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DETERMINING NUMBER OF SOME FAMILIES OF
CUBIC GRAPHS

A. DAS ∗ AND M. SAHA

Abstract. The determining number of a graph G = (V,E) is the
minimum cardinality of a set S ⊆ V such that pointwise stabi-
lizer of S under the action of Aut(G) is trivial. In this paper, we
compute the determining number of some families of cubic graphs.

1. Introduction

The determining number of a graph G = (V,E) is the minimum
cardinality of a set S ⊆ V such that the automorphism group of the
graph obtained from G by fixing every vertex in S is trivial. It was
introduced independently by Boutin [2] and Harary (defined as fixing
number) [9] in 2006 as a measure of destroying symmetry of a graph.
Apart from proving general bounds and other results on determining
number, researchers have attempted to find exact values of determing
number of various families of graphs like Kneser Graphs [4], [7], Co-
prime graphs [14] etc. In this paper, we find the determining numbers
of generalized Petersen graphs, double generalized Petersen graphs and
three families of cubic graphs introduced by Zhou et.al. [17], Devillers
et.al. [8] and Zhou and Li [18].

For definitions and terms related to general graph theory, readers are
referred to the classic book by Godsil and Royle [11]. For terms related
to automorphisms of the above families of graphs, readers are referred
to [10], [13] and [17] repectively. In Sections 2, 3, 4, 5 and 6, we study
the determining sets and determining numbers of generalized Petersen
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graphs, double generalized Petersen graphs and three families of cubic
graphs introduced by Zhou et.al. [17], Devillers et.al. [8] and Zhou and
Li [18] respectively. In particular, we prove the following theorems.

Theorem 2.3. Let G(n, k) be the generalized Petersen graph. Then

Det(G(n, k)) =

{
2, if (n, k) 6= (4, 1), (5, 2), (10, 3).
3, if (n, k) = (4, 1), (5, 2) or (10, 3).

�

Theorem 3.2. Let DP (n, t) be the double generalized Petersen graph.
Then

Det(DP (n, t)) =

{
4, if (n, t) = (4, 1).
2, otherwise.

�

Theorem 4.1. Let Γn be the family of cubic Cayley graphs introduced
in [17]. Then

Det(Γn) =

{
3, if n = 2.
n, if n > 2.

�

Theorem 5.1. Let Σp be the family of bipartite, cubic graphs intro-
duced in [8]. Then Det(Σp) = 2 for all prime p ≡ 1 (mod 3). �

Theorem 6.1. Let C14p2 and C24p2 be the two family of Cayley graphs

introduced in [18]. Then Det(C14p2) = Det(C24p2) = 2. �

2. Generalized Petersen Graphs

The generalized Petersen graph family was introduced by Coxeter
[5] and was given its name by Watkins in [15].

Definition 2.1 (Generalized Petersen Graphs). For integers n
and k with 2 ≤ 2k < n, the Generalized Petersen graph G(n, k) is
defined to have vertex-set

V (G(n, k)) = {u0, u1, . . . , un−1, v0, v1, . . . , vn−1}
and edge-set E(G(n, k)) to consist of all edges of the form (ui, ui+1), (ui, vi)
and (vi, vi+k), where arithmetic of subscripts are to be done in modulo
n.

The edges in E(G(n, k)) are called outer edges, spoke edges and inner
edges respectively. The automorphism groups A(n, k) of Generalized
Petersen graphs G(n, k) were studied by Frucht et.al.[10]. Let B(n, k)
denote the subgroup of A(n, k) which fixes the spoke edges set-wise.
Define permutations ρ and δ on V (G(n, k)) by ρ(ui) = ui+1, ρ(vi) =
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vi+1,∀i and δ(ui) = u−i, δ(vi) = v−i,∀i. It was proved in [5], that
〈ρ, δ〉 ≤ B(n, k). Define α on V (G(n, k)) by α(ui) = vki, α(vi) = uki,∀i.
It was proved in [10], that α ∈ A(n, k) if and only if k2 6≡ ±1 (mod n).

In particular, they proved the following theorems:

Theorem 2.1. [10]

(1) If k2 6≡ ±1 (mod n), then B(n, k) = 〈ρ, δ : ρn = δ2 = 1; δρδ =
ρ−1〉.

(2) If k2 ≡ 1 (mod n), then

B(n, k) = 〈ρ, δ, α : ρn = δ2 = α2 = 1; δρδ = ρ−1, αδ = δα, αρα = ρk〉.

(3) If k2 ≡ −1 (mod n), then B(n, k) = 〈ρ, α : ρn = α4 =
1;αρα−1 = ρk〉.

In Case 3, δ = α2 and hence δ is omitted as a generator.

Theorem 2.2. [10] B(n, k) = A(n, k) if and only if the ordered pair
(n, k) is not one of (4, 1), (5, 2), (8, 3), (10, 2), (10, 3), (12, 5), (24, 5).

Proposition 2.1. If k2 6≡ ±1 (mod n) and (n, k) 6= (10, 2), then
Det(G(n, k)) = 2.

Proof. For such choice of n and k,

A(n, k) = 〈ρ, δ : ρn = δ2 = 1; δρδ = ρ−1〉

= {ρiδj : 0 ≤ i ≤ n− 1; 0 ≤ j ≤ 1}.
We claim that {u0, u1} is a determining set for G(n, k). Let ρiδj be an
element of A(n, k) which fixes u0 and u1, for some 0 ≤ i ≤ n − 1 and
0 ≤ j ≤ 1.

If j = 1, then we have ρiδ(u0) = u0 and ρiδ(u1) = u1, i.e., ρi(u0) = u0
and ρi(u−1) = u1. The first equality implies i = 0, whereas the second
one implies that i = 2, a contradiction. Thus j = 0. So, we have
ρi(u0) = u0 and ρi(u1) = u1. This implies i = 0.

Hence, Stab({u0, u1}) is trivial and {u0, u1} is a determining set for
G(n, k). It proves that Det(G(n, k)) ≤ 2.

If possible, let there exist a vertex whose stabilizer is trivial. Then by
orbit-stabilizer theorem, the size of the orbit of that vertex is equal to
|A(n, k)| = 2n = |V (G(n, k))|, i.e., G(n, k) is vertex-transitive. How-
ever, it is shown in [10], that G(n, k) is vertex-transitive if and only if
k2 ≡ ±1 (mod n) or n = 10 and k = 2, which is a contradiction. Thus
Det(G(n, k)) = 2. �

Proposition 2.2. If k2 ≡ 1 (mod n) and (n, k) is not one of (4, 1), (8, 3),
(12, 5), (24, 5), then Det(G(n, k)) = 2.
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Proof. For such choice of n and k,

A(n, k) = 〈ρ, δ, α : ρn = δ2 = α2 = 1; δρδ = ρ−1, αδ = δα, αρα = ρk〉
= {ρiδjαl : 0 ≤ i ≤ n− 1; 0 ≤ j, l ≤ 1}.

We claim that {u0, u1} is a determining set for G(n, k). Let ρiδjαl be
an element of A(n, k) which fixes u0 and u1, for some 0 ≤ i ≤ n − 1
and 0 ≤ j, l ≤ 1.

If possible, let l = 1. Then ρiδjα(u0) = u0 and ρiδjα(u1) = u1,
i.e., ρiδj(v0) = u0 and ρiδj(vk) = u1. However, as both ρ and δ maps
outer vertices to outer vertices and inner vertices to inner vertices, this
leads to a contradiction. Thus, l = 0. So, we have ρiδj(u0) = u0 and
ρiδj(u1) = u1.

If possible, let j = 1. Then ρiδ(u0) = u0 and ρiδ(u1) = u1, i.e.,
ρi(u0) = u0 and ρi(u−1) = u1. The first equality implies i = 0, whereas
the second one implies that i = 2, a contradiction. Thus j = 0. So, we
have ρi(u0) = u0 and ρi(u1) = u1. This implies i = 0.

Hence, Stab({u0, u1}) is trivial and {u0, u1} is a determining set for
G(n, k). It proves that Det(G(n, k)) ≤ 2.

If possible, let there exist a vertex whose stabilizer is trivial. Then
by orbit-stabilizer theorem, the size of the orbit of that vertex is equal
to |A(n, k)| = 4n, which is greater than the order of G(n, k), a contra-
diction. Thus Det(G(n, k)) = 2. �

Proposition 2.3. If k2 ≡ −1 (mod n) and (n, k) 6= (5, 2), (10, 3), then
Det(G(n, k)) = 2.

Proof. For such choice of n and k,

A(n, k) = 〈ρ, α : ρn = α4 = 1;αρα−1 = ρk〉
= {ρiαj : 0 ≤ i ≤ n− 1; 0 ≤ j ≤ 3}.

We claim that {u0, u1} is a determining set for G(n, k). Let ρiαj be an
element of A(n, k) which fixes u0 and u1, for some 0 ≤ i ≤ n − 1 and
0 ≤ j ≤ 3.

If j = 1 or 3, then αj swaps inner vertices and outer vertices and
ρi maps outer vertices to outer vertices and inner vertices to inner
vertices. Thus, ρiαj maps u0 to some inner vertex and hence it does
not stabilize uo. Hence, j = 0 or 2.

If possible, let j = 2. Then we have ρiα2(u0) = u0 and ρiα2(u1) = u1,
i.e., ρi(u0) = u0 and ρi(u−1) = u1. The first equality implies i = 0,
whereas the second one implies that i = 2, a contradiction. Thus j = 0.
So, we have ρi(u0) = u0 and ρi(u1) = u1. This implies i = 0.

Hence, Stab({u0, u1}) is trivial and {u0, u1} is a determining set for
G(n, k). It proves that Det(G(n, k)) ≤ 2.
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If possible, let there exist a vertex whose stabilizer is trivial. Then
by orbit-stabilizer theorem, the size of the orbit of that vertex is equal
to |A(n, k)| = 4n, which is greater than the order of G(n, k), a contra-
diction. Thus Det(G(n, k)) = 2. �

Proposition 2.4. Det(G(5, 2)) = Det(G(10, 3)) = Det(G(4, 1)) = 3.

Proof. G(5, 2) is the Petersen graph. It was shown in [2], thatDet(G(5, 2)) =
3.

It was checked using Sage that {u0, u1, v2} is a determining set of
G(10, 3), i.e.,
Stab({u0, u1, v2}) is trivial. AsG(10, 3) is vertex-transitive and |A(10, 3)|
= 240, it follows that stabilizer of any vertex is of order 12. Hence,
1 < Det(G(10, 3)) ≤ 3.

It is known that G(10, 3) is isomorphic to bipartite Kneser graph
H(5, 2) and Aut(H(5, 2)) = S5×Z2. The vertices of H(5, 2) consists of
all 2-subsets and 3-subsets of {1, 2, 3, 4, 5} and two vertices are adjacent
if one is a subset of the other. We prove that no two vertices form a
determing set for H(5, 2).

If both the vertices A and B are 3-subsets, then they must have
either one or two elements in their intersection. If |A ∩ B| = 1, then
they are of the form A = {a, b, c} and B = {c, d, e}. Consider σ =
(a, b)(d, e) ∈ S5. σ is a non-identity element which fixes both A and B.
If |A∩B| = 2, then they are of the form A = {a, b, c} and B = {b, c, d}.
Then σ = (b, c) ∈ S5 is a non-identity element which fixes both A and
B.

If both the vertices A and B are 2-subsets, then they must have
exactly one element in their intersection, i.e., they are of the form
A = {a, b} and B = {b, c}. Then σ = (d, e) ∈ S5 is a non-identity
element which fixes both A and B.

If A is a 3-subset and B is a 2-subset, then |A∩B| = 0, 1 or 2. Then
they are of the form A = {a, b, c};B = {d, e} or A = {a, b, c};B =
{c, d} or A = {a, b, c};B = {a, b}. In any case, σ = (a, b) ∈ S5 is a
non-identity element which fixes both A and B.

Thus Det(G(10, 3)) = 3.
For G(4, 1), it was checked using Sage that {u0, u1, v0} is a deter-

mining set, i.e., Det(G(4, 1)) ≤ 3. Now, let us recall a result from
[3].

Let H be a connected graph that is prime with respect to the Cartesian

product. Then Det(Hk) ≥ max

{
Det(H),

⌈
(log k + log |Aut(H)|)

log |V (H)|

⌉}
.
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We note that G(4, 1) ∼= C4�P2
∼= P2�P2�P2 = (P2)

3 and P2 is
prime with respect to the Cartesian product. Thus, we have

Det(G(4, 1)) = Det((P2)
3) ≥ max

{
1,

⌈
log 3 + log 2

log 2

⌉}
=

log 6

log 2
u 2.59.

Thus, we have Det(G(4, 1)) = 3. �

Proposition 2.5. Det(G(10, 2)) = 2.

Proof. G(10, 2) is the graph of the regular dodecahedron. Its automor-
phism group has already been computed in [10] to be A(10, 2) = 〈ρ, λ :
ρ10 = λ3 = (λρ2)2 = ρ5λρ−5λ−1 = 1〉, where the cycle structure of λ is
given by

λ = (u0, v2, v8)(u1, v4, u8)(u2, v6, u9)(u3, u6, v9)(u4, u7, v1)(u5, v7, v3).

Observe that δ = (ρλ)2ρλ−1ρ−2. A(10, 2) is isomorphic to the direct
product of the alternating group A5 with Z2. Thus |A(10, 2)| = 60×2 =
120.

It was checked using Sage (see Appendix) that {u0, v1} is a deter-
mining set of G(10, 2), i.e., Stab({u0, v1}) is trivial. As G(10, 2) is
vertex-transitive and |A(10, 2)| = 120, it follows that stabilizer of any
vertex is of order 6. Hence, Det(G(10, 2)) = 2. �

Proposition 2.6. Det(G(8, 3)) = Det(G(12, 5)) = Det(G(24, 5)) = 2.

Proof. It was shown in [10], that forG(n, k), where (n, k) = (4, 1), (8, 3),
(12, 5) or (24, 5),

A(n, k) = 〈ρ, δ, σ : ρn = δ2 = σ3 = 1, δρδ = ρ−1, δσδ = σ−1,

σρσ = ρ−1, σρ4 = ρ4σ〉,
and |A(n, k)| = 12n. Note that α is superfluous and is given by α =
σ−1ρσ−1 in A(8, 3) and α = δ−1ρσ−1 in other three cases.

It was checked using Sage that {u0, u2} is a determining set for each
of G(8, 3), G(12, 5) and G(24, 5), i.e., Stab({u0, u2}) is trivial. As each
of them are vertex-transitive and |A(n, k)| = 12n, it follows that sta-
bilizer of any vertex is of order 6. Hence,

Det(G(8, 3)) = Det(G(12, 5)) = Det(G(24, 5)) = 2.

�

From Propositions 2.1,2.2,2.3,2.4,2.5 and 2.6, we have the following
theorem.
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Theorem 2.3. Let G(n, k) be the generalized Petersen graph. Then

Det(G(n, k)) =

{
2, if (n, k) 6= (4, 1), (5, 2), (10, 3).
3, if (n, k) = (4, 1), (5, 2) or (10, 3).

3. Double Generalized Petersen Graphs

Double Generalized Petersen Graphs DP (n, t) are a natural gen-
eralization of Generalized Petersen graphs, first introduced in [16] as
examples of vertex-transitive non-Cayley graphs. They are defined as
follows:

Definition 3.1 (Double Generalized Petersen Graphs). For inte-
gers n and t with 2 ≤ 2t < n, the Generalized Petersen graph DP (n, t)
is defined to have vertex-set

V (DP (n, t)) = {xi, yi, ui, vi : i ∈ Zn}
and edge-set E(DP (n, t)) to consist of all edges of the form: (xi, xi+1)
and (yi, yi+1) (the outer edges), (xi, ui) and (yi, vi) (the spoke edges) and
(ui, vi+t) and (vi, ui+t) (the inner edges), where arithmetic of subscripts
are to be done in modulo n.

The automorphism groups A(n, t) of Double Generalized Petersen
graphs DP (n, t) were studied by Kutnar and Petecki in [13]. In par-
ticular, they proved the following result.

Theorem 3.1. (Corollary 3.11 [13]) The automorphism group A(n, t)
of the double generalized Petersen graph DP (n, t) is characterized as
follows:

(1) If n ≡ 0 (mod 2), 4t = n and (n, t) 6= (4, 1), then A(n, t) =
〈α, β, γ, η〉.

(2) If n ≡ 0 (mod 2), t2 ≡ ±1 (mod n) and (n, t) 6= (10, 3), then
A(n, t) = 〈α, β, γ, δ〉.

(3) If n ≡ 2 (mod 4), t2 ≡ k ± 1 (mod n), where n = 2k and
(n, t) 6= (10, 2), then A(n, t) = 〈α, β, γ, ψ〉.

(4) If n ≡ 0 (mod 4), t2 ≡ k ± 1 (mod n), where n = 2k, then
A(n, t) = 〈α, β, γ, φ〉.

(5) A(4, 1) = 〈α, β, γ, δ, η〉. A(10, 3) = 〈α, δ, λ〉. A(10, 2) = 〈α, ψ, µ〉.
(6) A(5, 2) is the automorphism group of the dodecahedron.
(7) In all cases different from the above, A(n, t) = 〈α, β, γ〉,

where α, β, γ, δ, η, ψ, φ are given by
α : xi 7→ xi+1, yi 7→ yi+1, ui 7→ ui+1, vi 7→ vi+1: β : xi 7→ yi, yi 7→
xi, ui 7→ vi, vi 7→ ui
γ : xi 7→ x−i, yi 7→ y−i, ui 7→ u−i, vi 7→ v−i
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δ : x2i 7→ u2it, x2i+1 7→ v(2i+1)t, y2i 7→ v2it, y2i+1 7→ u(2i+1)t

u2i 7→ x2it, u2i+1 7→ y(2i+1)t, v2i 7→ y2it, v2i+1 7→ x(2i+1)t

η : x2i 7→ x2i+k, x2i+1 7→ x2i+1+k, y2i 7→ y2i, y2i+1 7→ y2i+1

u2i 7→ u2i+k, u2i+1 7→ u2i+1+k, v2i 7→ v2i, v2i+1 7→ v2i+1, where n = 2k.
ψ : x2i 7→ u2it, x2i+1 7→ v(2i+1)t, y2i 7→ u2it+k, y2i+1 7→ v(2i+1)t+k

u2i 7→ x2it, u2i+1 7→ y(2i+1)t, v2i 7→ x2it+k, v2i+1 7→ y(2i+1)t+k, where n =
2k.
φ : x2i 7→ u2it, x2i+1 7→ v(2i+1)t, y2i 7→ v2it+k, y2i+1 7→ u(2i+1)t+k

u2i 7→ x2it, u2i+1 7→ y(2i+1)t, v2i 7→ y2it+k, v2i+1 7→ x(2i+1)t+k, where n =
2k.

For the definition of λ and µ, please refer to [13].

Proposition 3.1. If n ≡ 0 (mod 2), 4t = n and (n, t) 6= (4, 1), then
Det(DP (n, t)) = 2.

Proof. For such choice of n and t,

A(n, t) = 〈α, β, γ, η〉 = {αiβjγlηs : 0 ≤ i ≤ n− 1, 0 ≤ j, l, s ≤ 1}.
We claim that {x0, y1} is a determining set for DP (n, t). Let αiβjγlηs

be an element of A(n, t) which fixes x0, y1.
Since, β flips xi’s and yi’s and all others among α, γ and η maps xi’s

to xj’s and yi’s to yj’s, we must have j = 0, i.e., it is enough to work
with elements of the form αiγlηs.

If s = 1, then we have αiγlη(x0) = x0 and αiγlη(y1) = y1, i.e.,
αiγl(xk) = x0 and αiγl(y1) = y1, where n = 2k. Now as α and β
has same effect on the indices of xi’s and yi’s, we have a contradiction.
Thus, s = 0 and it suffices to work with αiγl.

If l = 1, we have αiγ(x0) = x0 and αiγ(y1) = y1, i.e., αi(x0) = x0 and
αi(y−1) = y1. The first one implies i = 0 whereas second one implies
i = 2, a contradiction. Thus, l = 0 and as a result i = 0.

Hence, Stab({x0, y1}) is trivial and {x0, y1} is a determining set for
DP (n, t). It proves that Det(DP (n, t)) ≤ 2.

However, as Stab(xi) = Stab(ui) = 〈αkη, α2iγ〉 and Stab(yi) =
Stab(ui) = 〈η, α2iγ〉, and each of the vertex stabilizers are isomorphic
to Z2 × Z2, we have Det(DP (n, t)) = 2. �

Proposition 3.2. If n ≡ 0 (mod 2), t2 ≡ ±1 (mod n) and (n, t) 6=
(10, 3), then Det(DP (n, t)) = 2.

Proof. For such choice of n and t,

A(n, t) = 〈α, β, γ, δ〉 = {αiβjγlδs : 0 ≤ i ≤ n− 1, 0 ≤ j, l, s ≤ 1}.
We claim that {x0, x1} is a determining set for DP (n, t). Let αiβjγlδs

be an element of A(n, t) which fixes x0, x1.
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We claim that s = 0. If not, let s = 1 and hence αiβjγlδ(x0) =
αiβjγl(u0) = up or vp. Hence x0 is not fixed. Thus s = 0 and it suffices
to consider elements of the form αiβjγl.

We claim that j = 0. Because if j = 1, αiβγl maps x0 to some yp, a
contradiction and hence we consider only elements of the form αiγl.

Thus αiγl(x0) = x0 and αiγl(x1) = x1. If l = 1, we have αi(x0) = x0
and αi(x−1) = x1. The first one implies i = 0 and the second one
implies i = 2. Hence l = 0 and i = 0.

Hence, Stab({x0, x1}) is trivial and {x0, x1} is a determining set for
DP (n, t). It proves that Det(DP (n, t)) ≤ 2.

If possible, let there exist a vertex whose stabilizer is trivial. Then
by orbit-stabilizer theorem, the size of the orbit of that vertex is equal
to |A(n, t)| = 8n > |V (DP (n, t))|, which is a contradiction. Thus
Det(DP (n, t)) = 2. �

Proposition 3.3. If n ≡ 2 (mod 4), t2 ≡ k±1 (mod n), where n = 2k
and (n, t) 6= (10, 2), then Det(DP (n, t)) = 2.

Proof. For such choice of n and t,

A(n, t) = 〈α, β, γ, ψ〉 = {αiβjγlψs : 0 ≤ i ≤ n− 1, 0 ≤ j, l, s ≤ 1}.

We claim that {x0, x1} is a determining set forDP (n, t). Let αiβjγlψs

be an element of A(n, t) which fixes x0, x1.
We claim that s = 0. If not, let s = 1 and hence αiβjγlψ(x0) =

αiβjγl(u0) = up or vp. Hence x0 is not fixed. Thus s = 0 and it suffices
to consider elements of the form αiβjγl. The rest of the proof is similar
to that as above. �

Proposition 3.4. If n ≡ 0 (mod 4), t2 ≡ k±1 (mod n), where n = 2k,
then Det(DP (n, t)) = 2.
Proof: For such choice of n and t,

A(n, t) = 〈α, β, γ, φ〉 = {αiβjγlφs : 0 ≤ i ≤ n− 1, 0 ≤ j, l, s ≤ 1}.

We claim that {x0, x1} is a determining set forDP (n, t). Let αiβjγlφs

be an element of A(n, t) which fixes x0, x1.
We claim that s = 0. If not, let s = 1 and hence αiβjγlφ(x0) =

αiβjγl(u0) = up or vp. Hence x0 is not fixed. Thus s = 0 and it suffices
to consider elements of the form αiβjγl. The rest of the proof is similar
to that of Proposition 3.2. �

Proposition 3.5. Det(DP (4, 1)) = 4.

Proof. From Theorem 3.1, we get that A(4, 1) = 〈α, β, γ, δ, η〉. It
was checked using Sage that {x0, x1, y0, y1} is a determining set for
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DP (4, 1). Thus Det(DP (4, 1)) ≤ 4. We observe that

Stab(xi) = Stab(ui) = 〈α2iγ, α2η, βηβ〉 and

Stab(yi) = Stab(vi) = 〈α2iγ, η, α2βηβ〉,
and each vertex stabilizer is isomorphic to Z2×Z2×Z2. It is clear that
intersection of any two vertex stabilizers is isomorphic to Z2 × Z2 and
intersection of any three vertex stabilizers is isomorphic to Z2. Thus
Det(DP (4, 1)) = 4. �

Proposition 3.6. Det(DP (10, 2)) = Det(DP (10, 3)) = Det(DP (5, 2))
= 2.

Proof. It was checked using Sage that |A(10, 2)| = 480 and {x0, v1} is
a determining set for DP (10, 2), i.e., Stab({x0, v1}) is trivial. Hence
Det(DP (10, 2)) ≤ 2. As DP (10, 2) is vertex transitive, the order of
stabilizer of any vertex is 480/40 = 12 and hence Det(DP (10, 2)) = 2.

AsDP (10, 2) ∼= DP (10, 3), we haveDet(DP (10, 2)) = Det(DP (10, 3))
= 2.

AsDP (5, 2) ∼= G(10, 2), by Proposition 2.5, we haveDet(DP (5, 2)) =
2. �

Proposition 3.7. Let DP (n, t) be the double generalized Petersen
graph, such that the parameters n and t do not satisfy any of the condi-
tions of Propositions 3.1,3.2,3.3,3.4,3.5,3.6. Then Det(DP (n, t)) = 2.
Proof: For such choice of n and t,

A(n, t) = 〈α, β, γ〉 = {αiβjγl : 0 ≤ i ≤ n− 1, 0 ≤ j, l ≤ 1}.

We claim that {x0, x1} is a determining set for DP (n, t). Let αiβjγl be
an element of A(n, t) which fixes x0, x1. Mimicing the proof of Proposi-
tion 3.2, we can show that Stab({x0, x1}) is trivial, i.e., Det(DP (n, t)) ≤
2.

As |A(n, t)| = 4n and DP (n, t) is not vertex-transitive, the order of
stabilizer of any vertex should be greater than 4n/2n = 2. Hence, there
does not exist any determining set of size 1. Hence, Det(DP (n, t)) =
2. �

From Propositions 3.1,3.2,3.3,3.4,3.5,3.6, 3.7, we have the following
theorem.

Theorem 3.2. Let DP (n, t) be the double generalized Petersen graph.
Then

Det(DP (n, t)) =

{
4, if (n, t) = (4, 1).
2, otherwise.

�



DETERMINING NUMBER OF SOME CUBIC GRAPHS 49

4. A Family of Cubic Graph (Zhou et.al. [17])

In [17], authors define a graph Γn, for a positive integer n, with
vertex set

V (Γn) = {u0, u1, ..., u2n−1, v0, v1, , v2n−1}
and edge-set E(Γn) consisting of all edges of the form

{(ui, ui+1), (vi, vi+1), (u2i, v2i+1), (v2i, u2i+1)},
where all addition in subscripts are done modulo 2n. It is known that
(Theorem 2.2, [17]) Γn is a Cayley graph and Aut(Γn) ∼= Z2

3 o S3, if
n = 2 and Z2

n oDn if n > 2.

Theorem 4.1.

Det(Γn) =

{
3, if n = 2.
n, if n > 2.

Proof. For n = 2, Γn ∼= Q3, the hypercube of dimension 3. It can
be shown using a sage code that {u0, u1, u2} is a determining set and
Det(Q3) = 3.

For n > 2, we have Aut(Γn) ∼= Z2
n o Dn. Consider the following

maps:

α : V (Γn)→ V (Γn) defined by α(ui) = ui+2, α(vi) = vi+2,

β : V (Γn)→ V (Γn) defined by β(ui) = u−i+1, β(vi) = v−i+1 and

δi : V (Γn)→ V (Γn) defined by δi = (u2i+1, v2i+1)(u2i+2, v2i+2) for i ∈ Zn.

It can be easily checked that α, β, δi ∈ Aut(Γn) and ◦(α) = n, ◦(β) =
◦(δi) = 2. Moreover, δi’s commute with each other and δi ◦ β = β ◦
δn−1−i; δi+1 ◦ α = α ◦ δi and βαβ = α−1. Thus

Aut(Γn) = 〈δ0, δ1, δ2, .., δn−1〉o 〈α, β〉 ∼= Z2
n oDn.

Hence any automorphism of Γn is of the form

δε00 δ
ε1
1 δ

ε2
2 ..δ

εn−1

n−1 α
iβj for 0 ≤ i ≤ n− 1; 0 ≤ εk, j ≤ 1.

We claim that S = {u0, u2, u4, .., u2n−2} is a determining set of Γn,
i.e.,

H = Stab(S) =
n−1⋂
i=0

Stab(u2i) = {id}.

Let δε00 δ
ε1
1 δ

ε2
2 . . . δ

εn−1

n−1 α
iβj ∈ H for some 0 ≤ i ≤ n− 1; 0 ≤ εk, j ≤ 1.

We claim that j = 0. If possible let j = 1, then

δε00 δ
ε1
1 δ

ε2
2 . . . δ

εn−1

n−1 α
iβ(u0) = u0

i.e., δε00 δ
ε1
1 δ

ε2
2 . . . δ

εn−1

n−1 α
i(u1) = u0
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i.e., δε00 δ
ε1
1 δ

ε2
2 . . . δ

εn−1

n−1 (u1+2i) = u0.

Now, for all possible choices of ε,is, either u1+2i is fixed or it is mapped
to v1+2i. Thus, δε00 δ

ε1
1 δ

ε2
2 . . . δ

εn−1

n−1 (u1+2i) = u1+2i or v1+2i. Hence, it can
not be u0 (due to parity mismatch) and as a result j = 0.

Now, we claim that i = 0. If not, suppose i 6= 0. Then we have
δε00 δ

ε1
1 δ

ε2
2 . . . δ

εn−1

n−1 α
i(u0) = u0, i.e.,

δε00 δ
ε1
1 δ

ε2
2 . . . δ

εn−1

n−1 (u2i) = u0

If εi−1 = 0 , then δε00 δ
ε1
1 δ

ε2
2 . . . δ

εn−1

n−1 (u2i) = u2i = u0, i.e., i = 0, a
contradiction.
If εi−1 6= 0, then δε00 δ

ε1
1 δ

ε2
2 . . . δ

εn−1

n−1 (u2i) = v2i = u0, a contradiction.
Hence i = 0.

Thus δε00 δ
ε1
1 δ

ε2
2 ..δ

εn−1

n−1 (u2i) = u2i, for all 0 ≤ i ≤ n− 1. However, this
implies that εi−1 = 0 for all 0 ≤ i ≤ n− 1. Hence S is a determining
set for Γn.

Let T be a determining set for Γn. Since

Stab(ui) = Stab(vi) =

{
〈δ0, δ1, . . . δ i−3

2
, δ i+1

2
, . . . , δn−1〉, if i is odd

〈δ0, δ1, . . . δ i
2
−2, δ i

2
, . . . , δn−1〉, if i is even,

so without loss of generality, we can take either only ui’s or only vi’s
in T . Similarly, as

Stab(u2i+1) = Stab(u2i+2) = 〈δ0, δ1, . . . , δi−1, δi+1, . . . , δn−1〉 for i ∈ Zn,

without loss of generality, we can assume T to contain only u
′
is with

even indices, i.e.,
T ⊆ {u0, u2, u4, .., u2n−2}.

If possible, let u0 6∈ T . Then δn−1 = (u2n−1, v2n−1)(u0, v0) fixes
all other elements of T , but δn−1 6= id, a contradiction. Thus u0 ∈
T . As Γn is vertex transitive graph, by dropping any element from
{u0, u2, u4, .., u2n−2}, T fails to be a determining set. Hence T =
{u0, u2, u4, .., u2n−2} and Det(Γn) = n. �

5. A Family of Bipartite Cubic Graph (Devillers et.al.[8])

Let p ≡ 1 (mod 3) be a prime and a be an element of multiplicative
order 3 in Zp. [8] defines a graph Σp with V (Σp) = Zp × Zp × Z2 and
the edge-set E(Σp) consists of all edges of the form

{(x, y, 0), (x+ 1, y + 1, 1)}, {(x, y, 0), (x+ a, y + a2, 1)} and

{(x, y, 0), (x+ a2, y + a, 1)}.
Σp is an undirected bipartite cubic graph with partite sets V1 = {(x, y, 0)|
x, y ∈ Zp}, V2 = {(x, y, 1)|x, y ∈ Zp}. It was proved in [8] that Σp is an



DETERMINING NUMBER OF SOME CUBIC GRAPHS 51

arc-transitive graph with Aut(Σp) ∼= Z2
p o (S3 × Z2). Some automor-

phisms of Σp are as follows:

tu,v : (x, y, ε) 7−→ (x+ u, y + v, ε), where u, v ∈ Zp,

τ : (x, y, ε) 7−→ (ax, a2y, ε); σ : (x, y, ε) 7−→ (y, x, ε);

γ : (x, y, ε) 7−→ (−x,−y, 1− ε)
It can be verified that 〈σ, τ |σ2 = τ 3 = (στ)2 = 1〉 ∼= S3 , 〈γ|γ2 = 1〉 ∼=
Z2. Since Z2

p = 〈(1, 0), (0, 1)〉, consider the maps

T1 = t(1,0) : (x, y, ε) 7−→ (x+ 1, y, ε) and

T2 = t(0,1) : (x, y, ε) 7−→ (x, y + 1, ε).

Thus

Aut(Σp) = 〈T1, T2〉o (〈σ, τ〉 × 〈γ〉),

and any automorphism of Σp can be written in the form T x1 T
y
2 τ

iσjγk,
where x, y ∈ {0, 1, .., p− 1}, i ∈ {0, 1, 2}, j, k ∈ {0, 1}.

Theorem 5.1. Det(Σp) = 2 for all primes p satisfying p ≡ 1 (mod 3).

Proof. We claim that S = {(0, 0, 0), (0, 1, 0)} is determining set of Σp.
Let T x1 T

y
2 τ

iσjγk be an element of Aut(Σp) which fixes (0, 0, 0) and
(0, 1, 0) simultaneously, for some 0 ≤ x, y ≤ p − 1, 0 ≤ i ≤ 2, and
0 ≤ j, k ≤ 1.

If possible, let k = 1. Then T x1 T
y
2 τ

iσjγ(0, 0, 0) = (0, 0, 0) i.e.,
T x1 T

y
2 τ

iσj(0, 0, 1) = (0, 0, 0). But as all of T1, T2, τ, σ always fix third
coordinate, this leads to a contradiction. So k = 0.

If possible, let j = 1. Then T x1 T
y
2 τ

iσ(0, 0, 0) = (0, 0, 0) and
T x1 T

y
2 τ

iσ(0, 1, 0) = (0, 1, 0). Now T x1 T
y
2 τ

i(0, 0, 0) = T x1 T
y
2 (0, 0, 0) =

(x, y, 0) = (0, 0, 0). So x = y = 0. Therefore τ iσ(0, 1, 0) = τ i(1, 0, 0) =
(0, 1, 0).

For i = 1 or 2, this implies τ i(1, 0, 0) = (a, 0, 0) or (a2, 0, 0) and none
of them is equal to (0, 1, 0), a contradiction. Hence j = 0.

If possible, let i = 1. Then T x1 T
y
2 τ(0, 0, 0) = (0, 0, 0) and T x1 T

y
2 τ(0, 1, 0)

= (0, 1, 0). This implies T x1 T
y
2 (0, 0, 0) = (x, y, 0) = (0, 0, 0). So x = y =

0. Therefore τ(0, 1, 0) = (0, a2, 0) = (0, 1, 0). However a2 = 1 contra-
dicts that the order of a is 3. So i 6= 1. Similarly it can be shown that
i 6= 2 and hence i = 0.

Now T x1 T
y
2 (0, 0, 0) = (0, 0, 0) and T x1 T

y
2 (0, 1, 0) = (0, 1, 0) clearly im-

plies that (x, y, 0) = (0, 0, 0). Thus only the identity permutation fixes
S pointwise and hence S is a determining set, i.e., Det(Σp) ≤ 2.



52 DAS AND SAHA

Since Σp is vertex transitive, by orbit-stabilizer theorem, we get that

the order of stabilizer of any vertex of Σp is
|Aut(Σp)|
|V (Σp)|

=
12p2

2p2
= 6.

Thus, any single vertex can not determine Σp. Hence Det(Σp) = 2. �

6. A Family Of Cayley Graph (Zhou and Li [18])

In [18], authors introduced the following three families of cubic Cay-
ley graphs.

(1) LetG0
4p2 = 〈a, b|a2p2 = b2 = 1, b−1ab = a−1〉. Set Ω = {b, ba, bap2}.

Define C04p2 = Cay(G0
4p2 ,Ω).

(2) Let G1
4p2 = 〈a, b, c|a2p = bp = c2 = 1, ab = ba, ac = ca, c−1bc =

b−1〉. Set Θ = {ab, a−1b−1, c} and define C14p2 = Cay(G1
4p2 ,Θ).

(3) Let G2
4p2 = 〈a, b, c, d|ap = bp = c2 = d2 = 1, ab = ba, bc =

cb, ad = da, cd = dc, c−1ac = a−1, d−1bd = b−1〉. Take λ ∈ Z∗
p

such that 2λ ≡ 1(mod p). Set Λ = {cd, cdab, caλ} and define
C24p2 = Cay(G2

4p2 ,Λ).

In [12], another family of cubic graphs Γ(4p2), for any odd prime p,
was introduced. It is defined to have vertex set V = {(i, j, k) : i ∈
Z4, j, k ∈ Zp} and edge set

E = {(i, j, k) ∼ (i+ 1, j, k)} ∪ {(0, j, k) ∼ (1, j, k − 1)}

∪{(2, j, k) ∼ (3, j − 1, k) ∪
{

(3, j, k) ∼
(

3, j +
p+ 1

2
, k +

p+ 1

2

)}
,

where i ∈ Z4, j, k ∈ Zp
It was shown in [18] that C04p2 is a member of the family discussed in
Section 4 and hence its determining number has already been calcu-
lated. It was also proved (Theorem 3.1, [18]) that C14p2 ∼= C24p2 ∼= Γ(4p2)

and Aut(Γ(4p2)) ∼= Zp
2

2 o (D8 × Z2). In this section, we determine the
determining number of the family Γ(4p2), for any odd prime p, which
in turn will give the determining number of the family of graphs C14p2
and C24p2 . Some automorphisms of Γ(4p2), defined in [12] and [18], are
as follows:

For i ∈ Z4 and j, k ∈ Zp,
• α : (i, j, k) 7→ (i, j + 1, k)
• β : (i, j, k) 7→ (i, j, k + 1)

• η : (0, j, k) 7→ (0,−j, k), (1, j, k) 7→ (1,−j, k),
(2, j, k) 7→ (2,−j, k), (3, j, k) 7→ (3,−j − 1, k).

For i, j ∈ Zp,
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• γ : (0, i, j) 7→
(
1, i, j + p−1

2

)
, (1, i, j) 7→

(
0, i, j + p+1

2

)
(2, i, j) 7→

(
3, i+ p−1

2
, j
)
, (3, i, j) 7→

(
2, i+ p+1

2
, j
)

• δ : (0, i, j) 7→
(
2, j − p+1

2
, i
)
, (1, i, j) 7→

(
3, j − p+1

2
, i
)

(2, i, j) 7→
(
0, j, i+ p+1

2

)
, (3, i, j) 7→

(
1, j, i+ p+1

2

)
Let ρ = η ◦ δ. Then ρ is again an automorphism of Γ(4p2). It can

be easily verified that

Aut(Γ(4p2)) = 〈α, β〉o (〈ρ, δ〉 × 〈γ〉)

and these automorphisms satisfy the relations

αβ = βα, αρ = ρβ−1, βρ = ρα, αδ = δβ, αγ = γα,

βγ = γβ, δγ = γδ, δρ = ρ3δ.

Thus any automorphism can be written in the form

αiβjρkδlγm where 0 ≤ i, j ≤ p− 1, 0 ≤ k ≤ 3, 0 ≤ l,m ≤ 1.

Theorem 6.1. For any odd prime p, Det(Γ(4p2)) = 2.

Proof. We claim that S = {(0, 0, 0), (1, 1, 0)} is a determining set of
Γ(4p2).
Let αiβjρkδlγm be an element of Aut(Γ(4p2)), which fixes (0, 0, 0) and
(1, 1, 0), for some 0 ≤ i, j ≤ p − 1, 0 ≤ k ≤ 3, and 0 ≤ l,m ≤ 1. If
possible let m = 1, then

αiβjρkδlγ(0, 0, 0) = (0, 0, 0), i.e., αiβjρkδl
(

1, 0,
p− 1

2

)
= (0, 0, 0)

Either l = 0 or l = 1. Now αi, βj for any i, j ∈ {0, 1, .., p − 1} does
not alter the first coordinate and ρ, δ can alter 1 in the first coordinate
to 3 and vice-versa. So the first coordinate of αiβjρkδl

(
1, 0, p−1

2

)
can

either be 1 or 3, a contradiction. Thus m = 0.
If possible, let l = 1. Then

αiβjρkδ(0, 0, 0) = (0, 0, 0) and αiβjρkδ(1, 1, 0) = (1, 1, 0),

i.e.,

αiβjρk
(

2,−p+ 1

2
, 0

)
= (0, 0, 0) and αiβjρk

(
3,−p+ 1

2
, 1

)
= (1, 1, 0)

If k = 0 or 2, then ρk does not alter the first coordinate. Thus k = 1
or 3.
If k = 1, then

αiβjρ

(
2,−p+ 1

2
, 0

)
= (0, 0, 0) i.e., αiβj(0, 0, 0) = (0, i, j) = (0, 0, 0).
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Thus i = j = 0 and

αiβjρ

(
3,−p+ 1

2
, 1

)
= ρ

(
3,−p+ 1

2
, 1

)
= (1,−1, 0) = (1, 1, 0),

a contradiction. So k 6= 1.
If k = 3,

αiβjρ3
(

2,−p+ 1

2
, 0

)
= (0, 0, 0) i.e., αiβj(0, 0, 1) = (0, i, j+1) = (0, 0, 0).

Thus i = 0 and j = p− 1. Therefore

αiβjρ3
(

3,−p+ 1

2
, 1

)
= βp−1ρ3

(
3,−p+ 1

2
, 1

)
= βp−1(1, 1, 0)

= (1, 1,−1) 6= (1, 1, 0), a contradiction.

So k 6= 3. Hence l = 0.
If possible let k = 1 or k = 3. Then αiβjρk will change the first coor-

dinate and hence αiβjρk(0, 0, 0) = (2, ∗, ∗) 6= (0, 0, 0), a contradiction.
If possible let k = 2. Then

αiβjρ2(0, 0, 0) = αiβj(0, 0, 1) = (0, i, j+1) = (0, 0, 0) i.e., i = 0; j = p−1

Also

αiβjρ2(1, 1, 0) = βp−1(1,−1, 0) = (1,−1,−1) 6= (1, 1, 0),

a contradiction. Hence k 6= 2. So k = 0.
Now, αiβj(0, 0, 0) = (0, 0, 0), i.e. (0, i, j) = (0, 0, 0), thus i = 0 and

j = 0. Thus only identity permutation fixes S pointwise and hence
S is a determining set, so Det(Γ(4p2)) ≤ 2. By Theorem 3.1 of [18],
Γ(4p2) is a cayley graph, so it is vertex transitive. By orbit-stabilizer
theorem, we get that the order of stabilizer of any vertex of Γ(4p2) is

|Aut(Σp)|
|V (Σp)|

=
16p2

4p2
= 4.

Thus, any single vertex cannot determine Γ(4p2). Hence Det(Γ(4p2)) =
2. �
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