تعداد نشریات | 31 |
تعداد شمارهها | 743 |
تعداد مقالات | 7,047 |
تعداد مشاهده مقاله | 10,122,080 |
تعداد دریافت فایل اصل مقاله | 6,847,766 |
Augmented and deflated CMRH method for solving nonsymmetric linear systems | ||
Journal of Mathematical Modeling | ||
دوره 9، شماره 2، مرداد 2021، صفحه 239-256 اصل مقاله (598.81 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22124/jmm.2020.17024.1511 | ||
نویسندگان | ||
Zohreh Ramezani؛ Faezeh Toutounian* | ||
Department of Applied Mathematics, School of Mathematical Sciences, Ferdowsi University of Mashhad, Iran | ||
چکیده | ||
The CMRH (Changing Minimal Residual method based on the Hessenberg process) is an iterative method for solving nonsymmetric linear systems. The method generates a Krylov subspace in which an approximate solution is determined. The CMRH method is generally used with restarting to reduce the storage. Restarting often slows down the convergence. In this paper we present augmentation and deflation techniques for accelerating the convergence of the restarted CMRH method. Augmentation adds a subspace to the Krylov subspace, while deflation removes certain parts from the operator. Numerical experiments show that the new algorithms can be more efficient compared with CMRH method. | ||
کلیدواژهها | ||
Krylov subspace methods؛ augmentation؛ deflation؛ CMRH method؛ GMRES method؛ harmonic Ritz values | ||
آمار تعداد مشاهده مقاله: 681 تعداد دریافت فایل اصل مقاله: 825 |