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ON (0,5)-SKEW MCCOY MODULES
M. LOUZARI * AND L. BEN YAKOUB

ABSTRACT. Let (0, ) be a quasi derivation of a ring R and Mg a
right R-module. In this paper, we introduce the notion of (o,J)-
skew McCoy modules which extends the notion of McCoy mod-
ules and o-skew McCoy modules. This concept can be regarded
also as a generalization of (o,d)-skew Armendariz modules. We
study some connections between reduced modules, semicommu-
tative modules, (o, §)-compatible modules and (o, §)-skew McCoy
modules. Furthermore, we will give some results showing that
the property of being an (o, §)-skew McCoy module transfers well
from a module My to its skew triangular matrix extensions and
vice versa.

1. INTRODUCTION

Throughout this paper, R denotes an associative ring with unity and
Mp aright R-module. For a subset X of a module Mg, rr(X) = {a €
R|Xa =0} and (x(X) = {a € RlaX = 0} will stand for the right and
the left annihilator of X in R respectively. An Ore extension of a ring
R is denoted by R[z;0,d], where o is an endomorphism of R and § is
a o-derivation, i.e., §: R — R is an additive map such that d(ab) =
o(a)o(b) + 6(a)b for all a,b € R (the pair (o,d) is also called a quasi-
derivation of R). Recall that elements of R[z;0,d] are polynomials in
x with coefficients written on the left. Multiplication in R[z;o,d] is
given by the multiplication in R and the condition za = o(a)z 4 d(a),
for all a € R. In the next, S will stand for the Ore extension R|[z;d, .
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For any 0 < i < j (i,j € N), f/ € End(R,+) will denote the map
which is the sum of all possible words in o, ¢ built with ¢ factors of o
and j — ¢ factors of 6 (e. g., f7 = o™ and fJ' = ", n € N). We have
vla = Y_, f/(a)x for all a € R, where i,j are nonnegative integers
with 5 > 3.

Let Mg be a right R-module, we can make M|z| into a right S-
module by allowing polynomials from S to act on polynomials in M|z]
in the obvious way, and applying the above “twist” whenever neces-
sary. The verification that this defines a valid S-module structure on
M |x] is almost identical to the verification that S is a ring, and it is
straightforward. An excellent discussion of Ore extension rings may be
found in [13].

From now on, we will use the notation of Lee and Zhou [11], for the
right R[z; 0, 0]-module M|z]|. Consider

Mlz;0,6] = {Zmixi|n20,miEM};

=0

which is an S-module under an obvious addition and the action of
monomials of R[x;c,d] on monomials in M[x;0,d] via (ma?)(axt) =
m>7_, f(a)z™* for all @ € R and j,¢ € N. The R[z;0,]-module
M]z; 0, 6] is called the skew polynomial extension related to the quasi-
derivation (o, d).

A module My is semicommutative, if for any m € M and a € R,

ma = 0 implies mRa = 0, [6]. Let o0 an endomorphism of R, My is
called an o-semicommutative module, if for any m € M and a € R,
ma = 0 implies mRo(a) = 0, [7]. For a module Mg and a quasi-

derivation (o,0) of R, we say that Mg is o-compatible, if for each m €
M and a € R, we have ma = 0 < mo(a) = 0. Moreover, we say that
Mp is d-compatible, if for each m € M and a € R, we have ma = 0 =
md(a)=0. If My is both o-compatible and d-compatible, we say that
Mg is (o, d)-compatible (see [3]). In [7], a module My is called o-skew
Armendariz, if m(z)f(z) = 0 where m(z) = > ymz* € M[x; 0] and
flx) =31 a;a’ € Rlz; o] implies m;o*(a;) = 0 for all i, 5. According
to Lee and Zhou [11], My is called o-Armendariz, if it is o-compatible
and o-skew Armendariz. Chen and Cui [3, 9], introduced both concepts
of McCoy modules and o-skew McCoy modules. A module Mg is
called McCoy if m(x)g(x) = 0, where m(z) = >0 ma’ € Mlx]
and g(x) = Y 9_ b2/ € R[x] \ {0} implies that there exists a € R\
{0} such that m(z)a = 0. A module Mg is called o-skew McCoy
if m(z)g(z) = 0, where m(z) = Y5 mz’ € M[x;0] and g(x) =

1_objz’ € Rlr;o]\ {0} implies that there exists a € R\ {0} such
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that m(x)a = 0. Following Alhevas and Moussavi [1]|, a module Mp is
called (o, §)-skew Armendariz, if whenever m(z)g(x) = 0 where m(z) =
S gmi’ € Mlr;0,0] and g(x) = Y21 b2’ € Rlz;0,0], we have
m;z'b;x? = 0 for all 4, j. According to Lee and Zhou [11], a module Mg
is called o-reduced, if for any m € M and a € R. We have: ma = 0
implies mR N Ma = 0, and ma = 0 if and only if mo(a) = 0. The
module My is called reduced if My is idg-reduced. Moreover, Mp is
reduced if and only if it is semicommutative with ma? = 0 implies
ma = 0 for any m € M and a € R (see [1, Lemma 1.2]).

In this paper, we introduce the concept of (o, d)-skew McCoy mod-
ules which is a generalization of McCoy modules and o-skew McCoy
modules. This concept can be regarded also as a generalization of
(0,0)-skew Armendariz modules and (o, §)-skew Armendariz rings. We
show that, (o,d)-compatible reduced modules are (o, d)-skew McCoy.
In particular, o-reduced modules are o-skew McCoy. Also, many con-
nections between reduced modules, semicommutative modules, (o, d)-
compatible modules and (¢, d)-skew McCoy modules are studied. Fur-
thermore, we show that (o, d)-skew McCoyness passes from a module
Mp, to its skew triangular matrix extension V,, (M, o). In this sens, we
complete the definition of skew triangular matrix rings V,,(R, o) given
by Isfahani [19], by introducing the notion of skew triangular matrix
modules, and we will give some results on (o, §)-skew McCoy triangular
matrix modules.

2. (0,6)-sSkEw McCOY MODULES

In this section, we introduce the concept of (o, d)-skew McCoy mod-
ules which is a generalization of McCoy modules, o-skew McCoy mod-
ules and (o, §)-skew Armendariz modules.

Definition 2.1. Let Mg be a module and M|z; o, d] the corresponding
(0, 0)-skew polynomial module over R[z;a,d].

(1) Mpgis called (o, d)-skew McCoy if m(x)g(x) = 0, where m(x) =
S gmit € Mz;0,0] and g(x) = 379_bja’ € Rlz;0,0]\ {0},
implies that there exists a € R\ {0} such that m(z)a = 0.

(2) R is called (o,6)-skew McCoy if R is (o,d)-skew McCoy as a
right R-module.

Remark 2.2. Let m(z) = >0 ymz* € M(z;0,6] and a € R. Then

P
m(x)azO@Zmifg(a):() Ve=0,1,---,p.
i=t
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If 0 =1idr and 0 = 0, we get the concept of McCoy module, and if
only 0 = 0, we get the concept of og-skew McCoy module. An ideal
of a ring R is called (o, d)-stable, if (1) C I and 6(1) C I.

Proposition 2.3. (1) Let I be any nonzero ideal of R. If I is
(0,0)-stable, then R/I is a (o,9)-skew McCoy module as an
R-module.

(2) For any index set I, if M; is a (0, 0;)-skew McCoy module as an
R;-module for each i € I, then [],c; M; is a (0,9)-skew McCoy
as an [ [;c; Ri-module, where (0,0) = (04, 0;)icr-

(3) Ewery submodule of a (o,0)-skew McCoy module is (o,0)-skew
McCoy. In particular, if I is a right ideal of a (0, )-skew Mc-
Coy ring, then Ig is a (0,0)-skew McCoy module.

(4) A module Mg is (0,0)-skew McCoy if and only if every finitely
generated submodule of Mg is (0,0)-skew McCoy.

Proof. (1) Let m(z) = >0 ma* € (R/I)[x;0,0], where m; =1+ 1 €
R/I foralli=0,1,---,pand r an arbitrary nonzero element of /. We
have m(z)r = S0 (ri + 1) S0, fi(r)at € I[x;0,6], because fi(r) €
for all £ =0,1,---,i. Hence m(x)r = 0.
(2) Let M = [],c; M; and R = [],.; R; such that each M; is an (03, d;)-
skew McCoy as R;-module for all i € I. Take m(x) = (m;(x))ier €
Mx;0,0] and f(x) = (fi(x))ier € Rlz;0,6] \ {0}, where m;(z) =
b_omi(s)z® € My[x;04,6;] and fi(x) = D1, ai(t)a' € Ry[z;04,0;) for
each ¢ € I. If m(x)f(z) = 0, then m;(z)fi(z) = 0 for each i € I.
Since M; is (0, d;)-skew McCoy, there exists 0 # r; € R; such that
m;(z)r; = 0 for each ¢ € I. Thus m(z)r = 0 where 0 # r = (r;);er € R.
(3) and (4) are obvious. O

If Mpg is an (o, d)-compatible module, then ma = 0 = mf(a) =0
for any nonnegative integers i, j such that ¢ > j, where m € Mg and
a € R. For a subset U of Mg and (0,d) a quasi-derivation of R, the
set of all skew polynomials with coefficients in U will be denoted by
Ulx;0,0].

Lemma 2.4. Let Mg be a module and (o,d) a quasi-derivation of R.
The following are equivalent:

(]‘) For any U - M[l‘, g, 6]7 (TR[x;a,5]<U) N R) [‘T’ g, 5] = TR[x;O’,(S](U)'

(2) Foranym(x) = >°7_ mix' € M[x;0,0] and f(x) = Y 71_ a2’ €
Rlx;0,6]. If m(z)f(x) =0, then > )_.meff(a;) =0 for all i, j.
Proof. (1) = (2). Let m(z) = >-7_ ymz* € M(z;0,6] and f(x) =

1_0a;x’ € Rlz;0,0]. I m(z)f(x) = 0, we have f(z) € rrpqq(m(r)) =
(TRlze0)(M(2)) N R)[;0,6]. Then a; € g0 (m(z)) for all j, so that
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m(z)a; = 0 for all j. But m(z)a; = 0 < > 7_,meff(a;) = 0 for all
0 <i<p. Thus Y7 meff(a;) =0 for all 4, j.

(2) = (1). Let U C Mx; 0, 6], we have always (7rjz0.6) (U)NR)[2; 0, 6] C
TRlz:0,0) (U). Conversely, let f(x) € TRp0s(U) then by (2), we have
Ua; = 0 for all j and so a; € rpu.es(U) N R. Therefore f(x) €
(rRlzioe) (U) N R)[2; 0, ] O

Theorem 2.5. Let Mg be a module and N a nonzero submodule of
Mlx;0,0] such that 1.5 (N) = (TRlzes (N) N R)[z;0,6]. Then

TRlzio,0) (V) 7 0 implies rz(N) # 0.
Proof. If rgpp.0.6(N) # 0, then there exists 0 # f(zx) = Y7 ja;a’ €

i=0
TR[x;o,é}(N)- But TR[I;W;}(N) = (TR[I;075}(N) N R)[x;0,d] by Lemma 2.4.
Therefore all a; are in 7 g5 (N ), s0 a; € rr(N) for all i. Since f(x) #
0, there exists iy € {0,1,---p} such that 0 # a;, € rg(N). So that

Proposition 2.6. If My is an (0,0)-skew Armendariz module, then it
is (0,0)-skew McCoy.

Proof. Let m(x) = Y7 yma’ € Mlz;0,0] and g(x) = Y 1_ b2 €
R[z;0,0) \ {0}. If m(z)g(z) = 0, then m;x’b;a? = 0 for all 4,j. Since
g(x) # 0, we have b;, # 0 for some j, € {0,1,---,p}. Therefore
m;z'bj,x7 = 0 for all 7. On the other hand, we have

p p
mia'bi,a® =y (Y mifi(b,) ™ =0,

(=0 i=t
and so Y ¢, m;f;(bj,) = 0 for all £ = 0,1,---,p. Then m(z)b;, = 0,
hence Mg, is (o, d)-skew McCoy. O

Note that, the converse of Proposition 2.6 does not hold by the next
example.

Example 2.7. Let Z, be the ring of integers modulo 4, and consider

the ring.
a b
we{(8 1) tesenl)

Let 0: R — R be an endomorphism defined by o (( 8 2 )) =
a —b

0
(1) Rp is o-skew McCoy, by [5, Theorem 9]. In fact, R is commutative,
o-reversible and o is an automorphism of R (see |1, Example 2.7(i)]).

. Clearly, ¢ in an automorphism of R.
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(2) Rpg is not o-skew Armendariz, by [I1, Example 7]. Indeed, for
p= (g g)+ (g é)xeR{x;U]awehaVGPQZO. However

(52)7((52)) 7

Corollary 2.8. If My is a reduced (o,0)-compatible module, then it is
(0,0)-skew McCoy.

Proof. Clearly from [1, Theorem 2.19] and Proposition 2.6. O

A module (o, 0)-skew McCoy need not to be McCoy by [9, Example
2.3(2)]. The next example shows that, there exists a module which is
McCoy but not (o, d)-skew McCoy for some quasi-derivation (o, ).

Example 2.9. Let Zy be the ring of integers modulo 2, and con-
sider the ring R = Zy & Zo with the usual addition and multiplica-
tion. Let ¢ be an endomorphism of R defined by o((a,b)) = (b,a)
and ¢ an o-derivation of R defined by d((a,b)) = (a,b) — o((a,b)).
Then R is a commutative reduced ring, and so it is McCoy. However,
for p(x) = (1,0)z and ¢(x) = (1,1) + (1,0)z € Rx;0,6]. We have
p(z)q(x) = 0, but p(x)(a,b) # 0 for any 0 # (a,b) € R. Therefore,
R is not (o,0)-skew McCoy. Note that, R is not (o,J)-compatible,
because (0,1)(1,0) = (0,0), but (0,1)c((1,0)) = (0,1)* # (0,0) and
(0, 1)5((1,0)) = (0, 1)(1,1) = (0,1) # (0,0).

With the help of Examples 2.9 and 2.10, we see that “(o,d)-
compatibility” and “reducibility” of Mpg in Corollary 2.8 are not su-
perfluous.

Example 2.10. Let Z5 be the ring of integers modulo 2. Consider the

ring R = < ZOQ %2 ) and the endomorphism o: R — R defined by
2

a b [ a b
g 0 ¢ N0 ¢ /)
/ /
(1) R is o-compatible. Indeed, letA:<g i),Bz(a b,)e

R. Then

aa’ =0
AB=0< b =0
abl +bd =0
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ad’ =0
& b =0 (because b = —b" Vb € Zy)
a(=b')+bd =0

& Ao(B) =0
2
(2) R is not reduced, because ( 01 ) =0 and ( 01 ) # 0.

00
(3) R is not o-skew McCoy. To see this, simply observe that for m =

(58)(58)er=(29)+ (3 1)remmam

have mf = 0. But mr # 0 for any nonzero r € R.

Corollary 2.11. o-reduced modules are o-skew McCoy.

Proof. Clearly from the fact that o-reduced modules are o-compatible
and reduced. 0J

From Example 2.12, we see that the converse of Corollary 2.11 need
not be true.

Example 2.12. Consider a ring of polynomials over Zy, R = Zs[x]. Let
o0: R — R be an endomorphism defined by o(f(z)) = f(0). Then, R
is o-skew McCoy, because it is o-skew Armendariz by [1 1, Example 5].
Moreover, R is not o-compatible. In fact, let f =1+, g =2 € R, we
have fg = (1 + z)x # 0, however fo(g) = (1+ z)o(z) = 0.

Definition 2.13. Let Mg be a module and ¢ an endomorphism of R.
We say that Mp satisfies the condition (C,) if whenever mo(a) = 0
with m € M and a € R, then ma = 0.

Lemma 2.14. If M[x;0,0]g[;0,5 95 semicommutative with the condi-
tion (Cy), then Mg is (o,d)-compatible.
Proof. Let m € M and a € R. It suffices to verify that ma = 0
implies mo(a) = 0 and md(a) = 0. Indeed, if ma = 0 then mxa =
mo(a)x +md(a) = 0, which gives mo(a) = 0 and md(a) = 0. O]
Lemma 2.15. Let Mg be an (o,8)-compatible module, if ma®> = 0
implies ma = 0 for any m € M and a € R. Then

(1) mo(a)a = 0 implies ma = mo(a) = 0.

(2) mao(a) = 0 implies ma = mo(a) = 0.
Proof. The proof is straightforward. O
Proposition 2.16. Let My be a reduced (o, §)-compatible module. For
m(z) = 3V mia’ € Mlx;0,0] and f(x) = 371_ga;27 € Rlx;o,6]. If
m(x)f(x) =0, then m;a; =0 for all i and j.
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Proof. We will use freely the fact that, if ma = 0 then mo'(a) =
md’(a) = mf!(a) = 0 for any nonnegative integers 7,5 with j > i.
From m(z)f(z) = 0, we have the following system of equations:

(0) myo?(ag) = 0,

(1) mpo”(ag-1) + mpflap_l(aq) + mpf;f—l(@q) =0,

(2)

myo? (ag—2)+my—107"! (ag—1)+my, fy_ (aq—l)‘i_mp—?Upiz(aq>+mp—1f5:21 (aq)
+myfy 5(ag) =0,
(3) mpgp(aq—3) + mp—lap_l(aq—2> + mpf5—1<aq—2) + mp—2gp_2(aq—1)
+mp71f5:21 (ag—1) + mpfg—Q(aqfl) + mp730p73(aq> + mprfg::?(aq)

+mp—1f5—_?} (aqg) + mpf;z];—?,(aq) =0,

(p+q) Z m;d*(ag) = 0.

From equation (0), we have m,a, = 0 by o-compatibility. Multiplying
equation (1) on the right side by «a,, we get

(1) myo? (ag-1)aq + my,-107" (ag)ag + my fy_1(ag)aq =0,
Since My is semicommutative, we have
mpaq = 0= myof(ag_1)aq = myf) 1(ag)a, = 0.

By Lemma 2.15, equation (1’) gives m,_ja, = 0. Also, by (c,0)-
compatibility, equation (1) implies myo?(a,—1) = 0, because mya, =
mp_1a4 = 0. Thus m,a,—1 = 0.

Summarizing at this point, we have
(o) MpAq = Mp_1aq = Mpag—1 = 0
Now, multiplying equation (2) on the right side by a,, we get
(2)

myo? (ag—2)a, + mp—lap_l(aq—l)aq + mpfﬁ—l(aq—l)aq + mp—20p_2(aq)aq

-1
+mp—1f572 (ag)aq + mpfﬁq(aq)aq =0,
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With the same manner as above, equation (2') gives m,,_20??(a,)a, =
0 and thus m,_sa, = 0 (). Also, multiplying equation (2) on the right
side by a,—1, we get

(2") mpap(aq—2>aq—1 + mp—lap_l(aq—l)aq—l + mpfgfl(aq—l)aq—l
+my—20" "% (ag)ag-1 + mp—lfzz:Ql (ag)ag-—1 +mpfy_(ag)ag-1 =0

Equations () and () implies
0 =myoP(ag-2)ag1 = myfy 1(ag-1)ag1 = My—20" "2 (ag) g1

-1
= mp—lf;};fz (ag)ag—1 = mpff;fz(aq)aq—l

Hence, equation (2") gives m, 107 *(a,_1)a,—1 = 0 and by Lemma
2.15, we get my_1a,-1 = 0 (7). Now, from («), (8) and (), we get
My107"(ag-1) = mpfy_1(ag-1) = mp20""%(a,) = mpflfzf:;(aq) =
myfy_o(ag) = 0. Hence, equation (2) implies m,0”(a,—2) = 0, so that
mpae—2 = 0. Summarizing at this point, we have m;a; = 0 with 147 €
{p+ap+q—1p+q—2}

Continuing this procedure yields m;a; = 0 for all , j. OJ

Corollary 2.17 ([!, Theorem 2.19)). If My is a reduced (o, §)-compatible
module, then it is (o,0)-skew Armendariz.

Proof. Clearly from Proposition 2.16. O

Remark 2.18. Note that, Corollary 2.8 can be obtained as a corollary
of Proposition 2.16. Indeed, for m(z) = Y7 m;z' € M|z;0,6] and
flx) = 39 gaa? € Rlx;0,0] \ {0} such that m(z)f(z) = 0, from
Proposition 2.16 and [3, Lemma 2.1], we have m(x)a; = 0 for all j.
Since f(x) # 0, there exists jo € {0,1,--- ,¢} such that a;, # 0, and
hence My, is (o, 0)-skew McCoy.

Let Mg be a module and (0,d) a quasi derivation of R. We say
that Mp satisfies the condition (x), if for any m(z) € M[x;0,0] and
f(z) € R[z;0,0], m(z)f(z) = 0implies m(z)Rf(x) = 0. If M[z;0,0] is
semicommutative as a right R[z; o, §]-module, then we have the prop-
erty (*). A module Mp which satisfies the condition (x) is semicom-
mutative. But the converse need not be true, by the next example.

Example 2.19. Take the ring R = Zy®Zy, with (o, ) as considered in
Example 2.9. Since R is commutative, the module Ry is semicommuta-
tive. However, it does not satisfy the condition (x). For p(x) = (1,0)x
and ¢(z) = (1,1) + (1,0)z € R[z;0,0]. We have p(z)g(x) = 0, but
p(x)(1,0)¢(x) = (1,0) + (1,0)x # 0. Thus p(z)Rq(x) # 0.
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Proposition 2.20. Let Mg be an (o,0)-compatible module which sat-
isfies (x). If for any m(z) = Y7 ma’ € Mlz;0,0] and f(z) =
1_0a;v7 € Rlz;0,0]\ {0}, m(z)f(x) = 0. Then mab™ =0 for all
i=0,1,--,p.
Proof. Let m(x) = >°7_ mz" € Mz;0,0] and f(z) = Y1 _ga;27 €
R[z;0,6]\ {0}, such that m(x)f(x) = 0. We can suppose a, # 0. From
m(x)f(z) =0, we get m,0”(a,) = 0. Since My, is (o, §)-compatible, we
have mya, = 0 which implies m,xPa, = 0. Since m(x)f(x) = 0 implies
m(x)aqf(z) = 0. We have

0 = (mpaP+mp_12? ™+ +maz+mo)(aiai+agag_127 '+ +aga1z+agag)

-1 2 -1
= (mp—12P7" + - +muz +mo)(agz? + agag127 " + - + agarz + aqao).

If we put f/(z) = aqf(x) and m/(z) = Zf;& mgz’, then we get my,_1a2 =

0. Continuing this procedure yields miagﬂfi =0forali=0,1--,p.
Consequently miag+1 =0forali=0,1,---,p. 0

Corollary 2.21. Let R be a reduced ring. Then

(1) If Mg is (0,6)-compatible satisfying (%), then Mg is (o,0)-skew
McCoy.

(2) If M[x;0,6|pw00) i semicommutative satisfying (Cs), then Mg
is (0,0)-skew McCoy.

Proof. (1) Let m(x) = 3_7_ ma’ € Mlz;0,0] and f(x) = Y °1_ga;27 €
R[x;0,0] \ {0}, such that m(z)f(x) = 0. We can suppose a, # 0. By
Proposition 2.20, we have miafl’“ =0 for all s = 0,1,--- ,p. Since

Mp, is (o,0)-compatible, we get mzia?™ = m; 3, fi(at* )z’ = 0
for all 7. Hence m(z)a?*" = 0 where ab™" # 0, because R is reduced.
Consequently My is (o, §)-skew McCoy.

(2) Obvious from (1) and Lemma 2.14. O

3. (0,9)-skEw MCCOYNESS OF SOME MATRIX EXTENSIONS

This section is devoted to presenting many results on (o, d)-skew Mec-
Coyness of some matrix extensions. At first, we define skew triangular
matriz modules V,,(M, o), based on the definition of skew triangular



matrix rings V,,(R, o) given by Isfahani [19].
phism of a ring R and Mg a right R-module. For n > 2.

Va(R,0) :=

and

(
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Qo a1
0 ao
0 0
0 0
0 0

mo Mmq

0 mo

0 O

0 O

0 O

Gz as
ay Qg
ag ap
0 O
0 O
mz ms3
mp M
mo My
0 0
0 0

Qp—1
Qp—2

an-3
g, A2, *

ai
Qo

mo,ma, -+
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Let o0 be an endomor-

Consider

y n—1 €ER

yMp—1 € M

Clearly V,,(M, o) is a right V,,(R, o)-module under the usual matrix ad-

dition operation and the following scalar product operation.

mo M1 Mo Mms
0 mo M1 M2
0 0 mo My
0 O 0
0 O 0
Co
0
0
0
0

1
€o

0
0

Mp—1
mMp—2
mp—3

mi
mo

C2 C3
C1 €2
ch C1

0 0
0 0

ayp a1 a2 as

0 apg a1 a
0 0 apg ai

0O 0 0 O
Cn—1
Cn—2
Cn—3

. , where
C1

&)

c; = moo(a;) + miot(a;—1) + mao?(ai—2) + -+ - + myot(ag) for each 0 <

1<n-—1.

We denote elements of V,,(R, o) by (ag,ar, -

,ap—1), and elements of

Vo(M, o) by (mo,m1,- -+ ,mu_1). There is a ring isomorphism
¢: Rlz;o]/(z™) = Va(R, 0)

given by ¢(ag+ a1z +asr®+- -+ ap_12" 1+ (2")) = (ap, a1, az, - - -

and an abelian group isomorphism
6: Mlr,0]/Mlz,0)(z") = Vi(M, o)

7an—1%
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given by ¢(mo + miz + moz? 4+ -+ + mu_12" + (2") = (mg, m1, ma,

+,mn—1) such that ¢(N(z)A(z)) = ¢(N(x))p(A(z)) for any N (z) = mo +
mix + mox? + - + mp_12" 1 + (2") € M[z,0]/M]z,0](2") and A(x) =
ap+a1r +agx® + -+ a,_12" 1 + (2") € R[z;0]/(z"). The endomorphism
o of R can be extended to V,(R,o) and Rz;o], and we will denote it in
both cases by &.

Theorem 3.1. A module Mg is o-skew McCoy if and only if V,,(M, o) is
o-skew McCoy as an V, (R, o)-module for any nonnegative integer n > 2.

Proof. Note that
Vo(R,0)[x, 5] = V,(R[x,0],7) and V,(M,0)[z,5] = V,(M|z,0],7)

. We only prove when n = 2, because other cases can be proved with the
same manner. Suppose Mpg, is o-skew McCoy. Let 0 # m(x) € Va(M, o)z, 7]
and 0 # f(x) € Va(R, o)[z, 7] such that m(z)f(x) = 0, where

- ' : 1), i Q)
miz) =Y ( i) miy )x _ < Somils’ TLmids > )
=0 0 0 f:o myja’
a1l Q12
0 a11
il G ,0) ¢ ), g ().
a a 1 -0 a1 T RPN Ay
f(z) = Z ( (1)1 %32) ) ) = ( J—OO 11 f]_o %]2) ) _
i=0

j ary j=0 911 @’
Bi1 Bz
0 fBu

aip Qa2 P11 Pz
Then { ay ( 0 pBu
a120(f11) = 0 in M(z;0]. If g1 # 0, then there exists 0 # 5 € {511, P12}
such that a118 = 0. Since Mp is o-skew McCoy, there exists 0 # ¢ € R

) ) _ a1l (12 0 c - 0 ajc _
which satisfies a11¢ = 0, thus < 0 ay > ( 0 0 ) = ( 0 0 ) =0.

0 «
If a1 = 0 then 0 62

Va(M, o) is o-skew McCoy.

Conversely, suppose Vo(M, o) is a -skew McCoy module. Let 0 # m(x) =
mo +mix + - -+ mpaP € Mlz;o] and 0 # f(x) = ap+ a1z + -+ - + aqz? €
R[z; 0], such that m(x)f(x) = 0. Then

(5 ) U5 )= (8 )

= 0, which gives a1 811 = 0 and 11812+

8 S = 0, for any 0 # ¢ € R. Therefore,
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So there exists 0 # < 8 2 ) € Va(R, o) such that

(757 i ) (5 0 ) =0

because Va(M, o) is g-skew McCoy. Thus m(x)a = m(z)b = 0, where a # 0
or b # 0. Therefore, Mg is o-skew McCoy. g

Corollary 3.2. For a nonnegative integer n > 2, we have:
(1) Mg is o-skew McCoy if and only if M[z;o]/M|[z;c](z™) is 7-skew
McCoy.
(2) R is o-skew McCoy if and only if R[x;0]/(x™) is T-skew McCoy.
(3) Mg is McCoy if and only if M[x]/M][z](z") is McCoy.
(4) R is McCoy if and only if Rlz]/(z") is McCoy.

For a nonnegative integer n > 2, let R be a ring and M a right R-module.
Consider

a a2 a1z ... Qipn
0 a a3 ... Qo2
Sn(R) — 0 0 a asn a, a;j c R

e}
=}
IS

and
m  mi2 M13 Mmin
0 m  Mo3 maon
SR(M) = 0 0 m.o ... M3p m,mg; € M
0 0 0 m

Clearly, S, (M) is a right S, (R)-module under the usual matrix addi-
tion operation and the following scalar product operation. For U = (u;;) €
Sn(M) and A = (aij) S Sn(R), UA = (mm) S Sn(M) with mij = 22:1 Uik Qfj
for all 4, j. A quasi derivation (o, d) of R can be extended to a quasi deriva-
tion (7,0) of S,(R) as follows: 7((a;j)) = (c(aij)) and 8((aij)) = (6(aij)).
We can easily verify that § is a o-derivation of S, (R).

Theorem 3.3. A module Mg, is (0,0)-skew McCoy if and only if Sy,(M) is
(7,0)-skew McCoy as an Sy,(R)-module for any nonnegative integer n > 2.

Proof. The proof is similar to [5, Theorem 14]. O

Now, for n > 2. Consider
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ap aip a2 as e Qp—1
0 ap a1 a2 ... ap_o
0 0 ap ai ... Qap-3

VTL(R) = . . . . . . ap,a1,0a2, -+ ,Ap—1 ER
0O 0 0 O al
0O 0 0 O agp

and

( mo M1 M2 M3 mp—1
0 mg Mmip Mo mp—2
0 0 mog my Mp—3
V(M) = : : mo, My, Mg, ,Mp—1 € M

0 0 0 0 mi
0 0 0 0 mo

With the same method as above, V,,(M) is a right V,,(R)-module, and a
quasi derivation (o,8) of R can be extended to a quasi derivation (7,) of
Vo(R). Note that V,,(M) = M[z]/M|x](z") where M[z](z™) is a submodule
of M|x] generated by 2™ and V,,(R) = R[z]/(2"™) where (z") is an ideal of
R[z] generated by z™.

Proposition 3.4. A module Mg, is (0,0)-skew McCoy if and only if V,,(M)
is (7, 0)-skew McCoy as an V,(R)-module for any nonnegative integer n > 2.

Proof. The proof is similar to that of [5, Theorem 14] or [9, Proposition
2.27]. 0

Corollary 3.5. For a nonnegative integer n > 2, we have:
(1) Mg is (0,6)-skew McCoy if and only if M|x]/M|[x](z") is (7,0)-skew
McCoy. B
(2) R is (0,0)-skew McCoy if and only if R[x]/(z™) is (T,0)-skew Mc-
Coy.
(3) R is McCoy if and only if Rlz]|/(z™) is McCoy.
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