideal of R. Then,
as J(R) 6= (0), there exists m ∈ Max(R) such that J * m and thus
J+m = R. Therefore, since R is anA-ring along m, we get by Theorem
2.25 that ann(J) 6= (0). It follows that R is an A-ring proving (a), as
desired.
2) It is similar to the proof of (1).

�

3. Property (A) along an ideal and direct products

This section investigates the behavior of the Property (A) along an
ideal with respect to direct products. Given a family of rings (Rk)k∈Λ,
we characterize when a direct product

∏
k

Mk is an A-module along the

direct product of ideals
∏
k

Ik with each Mk an Rk-module and each Ik

is an ideal of Rk for any k ∈ Λ. This allows to generalize, via Theorem
3.3, a proposition of Hong-Kim-Lee-Ryu stating that the direct prod-
uct

∏
Ri of a family of rings (Ri)i is an A-ring if and only if each Ri

is an A-ring [13, Proposition 1.3].

We need the following lemmas.
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Lemma 3.1. Let (Ri)i∈Λ be a family of rings and let R =
∏
i∈Λ

Ri. Let

Mi be an Ri-module for each i ∈ Λ. Let J = (a1, a2, · · · , an)R be a
finitely generated ideal of R and let Ji = (a1i, a2i, · · · , ani)Ri be the
projection of J on Ri for each i ∈ Λ, where ak = (aki)i∈Λ. Assume that
J ⊆ ZR(

∏
i∈Λ

Mi). Then there exists i ∈ Λ such that Ji ⊆ ZRi
(Mi).

Proof. Assume, by way of contradiction, that Ji 6⊆ ZRi
(Mi) for each

i ∈ Λ. Then, for each i ∈ Λ, there exists bi = α1ia1i + α2ia2i + · · · +
αniani ∈ Ji such that bi 6∈ ZRi

(Mi). Put tk = (αki)i for k = 1, · · · , n.
Now, take x = t1a1 + t2a2 + · · · + tnan. Then x ∈ J , as J is an ideal,
and xi = bi for each i ∈ Λ. Therefore xi 6∈ ZRi

(Mi) for each i ∈ Λ and
thus x 6∈ ZR(

∏
i∈Λ

Mi). This leads to a contradiction as J ⊆ ZR(
∏
i

Mi).

It follows that there exists i ∈ Λ such that Ji ⊆ ZRi
(Mi), as desired.

�

Lemma 3.2. Let (Rk)k be a family of rings and let (Mk)k be a family
of modules such that each Mk is an Rk-module. Let R =

∏
Rk and let

M =
∏
Mk. Then SR(M) =

∏
k

SRk
(Mk).

Proof. It is direct. �

Now, we announce the main theorem of this section.

Theorem 3.3. Let (Rk)k∈Λ be a family of commutative rings. Let
R =

∏
k∈Λ

Rk. Let Ik be an ideal of Rk for each k ∈ Λ and let I :=
∏
Ik.

Let Mk be an Rk-module for each k ∈ Λ and M :=
∏
k

Mk. Then the

following assertions are equivalent.
1) M is an A-module along I;
2) Mk is an A-module along Ik for each k ∈ Λ.

Proof. 1) ⇒ 2) Assume that M is an A-module along I. Fix t ∈ Λ
and let J ⊆ ZRt(Mt) be a finitely generated ideal such that (J + It) ∩
SRt(Mt) 6= ∅. Let j + it =: st ∈ (J + It) ∩ SRt(Mt) with j ∈ J and
it ∈ It. Consider the ideal K = JR+(· · · , 1, 1, 1, 0Rt , 1, 1, 1, · · · )R of R
generated by JR and (· · · , 1, 1, 1, 0Rt , 1, 1, 1, · · · ). Then K is a finitely
generated ideal of R. Let (ak)k ∈ K. Then at ∈ J and thus there exists
0 6= mt ∈Mt such that atmt = 0. Therefore

(ak)k(· · · , 0,mt, 0, · · · ) = (· · · , 0, 0, atmt, 0, 0, · · · )
= 0
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so that (ak)k ∈ ZR(M). Hence K ⊆ ZR(M). Also, observe that
(· · · , 1, 1, 1, st, 1, 1, 1, · · · ) ∈ SR(M) and that

(· · · , 1, 1, st, 1, 1, · · · ) = (· · · , 0, 0, st, 0, 0, · · · ) + (· · · , 1, 1, 0Rt , 1, 1, · · · )

= (· · · , 0, 0, j, 0, 0, · · · ) + (· · · , 0, 0, it, 0, 0 · · · )+

(· · · , 1, 1, 0Rt , 1, 1, · · · )

= (j(· · · , 0, 0, 1, 0, 0, · · · ) + (· · · , 1, 1, 0Rt , 1, 1, · · · ))+

(· · · , 0, 0, it, 0, 0, · · · ).

and thus (· · · , 1, 1, st, 1, 1, · · · ) ∈ K+I. Therefore (K+I)∩SR(M) 6=
∅. Hence, since M is an A-module along I, there exists 0 6= m′ ∈ M
such thatKm′ = 0. Putm′ = (m′k)k. Then (· · · , 1, 1, 0Rt , 1, 1, · · · )m′ =
0, as (· · · , 1, 1, 0Rt , 1, 1, · · · ) ∈ K, and thus m′k = 0 for each k 6= t. It
follows that m′t 6= 0 and Jm′t = (0), so that, annMt(J) 6= (0). Conse-
quently, Mk is an A-module along It, as desired.
2) ⇒ 1) Assume that each Mk is an A-module along Ik. Let J =
(a1, a2, · · · , an)R ⊆ ZR(M) be a finitely generated ideal of R such that
(J + I) ∩ SR(M) 6= ∅. Let ak = (aki)i∈Λ for each k = 1, · · · , n and
let Ji := (a1i, a2i, · · · , ani)Ri be the ith projection of J for each i ∈ Λ.
Then, by Lemma 3.2, (Jk + Ik)∩SRk

(Mk) 6= ∅ for each k ∈ Λ. Also, by
Lemma 3.1, there exists k ∈ Λ such that Jk ⊆ ZRk

(Mk) for each k ∈ Λ.
Since Mk is an A-module along Ik, we get that annMk

(Jk) 6= (0), that
is, there exists 0 6= mk ∈ Mk such that Jkmk = (0). Hence, it is easily
verified that

Jmk ⊆ (
∏
i∈Λ

Ji)(· · · , 0, 0,mk, 0, 0, · · · )

= · · · × (0)× (0)× Jkmk × (0)× (0)× · · ·
= (0)

that is, annM(J) 6= (0). Therefore M is an A-module along I complet-
ing the proof.

�

Next, we list some consequences of Theorem 3.3.

Corollary 3.4. Let (Rk)k∈Λ be a family of commutative rings. Let
R =

∏
k∈Λ

Rk. Let Ik be an ideal of Rk for each k ∈ Λ and let I :=
∏
Ik.

Then R is an A-ring along I if and only if Rk is an A-ring along Ik
for each k ∈ Λ.



PROPERTY (A) OF RINGS ALONG AN IDEAL 73

Corollary 3.5. Let R1 and R2 be rings. Let I1 and I2 be ideals of R1

and R2, respectively. Then R1 × R2 is an A-ring along I1 × I2 if and
only if R1 is an A-ring along I1 and R2 is an A-ring along I2.

Corollary 3.6. Let (Rk)k∈Λ be a family of commutative rings. Let
R =

∏
k∈Λ

Rk. Let Ik be an ideal of Rk for each k ∈ Λ and let I :=
∏
Ik.

Then I is an A-module along itself if and only if Ik is an A-module
along itself for each k ∈ Λ.
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