Journal of Algebra and Related Topics Vol. 8, No 2, (2020), pp 23-38

ON (σ, δ) -**SKEW MCCOY MODULES**

M. LOUZARI * AND L. BEN YAKOUB

ABSTRACT. Let (σ, δ) be a quasi derivation of a ring R and M_R a right R-module. In this paper, we introduce the notion of (σ, δ) skew McCoy modules which extends the notion of McCoy modules and σ -skew McCoy modules. This concept can be regarded also as a generalization of (σ, δ) -skew Armendariz modules. We study some connections between reduced modules, semicommutative modules, (σ, δ) -compatible modules and (σ, δ) -skew McCoy modules. Furthermore, we will give some results showing that the property of being an (σ, δ) -skew McCoy module transfers well from a module M_R to its skew triangular matrix extensions and vice versa.

1. INTRODUCTION

Throughout this paper, R denotes an associative ring with unity and M_R a right R-module. For a subset X of a module M_R , $r_R(X) = \{a \in R | Xa = 0\}$ and $\ell_R(X) = \{a \in R | aX = 0\}$ will stand for the right and the left annihilator of X in R respectively. An Ore extension of a ring R is denoted by $R[x; \sigma, \delta]$, where σ is an endomorphism of R and δ is a σ -derivation, i.e., $\delta \colon R \to R$ is an additive map such that $\delta(ab) = \sigma(a)\delta(b) + \delta(a)b$ for all $a, b \in R$ (the pair (σ, δ) is also called a quasi-derivation of R). Recall that elements of $R[x; \sigma, \delta]$ are polynomials in x with coefficients written on the left. Multiplication in $R[x; \sigma, \delta]$ is given by the multiplication in R and the condition $xa = \sigma(a)x + \delta(a)$, for all $a \in R$. In the next, S will stand for the Ore extension $R[x; \sigma, \delta]$.

MSC(2010): Primary: 16S36, 16U80

Keywords: McCoy module, (σ, δ) -skew McCoy module, semicommutative module, Armendariz module, (σ, δ) -skew Armendariz module, reduced module.

Received: 10 December 2018, Accepted: 29 September 2020.

^{*}Corresponding author .

For any $0 \leq i \leq j$ $(i, j \in \mathbb{N})$, $f_i^j \in End(R, +)$ will denote the map which is the sum of all possible words in σ , δ built with i factors of σ and j - i factors of δ (e. g., $f_n^n = \sigma^n$ and $f_0^n = \delta^n, n \in \mathbb{N}$). We have $x^j a = \sum_{i=0}^j f_i^j(a) x^i$ for all $a \in R$, where i, j are nonnegative integers with $j \geq i$.

Let M_R be a right *R*-module, we can make M[x] into a right *S*module by allowing polynomials from *S* to act on polynomials in M[x]in the obvious way, and applying the above "twist" whenever necessary. The verification that this defines a valid *S*-module structure on M[x] is almost identical to the verification that *S* is a ring, and it is straightforward. An excellent discussion of Ore extension rings may be found in [13].

From now on, we will use the notation of Lee and Zhou [14], for the right $R[x; \sigma, \delta]$ -module M[x]. Consider

$$M[x;\sigma,\delta] := \left\{ \sum_{i=0}^{n} m_i x^i \mid n \ge 0, m_i \in M \right\};$$

which is an S-module under an obvious addition and the action of monomials of $R[x; \sigma, \delta]$ on monomials in $M[x; \sigma, \delta]$ via $(mx^j)(ax^{\ell}) = m\sum_{i=0}^{j} f_i^{j}(a)x^{i+\ell}$ for all $a \in R$ and $j, \ell \in \mathbb{N}$. The $R[x; \sigma, \delta]$ -module $M[x; \sigma, \delta]$ is called the *skew polynomial extension* related to the quasiderivation (σ, δ) .

A module M_R is semicommutative, if for any $m \in M$ and $a \in R$, ma = 0 implies mRa = 0, [6]. Let σ an endomorphism of R, M_R is called an σ -semicommutative module, if for any $m \in M$ and $a \in R$, ma = 0 implies $mR\sigma(a) = 0$, [7]. For a module M_R and a quasiderivation (σ, δ) of R, we say that M_R is σ -compatible, if for each $m \in$ M and $a \in R$, we have $ma = 0 \Leftrightarrow m\sigma(a) = 0$. Moreover, we say that M_R is δ -compatible, if for each $m \in M$ and $a \in R$, we have $ma = 0 \Rightarrow$ $m\delta(a)=0$. If M_R is both σ -compatible and δ -compatible, we say that M_R is (σ, δ) -compatible (see [3]). In [7], a module M_R is called σ -skew Armendariz, if m(x)f(x) = 0 where $m(x) = \sum_{i=0}^{n} m_i x^i \in M[x;\sigma]$ and $f(x) = \sum_{j=0}^{m} a_j x^j \in R[x;\sigma]$ implies $m_i \sigma^i(a_j) = 0$ for all i, j. According to Lee and Zhou [14], M_R is called σ -Armendariz, if it is σ -compatible and σ -skew Armendariz. Chen and Cui [8, 9], introduced both concepts of McCoy modules and σ -skew McCoy modules. A module M_R is called McCoy if m(x)g(x) = 0, where $m(x) = \sum_{i=0}^{p} m_i x^i \in M[x]$ and $g(x) = \sum_{j=0}^{q} b_j x^j \in R[x] \setminus \{0\}$ implies that there exists $a \in R \setminus \{0\}$ {0} such that m(x)a = 0. A module M_R is called σ -skew McCoyif m(x)g(x) = 0, where $m(x) = \sum_{i=0}^{p} m_i x^i \in M[x;\sigma]$ and g(x) = $\sum_{i=0}^{q} b_j x^j \in R[x;\sigma] \setminus \{0\}$ implies that there exists $a \in R \setminus \{0\}$ such

that m(x)a = 0. Following Alhevas and Moussavi [1], a module M_R is called (σ, δ) -skew Armendariz, if whenever m(x)g(x) = 0 where m(x) = $\sum_{i=0}^{p} m_i x^i \in M[x; \sigma, \delta]$ and $g(x) = \sum_{j=0}^{q} b_j x^j \in R[x; \sigma, \delta]$, we have $m_i x^i b_j x^j = 0$ for all i, j. According to Lee and Zhou [14], a module M_R is called σ -reduced, if for any $m \in M$ and $a \in R$. We have: ma = 0implies $mR \cap Ma = 0$, and ma = 0 if and only if $m\sigma(a) = 0$. The module M_R is called reduced if M_R is id_R -reduced. Moreover, M_R is reduced if and only if it is semicommutative with $ma^2 = 0$ implies ma = 0 for any $m \in M$ and $a \in R$ (see [14, Lemma 1.2]).

In this paper, we introduce the concept of (σ, δ) -skew McCoy modules which is a generalization of McCoy modules and σ -skew McCoy modules. This concept can be regarded also as a generalization of (σ, δ) -skew Armendariz modules and (σ, δ) -skew Armendariz rings. We show that, (σ, δ) -compatible reduced modules are (σ, δ) -skew McCoy. In particular, σ -reduced modules are σ -skew McCoy. Also, many connections between reduced modules, semicommutative modules, (σ, δ) compatible modules and (σ, δ) -skew McCoy modules are studied. Furthermore, we show that (σ, δ) -skew McCoyness passes from a module M_R to its skew triangular matrix extension $V_n(M, \sigma)$. In this sens, we complete the definition of skew triangular matrix rings $V_n(R, \sigma)$ given by Isfahani [19], by introducing the notion of skew triangular matrix modules, and we will give some results on (σ, δ) -skew McCoy triangular matrix modules.

2. (σ, δ) -skew McCoy modules

In this section, we introduce the concept of (σ, δ) -skew McCoy modules which is a generalization of McCoy modules, σ -skew McCoy modules and (σ, δ) -skew Armendariz modules.

Definition 2.1. Let M_R be a module and $M[x; \sigma, \delta]$ the corresponding (σ, δ) -skew polynomial module over $R[x; \sigma, \delta]$.

- (1) M_R is called (σ, δ) -skew McCoy if m(x)g(x) = 0, where $m(x) = \sum_{i=0}^{p} m_i x^i \in M[x; \sigma, \delta]$ and $g(x) = \sum_{j=0}^{q} b_j x^j \in R[x; \sigma, \delta] \setminus \{0\}$, implies that there exists $a \in R \setminus \{0\}$ such that m(x)a = 0.
- (2) R is called (σ, δ) -skew McCoy if R is (σ, δ) -skew McCoy as a right R-module.

Remark 2.2. Let $m(x) = \sum_{i=0}^{p} m_i x^i \in M[x; \sigma, \delta]$ and $a \in R$. Then

$$m(x)a = 0 \Leftrightarrow \sum_{i=\ell}^{p} m_i f_{\ell}^i(a) = 0 \ \forall \ell = 0, 1, \cdots, p.$$

If $\sigma = id_R$ and $\delta = 0$, we get the concept of McCoy module, and if only $\delta = 0$, we get the concept of σ -skew McCoy module. An ideal I of a ring R is called (σ, δ) -stable, if $\sigma(I) \subset I$ and $\delta(I) \subset I$.

- Proposition 2.3. (1) Let I be any nonzero ideal of R. If I is (σ, δ) -stable, then R/I is a (σ, δ) -skew McCoy module as an *R*-module.
 - (2) For any index set I, if M_i is a (σ_i, δ_i) -skew McCoy module as an R_i -module for each $i \in I$, then $\prod_{i \in I} M_i$ is a (σ, δ) -skew McCoy as an $\prod_{i \in I} R_i$ -module, where $(\sigma, \delta) = (\sigma_i, \delta_i)_{i \in I}$.
 - (3) Every submodule of a (σ, δ) -skew McCoy module is (σ, δ) -skew McCoy. In particular, if I is a right ideal of a (σ, δ) -skew Mc-Coy ring, then I_R is a (σ, δ) -skew McCoy module.
 - (4) A module M_R is (σ, δ) -skew McCoy if and only if every finitely generated submodule of M_R is (σ, δ) -skew McCoy.

Proof. (1) Let $m(x) = \sum_{i=0}^{p} \overline{m}_{i} x^{i} \in (R/I)[x; \sigma, \delta]$, where $\overline{m}_{i} = r_{i} + I \in \mathbb{R}$ R/I for all $i = 0, 1, \dots, \overline{p}$ and r an arbitrary nonzero element of I. We have $m(x)r = \sum_{i=0}^{p} (r_i + I) \sum_{\ell=0}^{i} f_{\ell}^i(r) x^{\ell} \in I[x; \sigma, \delta]$, because $f_{\ell}^i(r) \in I$ for all $\ell = 0, 1, \cdots, i$. Hence $\overline{m(x)}r = \overline{0}$.

(2) Let $M = \prod_{i \in I} M_i$ and $R = \prod_{i \in I} R_i$ such that each M_i is an (σ_i, δ_i) skew McCoy as R_i -module for all $i \in I$. Take $m(x) = (m_i(x))_{i \in I} \in I$ $M[x;\sigma,\delta] \text{ and } f(x) = (f_i(x))_{i\in I} \in R[x;\sigma,\delta] \setminus \{0\}, \text{ where } m_i(x) = \sum_{s=0}^p m_i(s)x^s \in M_i[x;\sigma_i,\delta_i] \text{ and } f_i(x) = \sum_{t=0}^q a_i(t)x^t \in R_i[x;\sigma_i,\delta_i] \text{ for } f_i(x) = \sum_{s=0}^q a_i(t)x^s \in R_i[x;\sigma_i,\delta_i] \text{ for } f_i(x) = \sum_{s=0}^q a_i(t)x^s \in R_i[x;\sigma_i,\delta_i] \text{ for } f_i(x) = \sum_{s=0}^q a_i(t)x^s \in R_i[x;\sigma_i,\delta_i] \text{ for } f_i(x) = \sum_{s=0}^q a_i(t)x^s \in R_i[x;\sigma_i,\delta_i] \text{ for } f_i(x) = \sum_{s=0}^q a_i(t)x^s \in R_i[x;\sigma_i,\delta_i] \text{ for } f_i(x) = \sum_{s=0}^q a_i(t)x^s \in R_i[x;\sigma_i,\delta_i] \text{ for } f_i(x) = \sum_{s=0}^q a_i(t)x^s \in R_i[x;\sigma_i,\delta_i] \text{ for } f_i(x) = \sum_{s=0}^q a_i(t)x^s \in R_i[x;\sigma_i,\delta_i] \text{ for } f_i(x) = \sum_{s=0}^q a_i(t)x^s \in R_i[x;\sigma_i,\delta_i] \text{ for } f_i(x) = \sum_{s=0}^q a_i(t)x^s \in R_i[x;\sigma_i,\delta_i] \text{ for } f_i(x) = \sum_{s=0}^q a_i(t)x^s \in R_i[x;\sigma_i,\delta_i] \text{ for } f_i(x) = \sum_{s=0}^q a_i(t)x^s \in R_i[x;\sigma_i,\delta_i] \text{ for } f_i(x) = \sum_{s=0}^q a_i(t)x^s \in R_i[x;\sigma_i,\delta_i] \text{ for } f_i(x) = \sum_{s=0}^q a_i(t)x^s \in R_i[x;\sigma_i,\delta_i] \text{ for } f_i(x) = \sum_{s=0}^q a_i(t)x^s \in R_i[x;\sigma_i,\delta_i] \text{ for } f_i(t) = \sum_{s=0}^q a_i(t)x^s \in R_i[x;\sigma_i,\delta_i] \text{ for } f_i(t) = \sum_{s=0}^q a_i(t)x^s \in R_i[x;\sigma_i,\delta_i] \text{ for } f_i(t) = \sum_{s=0}^q a_i(t)x^s \in R_i[x;\sigma_i,\delta_i] \text{ for } f_i(t) = \sum_{s=0}^q a_i(t)x^s \in R_i[x;\sigma_i,\delta_i] \text{ for } f_i(t) = \sum_{s=0}^q a_i(t)x^s \in R_i[x;\sigma_i,\delta_i] \text{ for } f_i(t) = \sum_{s=0}^q a_i(t)x^s \in R_i[x;\sigma_i,\delta_i] \text{ for } f_i(t) = \sum_{s=0}^q a_i(t)x^s \in R_i[x;\sigma_i,\delta_i] \text{ for } f_i(t) = \sum_{s=0}^q a_i(t)x^s \in R_i[x;\sigma_i,\delta_i] \text{ for } f_i(t) = \sum_{s=0}^q a_i(t)x^s \in R_i[x;\sigma_i,\delta_i] \text{ for } f_i(t) = \sum_{s=0}^q a_i(t)x^s \in R_i[x]$ each $i \in I$. If m(x)f(x) = 0, then $m_i(x)f_i(x) = 0$ for each $i \in I$. Since M_i is (σ_i, δ_i) -skew McCoy, there exists $0 \neq r_i \in R_i$ such that $m_i(x)r_i = 0$ for each $i \in I$. Thus m(x)r = 0 where $0 \neq r = (r_i)_{i \in I} \in R$. (3) and (4) are obvious. \square

If M_R is an (σ, δ) -compatible module, then $ma = 0 \Rightarrow mf_i^j(a) = 0$ for any nonnegative integers i, j such that $i \geq j$, where $m \in M_R$ and $a \in R$. For a subset U of M_R and (σ, δ) a quasi-derivation of R, the set of all skew polynomials with coefficients in U will be denoted by $U[x;\sigma,\delta].$

Lemma 2.4. Let M_R be a module and (σ, δ) a quasi-derivation of R. The following are equivalent:

- (1) For any $U \subseteq M[x; \sigma, \delta]$, $(r_{R[x;\sigma,\delta]}(U) \cap R)[x; \sigma, \delta] = r_{R[x;\sigma,\delta]}(U)$. (2) For any $m(x) = \sum_{i=0}^{p} m_i x^i \in M[x; \sigma, \delta]$ and $f(x) = \sum_{j=0}^{q} a_j x^j \in M[x; \sigma, \delta]$. $R[x;\sigma,\delta]$. If m(x)f(x) = 0, then $\sum_{\ell=i}^{p} m_{\ell} f_{i}^{\ell}(a_{j}) = 0$ for all i, j.

Proof. (1) \Rightarrow (2). Let $m(x) = \sum_{i=0}^{p} m_i x^i \in M[x;\sigma,\delta]$ and $f(x) = \sum_{j=0}^{q} a_j x^j \in R[x;\sigma,\delta]$. If m(x)f(x) = 0, we have $f(x) \in r_{R[x;\sigma,\delta]}(m(x)) = 0$ $(r_{R[x;\sigma,\delta]}(m(x)) \cap R)[x;\sigma,\delta]$. Then $a_j \in r_{R[x;\sigma,\delta]}(m(x))$ for all j, so that

 $m(x)a_j = 0$ for all j. But $m(x)a_j = 0 \Leftrightarrow \sum_{\ell=i}^p m_\ell f_i^\ell(a_j) = 0$ for all $0 \le i \le p$. Thus $\sum_{\ell=i}^p m_\ell f_i^\ell(a_j) = 0$ for all i, j.

 $\begin{array}{ll} (2) \Rightarrow (1). \ \text{Let} \ U \subseteq M[x; \sigma, \delta], \ \text{we have always} \ (r_{R[x;\sigma,\delta]}(U) \cap R)[x; \sigma, \delta] \subseteq \\ r_{R[x;\sigma,\delta]}(U). \ \ \text{Conversely, let} \ f(x) \in r_{R[x;\sigma,\delta]}(U) \ \ \text{then by} \ (2), \ \text{we have} \\ Ua_j = 0 \ \ \text{for all} \ j \ \ \text{and so} \ a_j \in r_{R[x;\sigma,\delta]}(U) \cap R. \ \ \text{Therefore} \ f(x) \in \\ (r_{R[x;\sigma,\delta]}(U) \cap R)[x; \sigma, \delta]. \end{array}$

Theorem 2.5. Let M_R be a module and N a nonzero submodule of $M[x; \sigma, \delta]$ such that $r_{R[x;\sigma,\delta]}(N) = (r_{R[x;\sigma,\delta]}(N) \cap R)[x; \sigma, \delta]$. Then

 $r_{R[x;\sigma,\delta]}(N) \neq 0$ implies $r_R(N) \neq 0$.

Proof. If $r_{R[x;\sigma,\delta]}(N) \neq 0$, then there exists $0 \neq f(x) = \sum_{i=0}^{p} a_i x^i \in r_{R[x;\sigma,\delta]}(N)$. But $r_{R[x;\sigma,\delta]}(N) = (r_{R[x;\sigma,\delta]}(N) \cap R)[x;\sigma,\delta]$ by Lemma 2.4. Therefore all a_i are in $r_{R[x;\sigma,\delta]}(N)$, so $a_i \in r_R(N)$ for all i. Since $f(x) \neq 0$, there exists $i_0 \in \{0, 1, \dots, p\}$ such that $0 \neq a_{i_0} \in r_R(N)$. So that $r_R(N) \neq 0$.

Proposition 2.6. If M_R is an (σ, δ) -skew Armendariz module, then it is (σ, δ) -skew McCoy.

Proof. Let $m(x) = \sum_{i=0}^{p} m_i x^i \in M[x; \sigma, \delta]$ and $g(x) = \sum_{j=0}^{q} b_j x^j \in R[x; \sigma, \delta] \setminus \{0\}$. If m(x)g(x) = 0, then $m_i x^i b_j x^j = 0$ for all i, j. Since $g(x) \neq 0$, we have $b_{j_0} \neq 0$ for some $j_0 \in \{0, 1, \dots, p\}$. Therefore $m_i x^i b_{j_0} x^{j_0} = 0$ for all i. On the other hand, we have

$$m_i x^i b_{j_0} x^{j_0} = \sum_{\ell=0}^p (\sum_{i=\ell}^p m_i f_\ell^i(b_{j_0})) x^{\ell+j_0} = 0,$$

and so $\sum_{i=\ell}^{p} m_i f_{\ell}^i(b_{j_0}) = 0$ for all $\ell = 0, 1, \cdots, p$. Then $m(x)b_{j_0} = 0$, hence M_R is (σ, δ) -skew McCoy.

Note that, the converse of Proposition 2.6 does not hold by the next example.

Example 2.7. Let \mathbb{Z}_4 be the ring of integers modulo 4, and consider the ring.

$$R = \left\{ \left(\begin{array}{cc} a & b \\ 0 & a \end{array} \right) \mid a, b \in \mathbb{Z}_4 \right\}.$$

Let $\sigma: R \to R$ be an endomorphism defined by $\sigma\left(\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}\right) = \begin{pmatrix} a & -b \\ 0 & a \end{pmatrix}$. Clearly, σ in an automorphism of R. (1) R_R is σ -skew McCoy, by [5, Theorem 9]. In fact, R is commutative,

 σ -reversible and σ is an automorphism of R (see [4, Example 2.7(i)]).

(2) R_R is not σ -skew Armendariz, by [11, Example 7]. Indeed, for $p = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} + \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} x \in R[x; \sigma]$, we have $p^2 = 0$. However $\begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} \sigma \left(\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \right) \neq 0$

Corollary 2.8. If M_R is a reduced (σ, δ) -compatible module, then it is (σ, δ) -skew McCoy.

Proof. Clearly from [1, Theorem 2.19] and Proposition 2.6.

A module (σ, δ) -skew McCoy need not to be McCoy by [9, Example 2.3(2)]. The next example shows that, there exists a module which is McCoy but not (σ, δ) -skew McCoy for some quasi-derivation (σ, δ) .

Example 2.9. Let \mathbb{Z}_2 be the ring of integers modulo 2, and consider the ring $R = \mathbb{Z}_2 \oplus \mathbb{Z}_2$ with the usual addition and multiplication. Let σ be an endomorphism of R defined by $\sigma((a, b)) = (b, a)$ and δ an σ -derivation of R defined by $\delta((a, b)) = (a, b) - \sigma((a, b))$. Then R is a commutative reduced ring, and so it is McCoy. However, for p(x) = (1, 0)x and $q(x) = (1, 1) + (1, 0)x \in R[x; \sigma, \delta]$. We have p(x)q(x) = 0, but $p(x)(a, b) \neq 0$ for any $0 \neq (a, b) \in R$. Therefore, R is not (σ, δ) -skew McCoy. Note that, R is not (σ, δ) -compatible, because (0, 1)(1, 0) = (0, 0), but $(0, 1)\sigma((1, 0)) = (0, 1)^2 \neq (0, 0)$ and $(0, 1)\delta((1, 0)) = (0, 1)(1, 1) = (0, 1) \neq (0, 0)$.

With the help of Examples 2.9 and 2.10, we see that " (σ, δ) compatibility" and "reducibility" of M_R in Corollary 2.8 are not superfluous.

Example 2.10. Let \mathbb{Z}_2 be the ring of integers modulo 2. Consider the ring $R = \begin{pmatrix} \mathbb{Z}_2 & \mathbb{Z}_2 \\ 0 & \mathbb{Z}_2 \end{pmatrix}$ and the endomorphism $\sigma \colon R \to R$ defined by $\sigma\left(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}\right) = \begin{pmatrix} a & -b \\ 0 & c \end{pmatrix}$. (1) R is σ -compatible. Indeed, let $A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$, $B = \begin{pmatrix} a' & b' \\ 0 & c' \end{pmatrix} \in$

(1) R is σ -compatible. Indeed, let $A = \begin{pmatrix} 0 & c \end{pmatrix}$, $B = \begin{pmatrix} 0 & c \\ 0 & c \end{pmatrix}$, $B = \begin{pmatrix} 0 & c \\ 0 & c \end{pmatrix}$. Then

$$AB = 0 \Leftrightarrow \begin{cases} aa' = 0\\ bb' = 0\\ ab' + bc' = 0 \end{cases}$$

28

$$\Leftrightarrow \begin{cases} aa' = 0\\ bb' = 0\\ a(-b') + bc' = 0 \end{cases} (because \ b' = -b' \ \forall b' \in \mathbb{Z}_2)$$
$$\Leftrightarrow A\sigma(B) = 0 \qquad .$$

(2) R is not reduced, because $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}^2 = 0$ and $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \neq 0$. (3) R is not σ -skew McCoy. To see this, simply observe that for $m = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x$, $f = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} x \in R[x; \sigma]$, we have mf = 0. But $mr \neq 0$ for any nonzero $r \in R$.

Corollary 2.11. σ -reduced modules are σ -skew McCoy.

Proof. Clearly from the fact that σ -reduced modules are σ -compatible and reduced.

From Example 2.12, we see that the converse of Corollary 2.11 need not be true.

Example 2.12. Consider a ring of polynomials over \mathbb{Z}_2 , $R = \mathbb{Z}_2[x]$. Let $\sigma: R \to R$ be an endomorphism defined by $\sigma(f(x)) = f(0)$. Then, R is σ -skew McCoy, because it is σ -skew Armendariz by [11, Example 5]. Moreover, R is not σ -compatible. In fact, let $f = \overline{1} + x$, $g = x \in R$, we have $fg = (\overline{1} + x)x \neq 0$, however $f\sigma(g) = (\overline{1} + x)\sigma(x) = 0$.

Definition 2.13. Let M_R be a module and σ an endomorphism of R. We say that M_R satisfies the condition (\mathcal{C}_{σ}) if whenever $m\sigma(a) = 0$ with $m \in M$ and $a \in R$, then ma = 0.

Lemma 2.14. If $M[x; \sigma, \delta]_{R[x;\sigma,\delta]}$ is semicommutative with the condition (\mathcal{C}_{σ}) , then M_R is (σ, δ) -compatible.

Proof. Let $m \in M$ and $a \in R$. It suffices to verify that ma = 0 implies $m\sigma(a) = 0$ and $m\delta(a) = 0$. Indeed, if ma = 0 then $mxa = m\sigma(a)x + m\delta(a) = 0$, which gives $m\sigma(a) = 0$ and $m\delta(a) = 0$.

Lemma 2.15. Let M_R be an (σ, δ) -compatible module, if $ma^2 = 0$ implies ma = 0 for any $m \in M$ and $a \in R$. Then

- (1) $m\sigma(a)a = 0$ implies $ma = m\sigma(a) = 0$.
- (2) $ma\sigma(a) = 0$ implies $ma = m\sigma(a) = 0$.

Proof. The proof is straightforward.

Proposition 2.16. Let M_R be a reduced (σ, δ) -compatible module. For $m(x) = \sum_{i=0}^{p} m_i x^i \in M[x; \sigma, \delta]$ and $f(x) = \sum_{j=0}^{q} a_j x^j \in R[x; \sigma, \delta]$. If m(x)f(x) = 0, then $m_i a_j = 0$ for all i and j.

Proof. We will use freely the fact that, if ma = 0 then $m\sigma^i(a) = m\delta^j(a) = mf_i^j(a) = 0$ for any nonnegative integers i, j with $j \ge i$. From m(x)f(x) = 0, we have the following system of equations:

(0)
$$m_p \sigma^p(a_q) = 0,$$

(1)
$$m_p \sigma^p(a_{q-1}) + m_{p-1} \sigma^{p-1}(a_q) + m_p f_{p-1}^p(a_q) = 0,$$

(2)

$$m_p \sigma^p(a_{q-2}) + m_{p-1} \sigma^{p-1}(a_{q-1}) + m_p f_{p-1}^p(a_{q-1}) + m_{p-2} \sigma^{p-2}(a_q) + m_{p-1} f_{p-2}^{p-1}(a_q) + m_p f_{p-2}^p(a_q) = 0,$$

÷

(3)
$$m_p \sigma^p(a_{q-3}) + m_{p-1} \sigma^{p-1}(a_{q-2}) + m_p f_{p-1}^p(a_{q-2}) + m_{p-2} \sigma^{p-2}(a_{q-1})$$

 $+ m_{p-1} f_{p-2}^{p-1}(a_{q-1}) + m_p f_{p-2}^p(a_{q-1}) + m_{p-3} \sigma^{p-3}(a_q) + m_{p-2} f_{p-3}^{p-2}(a_q)$
 $+ m_{p-1} f_{p-3}^{p-1}(a_q) + m_p f_{p-3}^p(a_q) = 0,$

(
$$\ell$$
) $\sum_{j+k=\ell} \sum_{i=0}^{p} \sum_{k=0}^{q} (m_i \sum_{j=0}^{i} f_j^i(a_k)) = 0,$
 \vdots

$$(p+q) \qquad \qquad \sum_{i=0}^{p} m_i \delta^i(a_0) = 0.$$

From equation (0), we have $m_p a_q = 0$ by σ -compatibility. Multiplying equation (1) on the right side by a_q , we get

(1')
$$m_p \sigma^p(a_{q-1})a_q + m_{p-1}\sigma^{p-1}(a_q)a_q + m_p f_{p-1}^p(a_q)a_q = 0,$$

Since M_R is semicommutative, we have

$$m_p a_q = 0 \Rightarrow m_p \sigma^p(a_{q-1})a_q = m_p f_{p-1}^p(a_q)a_q = 0.$$

By Lemma 2.15, equation (1') gives $m_{p-1}a_q = 0$. Also, by (σ, δ) compatibility, equation (1) implies $m_p \sigma^p(a_{q-1}) = 0$, because $m_p a_q =$ $m_{p-1}a_q = 0$. Thus $m_p a_{q-1} = 0$.

Summarizing at this point, we have

$$(\alpha) m_p a_q = m_{p-1} a_q = m_p a_{q-1} = 0$$

Now, multiplying equation (2) on the right side by a_q , we get (2') $m_p \sigma^p(a_{q-2})a_q + m_{p-1}\sigma^{p-1}(a_{q-1})a_q + m_p f_{p-1}^p(a_{q-1})a_q + m_{p-2}\sigma^{p-2}(a_q)a_q$ $+ m_{p-1}f_{p-2}^{p-1}(a_q)a_q + m_p f_{p-2}^p(a_q)a_q = 0,$

With the same manner as above, equation (2') gives $m_{p-2}\sigma^{p-2}(a_q)a_q = 0$ and thus $m_{p-2}a_q = 0$ (β). Also, multiplying equation (2) on the right side by a_{q-1} , we get

$$(2'') \qquad m_p \sigma^p(a_{q-2}) a_{q-1} + m_{p-1} \sigma^{p-1}(a_{q-1}) a_{q-1} + m_p f_{p-1}^p(a_{q-1}) a_{q-1} + m_{p-2} \sigma^{p-2}(a_q) a_{q-1} + m_{p-1} f_{p-2}^{p-1}(a_q) a_{q-1} + m_p f_{p-2}^p(a_q) a_{q-1} = 0$$

Equations (α) and (β) implies

$$0 = m_p \sigma^p(a_{q-2})a_{q-1} = m_p f_{p-1}^p(a_{q-1})a_{q-1} = m_{p-2} \sigma^{p-2}(a_q)a_{q-1}$$
$$= m_{p-1} f_{p-2}^{p-1}(a_q)a_{q-1} = m_p f_{p-2}^p(a_q)a_{q-1}$$

Hence, equation (2'') gives $m_{p-1}\sigma^{p-1}(a_{q-1})a_{q-1} = 0$ and by Lemma 2.15, we get $m_{p-1}a_{q-1} = 0$ (γ). Now, from (α), (β) and (γ), we get $m_{p-1}\sigma^{p-1}(a_{q-1}) = m_p f_{p-1}^p(a_{q-1}) = m_{p-2}\sigma^{p-2}(a_q) = m_{p-1}f_{p-2}^{p-1}(a_q) = m_p f_{p-2}^p(a_q) = 0$. Hence, equation (2) implies $m_p\sigma^p(a_{q-2}) = 0$, so that $m_pa_{q-2} = 0$. Summarizing at this point, we have $m_ia_j = 0$ with $i+j \in \{p+q, p+q-1, p+q-2\}$.

Continuing this procedure yields $m_i a_j = 0$ for all i, j.

Corollary 2.17 ([1, Theorem 2.19]). If M_R is a reduced (σ, δ) -compatible module, then it is (σ, δ) -skew Armendariz.

Proof. Clearly from Proposition 2.16.

Remark 2.18. Note that, Corollary 2.8 can be obtained as a corollary
of Proposition 2.16. Indeed, for
$$m(x) = \sum_{i=0}^{p} m_i x^i \in M[x; \sigma, \delta]$$
 and
 $f(x) = \sum_{j=0}^{q} a_j x^j \in R[x; \sigma, \delta] \setminus \{0\}$ such that $m(x)f(x) = 0$, from
Proposition 2.16 and [3, Lemma 2.1], we have $m(x)a_j = 0$ for all j .
Since $f(x) \neq 0$, there exists $j_0 \in \{0, 1, \dots, q\}$ such that $a_{j_0} \neq 0$, and
hence M_R is (σ, δ) -skew McCoy.

Let M_R be a module and (σ, δ) a quasi derivation of R. We say that M_R satisfies the condition (*), if for any $m(x) \in M[x; \sigma, \delta]$ and $f(x) \in R[x; \sigma, \delta], m(x)f(x) = 0$ implies m(x)Rf(x) = 0. If $M[x; \sigma, \delta]$ is semicommutative as a right $R[x; \sigma, \delta]$ -module, then we have the property (*). A module M_R which satisfies the condition (*) is semicommutative. But the converse need not be true, by the next example.

Example 2.19. Take the ring $R = \mathbb{Z}_2 \oplus \mathbb{Z}_2$, with (σ, δ) as considered in Example 2.9. Since R is commutative, the module R_R is semicommutative. However, it does not satisfy the condition (*). For p(x) = (1,0)x and $q(x) = (1,1) + (1,0)x \in R[x;\sigma,\delta]$. We have p(x)q(x) = 0, but $p(x)(1,0)q(x) = (1,0) + (1,0)x \neq 0$. Thus $p(x)Rq(x) \neq 0$.

Proposition 2.20. Let M_R be an (σ, δ) -compatible module which satisfies (*). If for any $m(x) = \sum_{i=0}^{p} m_i x^i \in M[x; \sigma, \delta]$ and $f(x) = \sum_{j=0}^{q} a_j x^j \in R[x; \sigma, \delta] \setminus \{0\}, \ m(x)f(x) = 0.$ Then $m_i a_q^{p+1} = 0$ for all $i = 0, 1, \cdots, p.$

Proof. Let $m(x) = \sum_{i=0}^{p} m_i x^i \in M[x; \sigma, \delta]$ and $f(x) = \sum_{j=0}^{q} a_j x^j \in M[x; \sigma, \delta]$ $R[x;\sigma,\delta]\setminus\{0\}$, such that m(x)f(x)=0. We can suppose $a_q\neq 0$. From m(x)f(x) = 0, we get $m_p \sigma^p(a_q) = 0$. Since M_R is (σ, δ) -compatible, we have $m_p a_q = 0$ which implies $m_p x^p a_q = 0$. Since m(x)f(x) = 0 implies $m(x)a_q f(x) = 0$. We have

$$0 = (m_p x^p + m_{p-1} x^{p-1} + \dots + m_1 x + m_0) (a_q^2 x^q + a_q a_{q-1} x^{q-1} + \dots + a_q a_1 x + a_q a_0)$$

$$= (m_{p-1}x^{p-1} + \dots + m_1x + m_0)(a_q^2x^q + a_qa_{q-1}x^{q-1} + \dots + a_qa_1x + a_qa_0).$$

If we put $f'(x) = a_q f(x)$ and $m'(x) = \sum_{i=0}^{p-1} m_i x^i$, then we get $m_{p-1} a_q^2 =$ 0. Continuing this procedure yields $m_i \overline{a_q^{p+1-i}} = 0$ for all $i = 0, 1, \cdots, p$. Consequently $m_i a_q^{p+1} = 0$ for all $i = 0, 1, \cdots, p$.

Corollary 2.21. Let R be a reduced ring. Then

- (1) If M_R is (σ, δ) -compatible satisfying (*), then M_R is (σ, δ) -skew McCoy.
- (2) If $M[x; \sigma, \delta]_{R[x; \sigma, \delta]}$ is semicommutative satisfying (\mathcal{C}_{σ}) , then M_R is (σ, δ) -skew McCoy.

Proof. (1) Let $m(x) = \sum_{i=0}^{p} m_i x^i \in M[x; \sigma, \delta]$ and $f(x) = \sum_{j=0}^{q} a_j x^j \in M[x; \sigma, \delta]$ $R[x;\sigma,\delta] \setminus \{0\}$, such that m(x)f(x) = 0. We can suppose $a_q \neq 0$. By Proposition 2.20, we have $m_i a_a^{p+1} = 0$ for all $i = 0, 1, \dots, p$. Since M_R is (σ, δ) -compatible, we get $m_i x^i a_q^{p+1} = m_i \sum_{\ell=0}^i f_\ell^i (a_q^{p+1}) x^\ell = 0$ for all *i*. Hence $m(x) a_q^{p+1} = 0$ where $a_q^{p+1} \neq 0$, because *R* is reduced. Consequently M_R is (σ, δ) -skew McCoy.

(2) Obvious from (1) and Lemma 2.14.

3. (σ, δ) -skew McCoyness of some matrix extensions

This section is devoted to presenting many results on (σ, δ) -skew Mc-Coyness of some matrix extensions. At first, we define *skew triangular* matrix modules $V_n(M,\sigma)$, based on the definition of skew triangular

matrix rings $V_n(R, \sigma)$ given by Isfahani [19]. Let σ be an endomorphism of a ring R and M_R a right R-module. For $n \geq 2$. Consider

$$V_n(R,\sigma) := \left\{ \begin{pmatrix} a_0 & a_1 & a_2 & a_3 & \dots & a_{n-1} \\ 0 & a_0 & a_1 & a_2 & \dots & a_{n-2} \\ 0 & 0 & a_0 & a_1 & \dots & a_{n-3} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & a_1 \\ 0 & 0 & 0 & 0 & \dots & a_0 \end{pmatrix} \mid a_0, a_2, \cdots, a_{n-1} \in R \right\}$$

and

$$V_n(M,\sigma) := \left\{ \begin{pmatrix} m_0 & m_1 & m_2 & m_3 & \dots & m_{n-1} \\ 0 & m_0 & m_1 & m_2 & \dots & m_{n-2} \\ 0 & 0 & m_0 & m_1 & \dots & m_{n-3} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & m_1 \\ 0 & 0 & 0 & 0 & \dots & m_0 \end{pmatrix} \mid m_0, m_2, \cdots, m_{n-1} \in M \right\}$$

Clearly $V_n(M, \sigma)$ is a right $V_n(R, \sigma)$ -module under the usual matrix addition operation and the following scalar product operation.

$$\begin{pmatrix} m_0 & m_1 & m_2 & m_3 & \dots & m_{n-1} \\ 0 & m_0 & m_1 & m_2 & \dots & m_{n-2} \\ 0 & 0 & m_0 & m_1 & \dots & m_{n-3} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & m_1 \\ 0 & 0 & 0 & 0 & \dots & m_0 \end{pmatrix} \begin{pmatrix} a_0 & a_1 & a_2 & a_3 & \dots & a_{n-1} \\ 0 & a_0 & a_1 & a_2 & \dots & a_{n-2} \\ 0 & 0 & a_0 & a_1 & \dots & a_{n-3} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & m_0 \end{pmatrix} = \begin{pmatrix} c_0 & c_1 & c_2 & c_3 & \dots & c_{n-1} \\ 0 & c_0 & c_1 & c_2 & \dots & c_{n-2} \\ 0 & 0 & c_0 & c_1 & \dots & c_{n-3} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & c_0 \end{pmatrix}, \text{ where }$$

 $c_i = m_0 \sigma^0(a_i) + m_1 \sigma^1(a_{i-1}) + m_2 \sigma^2(a_{i-2}) + \dots + m_i \sigma^i(a_0)$ for each $0 \le i \le n-1$.

We denote elements of $V_n(R, \sigma)$ by $(a_0, a_1, \dots, a_{n-1})$, and elements of $V_n(M, \sigma)$ by $(m_0, m_1, \dots, m_{n-1})$. There is a ring isomorphism

$$\varphi \colon R[x;\sigma]/(x^n) \to V_n(R,\sigma)$$

given by $\varphi(a_0 + a_1x + a_2x^2 + \dots + a_{n-1}x^{n-1} + (x^n)) = (a_0, a_1, a_2, \dots, a_{n-1}),$ and an abelian group isomorphism

$$\phi \colon M[x,\sigma]/M[x,\sigma](x^n) \to V_n(M,\sigma)$$

given by $\phi(m_0 + m_1x + m_2x^2 + \dots + m_{n-1}x^{n-1} + (x^n)) = (m_0, m_1, m_2, \dots, m_{n-1})$ such that $\phi(N(x)A(x)) = \phi(N(x))\varphi(A(x))$ for any $N(x) = m_0 + m_1x + m_2x^2 + \dots + m_{n-1}x^{n-1} + (x^n) \in M[x,\sigma]/M[x,\sigma](x^n)$ and $A(x) = a_0 + a_1x + a_2x^2 + \dots + a_{n-1}x^{n-1} + (x^n) \in R[x;\sigma]/(x^n)$. The endomorphism σ of R can be extended to $V_n(R,\sigma)$ and $R[x;\sigma]$, and we will denote it in both cases by $\overline{\sigma}$.

Theorem 3.1. A module M_R is σ -skew McCoy if and only if $V_n(M, \sigma)$ is $\overline{\sigma}$ -skew McCoy as an $V_n(R, \sigma)$ -module for any nonnegative integer $n \ge 2$.

Proof. Note that

$$V_n(R,\sigma)[x,\overline{\sigma}] \cong V_n(R[x,\sigma],\overline{\sigma}) \text{ and } V_n(M,\sigma)[x,\overline{\sigma}] \cong V_n(M[x,\sigma],\overline{\sigma})$$

. We only prove when n = 2, because other cases can be proved with the same manner. Suppose M_R is σ -skew McCoy. Let $0 \neq m(x) \in V_2(M, \sigma)[x, \overline{\sigma}]$ and $0 \neq f(x) \in V_2(R, \sigma)[x, \overline{\sigma}]$ such that m(x)f(x) = 0, where

$$\begin{split} m(x) &= \sum_{i=0}^{p} \left(\begin{array}{cc} m_{11}^{(i)} & m_{12}^{(i)} \\ 0 & m_{11}^{(i)} \end{array} \right) x^{i} = \left(\begin{array}{cc} \sum_{i=0}^{p} m_{11}^{(i)} x^{i} & \sum_{i=0}^{p} m_{12}^{(i)} x^{i} \\ 0 & \sum_{i=0}^{p} m_{11}^{(i)} x^{i} \end{array} \right) = \\ & \left(\begin{array}{c} \alpha_{11} & \alpha_{12} \\ 0 & \alpha_{11} \end{array} \right) \\ f(x) &= \sum_{j=0}^{q} \left(\begin{array}{c} a_{11}^{(j)} & a_{12}^{(j)} \\ 0 & a_{11}^{(j)} \end{array} \right) x^{j} = \left(\begin{array}{c} \sum_{j=0}^{q} a_{11}^{(j)} x^{j} & \sum_{j=0}^{q} a_{12}^{(j)} x^{j} \\ 0 & \sum_{j=0}^{q} a_{11}^{(j)} x^{j} \end{array} \right) = \\ & \left(\begin{array}{c} \beta_{11} & \beta_{12} \\ 0 & \beta_{11} \end{array} \right) \end{split}$$

 $\begin{array}{l} \text{Then} \left(\begin{array}{cc} \alpha_{11} & \alpha_{12} \\ 0 & \alpha_{11} \end{array} \right) \left(\begin{array}{cc} \beta_{11} & \beta_{12} \\ 0 & \beta_{11} \end{array} \right) = 0, \text{ which gives } \alpha_{11}\beta_{11} = 0 \text{ and } \alpha_{11}\beta_{12} + \\ \alpha_{12}\overline{\sigma}(\beta_{11}) = 0 \text{ in } M[x;\sigma]. \text{ If } \alpha_{11} \neq 0, \text{ then there exists } 0 \neq \beta \in \{\beta_{11},\beta_{12}\} \\ \text{such that } \alpha_{11}\beta = 0. \text{ Since } M_R \text{ is } \sigma\text{-skew McCoy, there exists } 0 \neq c \in R \\ \text{which satisfies } \alpha_{11}c = 0, \text{ thus } \left(\begin{array}{c} \alpha_{11} & \alpha_{12} \\ 0 & \alpha_{11} \end{array} \right) \left(\begin{array}{c} 0 & c \\ 0 & 0 \end{array} \right) = \left(\begin{array}{c} 0 & \alpha_{11}c \\ 0 & 0 \end{array} \right) = 0. \\ \text{If } \alpha_{11} = 0 \text{ then } \left(\begin{array}{c} 0 & \alpha_{12} \\ 0 & 0 \end{array} \right) \left(\begin{array}{c} 0 & c \\ 0 & 0 \end{array} \right) = 0, \text{ for any } 0 \neq c \in R. \text{ Therefore,} \\ V_2(M,\sigma) \text{ is } \overline{\sigma}\text{-skew McCoy.} \end{array}$

Conversely, suppose $V_2(M, \sigma)$ is a $\overline{\sigma}$ -skew McCoy module. Let $0 \neq m(x) = m_0 + m_1 x + \dots + m_p x^p \in M[x; \sigma]$ and $0 \neq f(x) = a_0 + a_1 x + \dots + a_q x^q \in R[x; \sigma]$, such that m(x)f(x) = 0. Then

$$\left(\begin{array}{cc} m(x) & 0\\ 0 & m(x) \end{array}\right) \left(\begin{array}{cc} f(x) & 0\\ 0 & f(x) \end{array}\right) = \left(\begin{array}{cc} m(x)f(x) & 0\\ 0 & m(x)f(x) \end{array}\right) = 0.$$

So there exists $0 \neq \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \in V_2(R, \sigma)$ such that

$$\left(\begin{array}{cc} m(x) & 0\\ 0 & m(x) \end{array}\right) \left(\begin{array}{cc} a & b\\ 0 & a \end{array}\right) = 0$$

because $V_2(M, \sigma)$ is $\overline{\sigma}$ -skew McCoy. Thus m(x)a = m(x)b = 0, where $a \neq 0$ or $b \neq 0$. Therefore, M_R is σ -skew McCoy.

Corollary 3.2. For a nonnegative integer $n \ge 2$, we have:

- (1) M_R is σ -skew McCoy if and only if $M[x;\sigma]/M[x;\sigma](x^n)$ is $\overline{\sigma}$ -skew McCoy.
- (2) R is σ -skew McCoy if and only if $R[x;\sigma]/(x^n)$ is $\overline{\sigma}$ -skew McCoy.
- (3) M_R is McCoy if and only if $M[x]/M[x](x^n)$ is McCoy.
- (4) R is McCoy if and only if $R[x]/(x^n)$ is McCoy.

For a nonnegative integer $n \ge 2$, let R be a ring and M a right R-module. Consider

$$S_n(R) := \left\{ \begin{pmatrix} a & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & a & a_{23} & \dots & a_{2n} \\ 0 & 0 & a & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a \end{pmatrix} \mid a, a_{ij} \in R \right\}$$

and

$$S_n(M) := \left\{ \begin{pmatrix} m & m_{12} & m_{13} & \dots & m_{1n} \\ 0 & m & m_{23} & \dots & m_{2n} \\ 0 & 0 & m & \dots & m_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & m \end{pmatrix} \mid m, m_{ij} \in M \right\}$$

Clearly, $S_n(M)$ is a right $S_n(R)$ -module under the usual matrix addition operation and the following scalar product operation. For $U = (u_{ij}) \in$ $S_n(M)$ and $A = (a_{ij}) \in S_n(R)$, $UA = (m_{ij}) \in S_n(M)$ with $m_{ij} = \sum_{k=1}^n u_{ik}a_{kj}$ for all i, j. A quasi derivation (σ, δ) of R can be extended to a quasi derivation $(\overline{\sigma}, \overline{\delta})$ of $S_n(R)$ as follows: $\overline{\sigma}((a_{ij})) = (\sigma(a_{ij}))$ and $\overline{\delta}((a_{ij})) = (\delta(a_{ij}))$. We can easily verify that $\overline{\delta}$ is a $\overline{\sigma}$ -derivation of $S_n(R)$.

Theorem 3.3. A module M_R is (σ, δ) -skew McCoy if and only if $S_n(M)$ is $(\overline{\sigma}, \overline{\delta})$ -skew McCoy as an $S_n(R)$ -module for any nonnegative integer $n \ge 2$.

Proof. The proof is similar to [5, Theorem 14].

Now, for $n \geq 2$. Consider

$$V_n(R) := \left\{ \begin{pmatrix} a_0 & a_1 & a_2 & a_3 & \dots & a_{n-1} \\ 0 & a_0 & a_1 & a_2 & \dots & a_{n-2} \\ 0 & 0 & a_0 & a_1 & \dots & a_{n-3} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & a_1 \\ 0 & 0 & 0 & 0 & \dots & a_0 \end{pmatrix} \mid a_0, a_1, a_2, \cdots, a_{n-1} \in R \right\}$$

and

$$V_n(M) := \begin{cases} \begin{pmatrix} m_0 & m_1 & m_2 & m_3 & \dots & m_{n-1} \\ 0 & m_0 & m_1 & m_2 & \dots & m_{n-2} \\ 0 & 0 & m_0 & m_1 & \dots & m_{n-3} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & m_1 \\ 0 & 0 & 0 & 0 & \dots & m_0 \end{pmatrix} \mid m_0, m_1, m_2, \cdots, m_{n-1} \in M \end{cases}$$

With the same method as above, $V_n(M)$ is a right $V_n(R)$ -module, and a quasi derivation (σ, δ) of R can be extended to a quasi derivation $(\overline{\sigma}, \overline{\delta})$ of $V_n(R)$. Note that $V_n(M) \cong M[x]/M[x](x^n)$ where $M[x](x^n)$ is a submodule of M[x] generated by x^n and $V_n(R) \cong R[x]/(x^n)$ where (x^n) is an ideal of R[x] generated by x^n .

Proposition 3.4. A module M_R is (σ, δ) -skew McCoy if and only if $V_n(M)$ is $(\overline{\sigma}, \overline{\delta})$ -skew McCoy as an $V_n(R)$ -module for any nonnegative integer $n \ge 2$.

Proof. The proof is similar to that of [5, Theorem 14] or [9, Proposition 2.27]. \Box

Corollary 3.5. For a nonnegative integer $n \ge 2$, we have:

- (1) M_R is (σ, δ) -skew McCoy if and only if $M[x]/M[x](x^n)$ is $(\overline{\sigma}, \overline{\delta})$ -skew McCoy.
- (2) R is (σ, δ) -skew McCoy if and only if $R[x]/(x^n)$ is $(\overline{\sigma}, \overline{\delta})$ -skew Mc-Coy.
- (3) R is McCoy if and only if $R[x]/(x^n)$ is McCoy.

Acknowledgments

The authors would like to thank the referee for his/her helpful suggestions that improved the paper.

References

 A. Alhevaz and A. Moussavi, On skew Armendariz and skew quasi-Armendariz modules, Bull. Iran. Math. Soc., (1) 1 (2012), 55–84.

- S. Annin, Associated primes over skew polynomials rings, Comm. Algebra, (5) 30 (2002), 2511–2528.
- S. Annin, Associated primes over Ore extension rings, J. Algebra appl., (2) 3 (2004), 193–205.
- M. Başer, C. Y. Hong, T. K. Kwak, On extended reversible rings, Algebra Colloq., (1) 16, (2009), 37–48.
- M. Başer, T. K. Kwak and Y. Lee, The McCoy condition on skew polynomial rings, Comm. Algebra, (11) 37 (2009), 4026–4037.
- A. M. Buhphang and M. B. Rege, Semicommutative modules and Armendariz modules, Arab J. Math. Sciences, (1) 8 (2002), 53–65.
- J. L. Chen and C. P. Zhang, σ-skew Armendariz modules and σsemicommutative modules, Taiwanese J. Math., (2) 12 (2008), 473–486.
- J. Cui and J. Chen, On McCoy modules, Bull. Korean Math. Soc., (1) 48 (2011), 23–33.
- J. Cui and J. Chen, On α-skew McCoy modules, Turk. J. Math., (1) 36 (2012), 217–229.
- E. Hashemi, Extensions of Baer and quasi-Baer modules, Bull. of the Iran. Math. Soc., (1) 37 (2011), 1–13.
- C. Y. Hong, N. K. Kim and T. K. Kwak, On Skew Armendariz Rings, Comm. Algebra, (1) 31 (2003), 103–122.
- N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra, (2) 223 (2000), 477-488.
- T. Y. Lam, A. Leroy and J. Matczuk, Primeness, semiprimeness and the prime radical of Ore extensions, Comm. Algebra, (8) 25, (1997), 2459–2506.
- T. K. Lee and Y. Lee, *Reduced Modules*, Rings, modules, algebras and abelian groups, Lecture Notes in Pure and App. Math. 236, (2004), 365–377, Dekker, New york.
- A. Leroy and J. Matczuk, On induced modules over Ore extensions, Comm. Algebra, (7) 32 (2004), 2743–2766.
- Z. Liu and R. Zhao, Extensions of McCoy Rings, Algebra Colloq., (3) 16 (2009), 495–502.
- 17. M. Louzari and L. Ben Yakoub, Ore extensions of extended symmetric and reversible rings, Inter. J. of Algebra, (9) **3** (2009), 423–433.
- N. H. McCoy, Annihilators in polynomial rings, Amer. math. monthly, (1) 64 (1957), 28–29.
- A. R. Nasr-Isfahani, On Skew Triangular Matrix Rings, Comm. Algebra, (11) 39 (2011), 4461–4469

M. Louzari

Department of Mathematics, University Abdelmalek Essaadi, Tetouan, Morocco. Email: mlouzari@yahoo.com

L. Ben Yakoub

Department of Mathematics, University Abdelmalek Essaadi, Tetouan, Morocco. Email: benyakoub@hotmail.com