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ON (σ, δ)-SKEW MCCOY MODULES

M. LOUZARI ∗ AND L. BEN YAKOUB

Abstract. Let (σ, δ) be a quasi derivation of a ring R and MR a
right R-module. In this paper, we introduce the notion of (σ, δ)-
skew McCoy modules which extends the notion of McCoy mod-
ules and σ-skew McCoy modules. This concept can be regarded
also as a generalization of (σ, δ)-skew Armendariz modules. We
study some connections between reduced modules, semicommu-
tative modules, (σ, δ)-compatible modules and (σ, δ)-skew McCoy
modules. Furthermore, we will give some results showing that
the property of being an (σ, δ)-skew McCoy module transfers well
from a module MR to its skew triangular matrix extensions and
vice versa.

1. Introduction

Throughout this paper, R denotes an associative ring with unity and
MR a right R-module. For a subset X of a module MR, rR(X) = {a ∈
R|Xa = 0} and `R(X) = {a ∈ R|aX = 0} will stand for the right and
the left annihilator of X in R respectively. An Ore extension of a ring
R is denoted by R[x;σ, δ], where σ is an endomorphism of R and δ is
a σ-derivation, i.e., δ : R → R is an additive map such that δ(ab) =
σ(a)δ(b) + δ(a)b for all a, b ∈ R (the pair (σ, δ) is also called a quasi-
derivation of R). Recall that elements of R[x;σ, δ] are polynomials in
x with coefficients written on the left. Multiplication in R[x;σ, δ] is
given by the multiplication in R and the condition xa = σ(a)x+ δ(a),
for all a ∈ R. In the next, S will stand for the Ore extension R[x;σ, δ].
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For any 0 ≤ i ≤ j (i, j ∈ N), f ji ∈ End(R,+) will denote the map
which is the sum of all possible words in σ, δ built with i factors of σ
and j − i factors of δ (e. g., fnn = σn and fn0 = δn, n ∈ N). We have

xja =
∑j

i=0 f
j
i (a)xi for all a ∈ R, where i, j are nonnegative integers

with j ≥ i.
Let MR be a right R-module, we can make M [x] into a right S-

module by allowing polynomials from S to act on polynomials in M [x]
in the obvious way, and applying the above “twist” whenever neces-
sary. The verification that this defines a valid S-module structure on
M [x] is almost identical to the verification that S is a ring, and it is
straightforward. An excellent discussion of Ore extension rings may be
found in [13].

From now on, we will use the notation of Lee and Zhou [14], for the
right R[x;σ, δ]-module M [x]. Consider

M [x;σ, δ] :=

{
n∑
i=0

mix
i | n ≥ 0,mi ∈M

}
;

which is an S-module under an obvious addition and the action of
monomials of R[x;σ, δ] on monomials in M [x;σ, δ] via (mxj)(ax`) =

m
∑j

i=0 f
j
i (a)xi+` for all a ∈ R and j, ` ∈ N. The R[x;σ, δ]-module

M [x;σ, δ] is called the skew polynomial extension related to the quasi-
derivation (σ, δ).

A module MR is semicommutative, if for any m ∈ M and a ∈ R,
ma = 0 implies mRa = 0, [6]. Let σ an endomorphism of R, MR is
called an σ-semicommutative module, if for any m ∈ M and a ∈ R,
ma = 0 implies mRσ(a) = 0, [7]. For a module MR and a quasi-
derivation (σ, δ) of R, we say that MR is σ-compatible, if for each m ∈
M and a ∈ R, we have ma = 0 ⇔ mσ(a) = 0. Moreover, we say that
MR is δ-compatible, if for each m ∈M and a ∈ R, we have ma = 0⇒
mδ(a)=0. If MR is both σ-compatible and δ-compatible, we say that
MR is (σ, δ)-compatible (see [3]). In [7], a module MR is called σ-skew
Armendariz, if m(x)f(x) = 0 where m(x) =

∑n
i=0mix

i ∈ M [x;σ] and
f(x) =

∑m
j=0 ajx

j ∈ R[x;σ] implies miσ
i(aj) = 0 for all i, j. According

to Lee and Zhou [14], MR is called σ-Armendariz, if it is σ-compatible
and σ-skew Armendariz. Chen and Cui [8, 9], introduced both concepts
of McCoy modules and σ-skew McCoy modules. A module MR is
called McCoy if m(x)g(x) = 0, where m(x) =

∑p
i=0mix

i ∈ M [x]
and g(x) =

∑q
j=0 bjx

j ∈ R[x] \ {0} implies that there exists a ∈ R \
{0} such that m(x)a = 0. A module MR is called σ-skew McCoy
if m(x)g(x) = 0, where m(x) =

∑p
i=0mix

i ∈ M [x;σ] and g(x) =∑q
j=0 bjx

j ∈ R[x;σ] \ {0} implies that there exists a ∈ R \ {0} such
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that m(x)a = 0. Following Alhevas and Moussavi [1], a module MR is
called (σ, δ)-skew Armendariz, if whenever m(x)g(x) = 0 where m(x) =∑p

i=0mix
i ∈ M [x;σ, δ] and g(x) =

∑q
j=0 bjx

j ∈ R[x;σ, δ], we have

mix
ibjx

j = 0 for all i, j. According to Lee and Zhou [14], a module MR

is called σ-reduced, if for any m ∈ M and a ∈ R. We have: ma = 0
implies mR ∩Ma = 0, and ma = 0 if and only if mσ(a) = 0. The
module MR is called reduced if MR is idR-reduced. Moreover, MR is
reduced if and only if it is semicommutative with ma2 = 0 implies
ma = 0 for any m ∈M and a ∈ R (see [14, Lemma 1.2]).

In this paper, we introduce the concept of (σ, δ)-skew McCoy mod-
ules which is a generalization of McCoy modules and σ-skew McCoy
modules. This concept can be regarded also as a generalization of
(σ, δ)-skew Armendariz modules and (σ, δ)-skew Armendariz rings. We
show that, (σ, δ)-compatible reduced modules are (σ, δ)-skew McCoy.
In particular, σ-reduced modules are σ-skew McCoy. Also, many con-
nections between reduced modules, semicommutative modules, (σ, δ)-
compatible modules and (σ, δ)-skew McCoy modules are studied. Fur-
thermore, we show that (σ, δ)-skew McCoyness passes from a module
MR to its skew triangular matrix extension Vn(M,σ). In this sens, we
complete the definition of skew triangular matrix rings Vn(R, σ) given
by Isfahani [19], by introducing the notion of skew triangular matrix
modules, and we will give some results on (σ, δ)-skew McCoy triangular
matrix modules.

2. (σ, δ)-skew McCoy modules

In this section, we introduce the concept of (σ, δ)-skew McCoy mod-
ules which is a generalization of McCoy modules, σ-skew McCoy mod-
ules and (σ, δ)-skew Armendariz modules.

Definition 2.1. Let MR be a module and M [x;σ, δ] the corresponding
(σ, δ)-skew polynomial module over R[x;σ, δ].

(1) MR is called (σ, δ)-skew McCoy if m(x)g(x) = 0, where m(x) =∑p
i=0mix

i ∈M [x;σ, δ] and g(x) =
∑q

j=0 bjx
j ∈ R[x;σ, δ] \ {0},

implies that there exists a ∈ R \ {0} such that m(x)a = 0.
(2) R is called (σ, δ)-skew McCoy if R is (σ, δ)-skew McCoy as a

right R-module.

Remark 2.2. Let m(x) =
∑p

i=0mix
i ∈M [x;σ, δ] and a ∈ R. Then

m(x)a = 0⇔
p∑
i=`

mif
i
`(a) = 0 ∀` = 0, 1, · · · , p.
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If σ = idR and δ = 0, we get the concept of McCoy module, and if
only δ = 0, we get the concept of σ-skew McCoy module. An ideal I
of a ring R is called (σ, δ)-stable, if σ(I) ⊆ I and δ(I) ⊆ I.

Proposition 2.3. (1) Let I be any nonzero ideal of R. If I is
(σ, δ)-stable, then R/I is a (σ, δ)-skew McCoy module as an
R-module.

(2) For any index set I, if Mi is a (σi, δi)-skew McCoy module as an
Ri-module for each i ∈ I, then

∏
i∈IMi is a (σ, δ)-skew McCoy

as an
∏

i∈I Ri-module, where (σ, δ) = (σi, δi)i∈I .
(3) Every submodule of a (σ, δ)-skew McCoy module is (σ, δ)-skew

McCoy. In particular, if I is a right ideal of a (σ, δ)-skew Mc-
Coy ring, then IR is a (σ, δ)-skew McCoy module.

(4) A module MR is (σ, δ)-skew McCoy if and only if every finitely
generated submodule of MR is (σ, δ)-skew McCoy.

Proof. (1) Let m(x) =
∑p

i=0mix
i ∈ (R/I)[x;σ, δ], where mi = ri + I ∈

R/I for all i = 0, 1, · · · , p and r an arbitrary nonzero element of I. We

have m(x)r =
∑p

i=0(ri + I)
∑i

`=0 f
i
`(r)x

` ∈ I[x;σ, δ], because f i`(r) ∈ I
for all ` = 0, 1, · · · , i. Hence m(x)r = 0̄.
(2) Let M =

∏
i∈IMi and R =

∏
i∈I Ri such that each Mi is an (σi, δi)-

skew McCoy as Ri-module for all i ∈ I. Take m(x) = (mi(x))i∈I ∈
M [x;σ, δ] and f(x) = (fi(x))i∈I ∈ R[x;σ, δ] \ {0}, where mi(x) =∑p

s=0mi(s)x
s ∈ Mi[x;σi, δi] and fi(x) =

∑q
t=0 ai(t)x

t ∈ Ri[x;σi, δi] for
each i ∈ I. If m(x)f(x) = 0, then mi(x)fi(x) = 0 for each i ∈ I.
Since Mi is (σi, δi)-skew McCoy, there exists 0 6= ri ∈ Ri such that
mi(x)ri = 0 for each i ∈ I. Thus m(x)r = 0 where 0 6= r = (ri)i∈I ∈ R.
(3) and (4) are obvious. �

If MR is an (σ, δ)-compatible module, then ma = 0 ⇒ mf ji (a) = 0
for any nonnegative integers i, j such that i ≥ j, where m ∈ MR and
a ∈ R. For a subset U of MR and (σ, δ) a quasi-derivation of R, the
set of all skew polynomials with coefficients in U will be denoted by
U [x;σ, δ].

Lemma 2.4. Let MR be a module and (σ, δ) a quasi-derivation of R.
The following are equivalent:

(1) For any U ⊆M [x;σ, δ], (rR[x;σ,δ](U) ∩R)[x;σ, δ] = rR[x;σ,δ](U).
(2) For any m(x) =

∑p
i=0mix

i ∈M [x;σ, δ] and f(x) =
∑q

j=0 ajx
j ∈

R[x;σ, δ]. If m(x)f(x) = 0, then
∑p

`=im`f
`
i (aj) = 0 for all i, j.

Proof. (1) ⇒ (2). Let m(x) =
∑p

i=0mix
i ∈ M [x;σ, δ] and f(x) =∑q

j=0 ajx
j ∈ R[x;σ, δ]. Ifm(x)f(x) = 0, we have f(x) ∈ rR[x;σ,δ](m(x)) =

(rR[x;σ,δ](m(x)) ∩ R)[x;σ, δ]. Then aj ∈ rR[x;σ,δ](m(x)) for all j, so that
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m(x)aj = 0 for all j. But m(x)aj = 0 ⇔
∑p

`=im`f
`
i (aj) = 0 for all

0 ≤ i ≤ p. Thus
∑p

`=im`f
`
i (aj) = 0 for all i, j.

(2)⇒ (1). Let U ⊆M [x;σ, δ], we have always (rR[x;σ,δ](U)∩R)[x;σ, δ] ⊆
rR[x;σ,δ](U). Conversely, let f(x) ∈ rR[x;σ,δ](U) then by (2), we have
Uaj = 0 for all j and so aj ∈ rR[x;σ,δ](U) ∩ R. Therefore f(x) ∈
(rR[x;σ,δ](U) ∩R)[x;σ, δ]. �

Theorem 2.5. Let MR be a module and N a nonzero submodule of
M [x;σ, δ] such that rR[x;σ,δ](N) = (rR[x;σ,δ](N) ∩R)[x;σ, δ]. Then

rR[x;σ,δ](N) 6= 0 implies rR(N) 6= 0.

Proof. If rR[x;σ,δ](N) 6= 0, then there exists 0 6= f(x) =
∑p

i=0 aix
i ∈

rR[x;σ,δ](N). But rR[x;σ,δ](N) = (rR[x;σ,δ](N) ∩R)[x;σ, δ] by Lemma 2.4.
Therefore all ai are in rR[x;σ,δ](N), so ai ∈ rR(N) for all i. Since f(x) 6=
0, there exists i0 ∈ {0, 1, · · · p} such that 0 6= ai0 ∈ rR(N). So that
rR(N) 6= 0. �

Proposition 2.6. If MR is an (σ, δ)-skew Armendariz module, then it
is (σ, δ)-skew McCoy.

Proof. Let m(x) =
∑p

i=0mix
i ∈ M [x;σ, δ] and g(x) =

∑q
j=0 bjx

j ∈
R[x;σ, δ] \ {0}. If m(x)g(x) = 0, then mix

ibjx
j = 0 for all i, j. Since

g(x) 6= 0, we have bj0 6= 0 for some j0 ∈ {0, 1, · · · , p}. Therefore
mix

ibj0x
j0 = 0 for all i. On the other hand, we have

mix
ibj0x

j0 =

p∑
`=0

(

p∑
i=`

mif
i
`(bj0))x

`+j0 = 0,

and so
∑p

i=`mif
i
`(bj0) = 0 for all ` = 0, 1, · · · , p. Then m(x)bj0 = 0,

hence MR is (σ, δ)-skew McCoy. �

Note that, the converse of Proposition 2.6 does not hold by the next
example.

Example 2.7. Let Z4 be the ring of integers modulo 4, and consider
the ring.

R =

{(
a b
0 a

)
| a, b ∈ Z4

}
.

Let σ : R → R be an endomorphism defined by σ

((
a b
0 a

))
=(

a −b
0 a

)
. Clearly, σ in an automorphism of R.

(1) RR is σ-skew McCoy, by [5, Theorem 9]. In fact, R is commutative,
σ-reversible and σ is an automorphism of R (see [4, Example 2.7(i)]).
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(2) RR is not σ-skew Armendariz, by [11, Example 7]. Indeed, for

p =

(
2 0
0 2

)
+

(
2 1
0 2

)
x ∈ R[x;σ], we have p2 = 0. However(

2 1
0 2

)
σ

((
2 0
0 2

))
6= 0

Corollary 2.8. If MR is a reduced (σ, δ)-compatible module, then it is
(σ, δ)-skew McCoy.

Proof. Clearly from [1, Theorem 2.19] and Proposition 2.6. �

A module (σ, δ)-skew McCoy need not to be McCoy by [9, Example
2.3(2)]. The next example shows that, there exists a module which is
McCoy but not (σ, δ)-skew McCoy for some quasi-derivation (σ, δ).

Example 2.9. Let Z2 be the ring of integers modulo 2, and con-
sider the ring R = Z2 ⊕ Z2 with the usual addition and multiplica-
tion. Let σ be an endomorphism of R defined by σ((a, b)) = (b, a)
and δ an σ-derivation of R defined by δ((a, b)) = (a, b) − σ((a, b)).
Then R is a commutative reduced ring, and so it is McCoy. However,
for p(x) = (1, 0)x and q(x) = (1, 1) + (1, 0)x ∈ R[x;σ, δ]. We have
p(x)q(x) = 0, but p(x)(a, b) 6= 0 for any 0 6= (a, b) ∈ R. Therefore,
R is not (σ, δ)-skew McCoy. Note that, R is not (σ, δ)-compatible,
because (0, 1)(1, 0) = (0, 0), but (0, 1)σ((1, 0)) = (0, 1)2 6= (0, 0) and
(0, 1)δ((1, 0)) = (0, 1)(1, 1) = (0, 1) 6= (0, 0).

With the help of Examples 2.9 and 2.10, we see that “(σ, δ)-
compatibility” and “reducibility” of MR in Corollary 2.8 are not su-
perfluous.

Example 2.10. Let Z2 be the ring of integers modulo 2. Consider the

ring R =

(
Z2 Z2

0 Z2

)
and the endomorphism σ : R→ R defined by

σ

((
a b
0 c

))
=

(
a −b
0 c

)
.

(1) R is σ-compatible. Indeed, let A =

(
a b
0 c

)
, B =

(
a′ b′

0 c′

)
∈

R. Then

AB = 0⇔

 aa′ = 0
bb′ = 0

ab′ + bc′ = 0
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⇔

 aa′ = 0
bb′ = 0

a(−b′) + bc′ = 0
(because b′ = −b′ ∀b′ ∈ Z2)

⇔ Aσ(B) = 0 .

(2) R is not reduced, because

(
0 1
0 0

)2

= 0 and

(
0 1
0 0

)
6= 0.

(3) R is not σ-skew McCoy. To see this, simply observe that for m =(
1 0
0 0

)
+

(
1 1
0 0

)
x, f =

(
0 0
0 1

)
+

(
0 1
0 1

)
x ∈ R[x;σ], we

have mf = 0. But mr 6= 0 for any nonzero r ∈ R.

Corollary 2.11. σ-reduced modules are σ-skew McCoy.

Proof. Clearly from the fact that σ-reduced modules are σ-compatible
and reduced. �

From Example 2.12, we see that the converse of Corollary 2.11 need
not be true.

Example 2.12. Consider a ring of polynomials over Z2, R = Z2[x]. Let
σ : R → R be an endomorphism defined by σ(f(x)) = f(0). Then, R
is σ-skew McCoy, because it is σ-skew Armendariz by [11, Example 5].
Moreover, R is not σ-compatible. In fact, let f = 1 +x, g = x ∈ R, we
have fg = (1 + x)x 6= 0, however fσ(g) = (1 + x)σ(x) = 0.

Definition 2.13. Let MR be a module and σ an endomorphism of R.
We say that MR satisfies the condition (Cσ) if whenever mσ(a) = 0
with m ∈M and a ∈ R, then ma = 0.

Lemma 2.14. If M [x;σ, δ]R[x;σ,δ] is semicommutative with the condi-
tion (Cσ), then MR is (σ, δ)-compatible.

Proof. Let m ∈ M and a ∈ R. It suffices to verify that ma = 0
implies mσ(a) = 0 and mδ(a) = 0. Indeed, if ma = 0 then mxa =
mσ(a)x+mδ(a) = 0, which gives mσ(a) = 0 and mδ(a) = 0. �

Lemma 2.15. Let MR be an (σ, δ)-compatible module, if ma2 = 0
implies ma = 0 for any m ∈M and a ∈ R. Then

(1) mσ(a)a = 0 implies ma = mσ(a) = 0.
(2) maσ(a) = 0 implies ma = mσ(a) = 0.

Proof. The proof is straightforward. �

Proposition 2.16. Let MR be a reduced (σ, δ)-compatible module. For
m(x) =

∑p
i=0mix

i ∈ M [x;σ, δ] and f(x) =
∑q

j=0 ajx
j ∈ R[x;σ, δ]. If

m(x)f(x) = 0, then miaj = 0 for all i and j.
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Proof. We will use freely the fact that, if ma = 0 then mσi(a) =
mδj(a) = mf ji (a) = 0 for any nonnegative integers i, j with j ≥ i.
From m(x)f(x) = 0, we have the following system of equations:

(0) mpσ
p(aq) = 0,

(1) mpσ
p(aq−1) +mp−1σ

p−1(aq) +mpf
p
p−1(aq) = 0,

(2)
mpσ

p(aq−2)+mp−1σ
p−1(aq−1)+mpf

p
p−1(aq−1)+mp−2σ

p−2(aq)+mp−1f
p−1
p−2 (aq)

+mpf
p
p−2(aq) = 0,

(3) mpσ
p(aq−3) +mp−1σ

p−1(aq−2) +mpf
p
p−1(aq−2) +mp−2σ

p−2(aq−1)

+mp−1f
p−1
p−2 (aq−1) +mpf

p
p−2(aq−1) +mp−3σ

p−3(aq) +mp−2f
p−2
p−3 (aq)

+mp−1f
p−1
p−3 (aq) +mpf

p
p−3(aq) = 0,

...

(`)
∑
j+k=`

p∑
i=0

q∑
k=0

(mi

i∑
j=0

f ij(ak)) = 0,

...

(p+ q)

p∑
i=0

miδ
i(a0) = 0.

From equation (0), we have mpaq = 0 by σ-compatibility. Multiplying
equation (1) on the right side by aq, we get

(1′) mpσ
p(aq−1)aq +mp−1σ

p−1(aq)aq +mpf
p
p−1(aq)aq = 0,

Since MR is semicommutative, we have

mpaq = 0⇒ mpσ
p(aq−1)aq = mpf

p
p−1(aq)aq = 0.

By Lemma 2.15, equation (1′) gives mp−1aq = 0. Also, by (σ, δ)-
compatibility, equation (1) implies mpσ

p(aq−1) = 0, because mpaq =
mp−1aq = 0. Thus mpaq−1 = 0.

Summarizing at this point, we have

(α) mpaq = mp−1aq = mpaq−1 = 0

Now, multiplying equation (2) on the right side by aq, we get
(2′)
mpσ

p(aq−2)aq +mp−1σ
p−1(aq−1)aq +mpf

p
p−1(aq−1)aq +mp−2σ

p−2(aq)aq

+mp−1f
p−1
p−2 (aq)aq +mpf

p
p−2(aq)aq = 0,
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With the same manner as above, equation (2′) gives mp−2σ
p−2(aq)aq =

0 and thus mp−2aq = 0 (β). Also, multiplying equation (2) on the right
side by aq−1, we get

(2′′) mpσ
p(aq−2)aq−1 +mp−1σ

p−1(aq−1)aq−1 +mpf
p
p−1(aq−1)aq−1

+mp−2σ
p−2(aq)aq−1 +mp−1f

p−1
p−2 (aq)aq−1 +mpf

p
p−2(aq)aq−1 = 0

Equations (α) and (β) implies

0 = mpσ
p(aq−2)aq−1 = mpf

p
p−1(aq−1)aq−1 = mp−2σ

p−2(aq)aq−1

= mp−1f
p−1
p−2 (aq)aq−1 = mpf

p
p−2(aq)aq−1

Hence, equation (2′′) gives mp−1σ
p−1(aq−1)aq−1 = 0 and by Lemma

2.15, we get mp−1aq−1 = 0 (γ). Now, from (α), (β) and (γ), we get

mp−1σ
p−1(aq−1) = mpf

p
p−1(aq−1) = mp−2σ

p−2(aq) = mp−1f
p−1
p−2 (aq) =

mpf
p
p−2(aq) = 0. Hence, equation (2) implies mpσ

p(aq−2) = 0, so that
mpaq−2 = 0. Summarizing at this point, we have miaj = 0 with i+ j ∈
{p+ q, p+ q − 1, p+ q − 2}.

Continuing this procedure yields miaj = 0 for all i, j. �

Corollary 2.17 ([1, Theorem 2.19]). If MR is a reduced (σ, δ)-compatible
module, then it is (σ, δ)-skew Armendariz.

Proof. Clearly from Proposition 2.16. �

Remark 2.18. Note that, Corollary 2.8 can be obtained as a corollary
of Proposition 2.16. Indeed, for m(x) =

∑p
i=0mix

i ∈ M [x;σ, δ] and
f(x) =

∑q
j=0 ajx

j ∈ R[x;σ, δ] \ {0} such that m(x)f(x) = 0, from

Proposition 2.16 and [3, Lemma 2.1], we have m(x)aj = 0 for all j.
Since f(x) 6= 0, there exists j0 ∈ {0, 1, · · · , q} such that aj0 6= 0, and
hence MR is (σ, δ)-skew McCoy.

Let MR be a module and (σ, δ) a quasi derivation of R. We say
that MR satisfies the condition (∗), if for any m(x) ∈ M [x;σ, δ] and
f(x) ∈ R[x;σ, δ], m(x)f(x) = 0 implies m(x)Rf(x) = 0. If M [x;σ, δ] is
semicommutative as a right R[x;σ, δ]-module, then we have the prop-
erty (∗). A module MR which satisfies the condition (∗) is semicom-
mutative. But the converse need not be true, by the next example.

Example 2.19. Take the ring R = Z2⊕Z2, with (σ, δ) as considered in
Example 2.9. Since R is commutative, the module RR is semicommuta-
tive. However, it does not satisfy the condition (∗). For p(x) = (1, 0)x
and q(x) = (1, 1) + (1, 0)x ∈ R[x;σ, δ]. We have p(x)q(x) = 0, but
p(x)(1, 0)q(x) = (1, 0) + (1, 0)x 6= 0. Thus p(x)Rq(x) 6= 0.



32 LOUZARI AND BEN YAKOUB

Proposition 2.20. Let MR be an (σ, δ)-compatible module which sat-
isfies (∗). If for any m(x) =

∑p
i=0mix

i ∈ M [x;σ, δ] and f(x) =∑q
j=0 ajx

j ∈ R[x;σ, δ] \ {0}, m(x)f(x) = 0. Then mia
p+1
q = 0 for all

i = 0, 1, · · · , p.

Proof. Let m(x) =
∑p

i=0mix
i ∈ M [x;σ, δ] and f(x) =

∑q
j=0 ajx

j ∈
R[x;σ, δ]\{0}, such that m(x)f(x) = 0. We can suppose aq 6= 0. From
m(x)f(x) = 0, we get mpσ

p(aq) = 0. Since MR is (σ, δ)-compatible, we
have mpaq = 0 which implies mpx

paq = 0. Since m(x)f(x) = 0 implies
m(x)aqf(x) = 0. We have

0 = (mpx
p+mp−1x

p−1+· · ·+m1x+m0)(a
2
qx
q+aqaq−1x

q−1+· · ·+aqa1x+aqa0)

= (mp−1x
p−1 + · · ·+m1x+m0)(a

2
qx
q + aqaq−1x

q−1 + · · ·+ aqa1x+ aqa0).

If we put f ′(x) = aqf(x) and m′(x) =
∑p−1

i=0 mix
i, then we get mp−1a

2
q =

0. Continuing this procedure yields mia
p+1−i
q = 0 for all i = 0, 1, · · · , p.

Consequently mia
p+1
q = 0 for all i = 0, 1, · · · , p. �

Corollary 2.21. Let R be a reduced ring. Then

(1) If MR is (σ, δ)-compatible satisfying (∗), then MR is (σ, δ)-skew
McCoy.

(2) If M [x;σ, δ]R[x;σ,δ] is semicommutative satisfying (Cσ), then MR

is (σ, δ)-skew McCoy.

Proof. (1) Let m(x) =
∑p

i=0mix
i ∈M [x;σ, δ] and f(x) =

∑q
j=0 ajx

j ∈
R[x;σ, δ] \ {0}, such that m(x)f(x) = 0. We can suppose aq 6= 0. By
Proposition 2.20, we have mia

p+1
q = 0 for all i = 0, 1, · · · , p. Since

MR is (σ, δ)-compatible, we get mix
iap+1
q = mi

∑i
`=0 f

i
`(a

p+1
q )x` = 0

for all i. Hence m(x)ap+1
q = 0 where ap+1

q 6= 0, because R is reduced.
Consequently MR is (σ, δ)-skew McCoy.
(2) Obvious from (1) and Lemma 2.14. �

3. (σ, δ)-skew McCoyness of some matrix extensions

This section is devoted to presenting many results on (σ, δ)-skew Mc-
Coyness of some matrix extensions. At first, we define skew triangular
matrix modules Vn(M,σ), based on the definition of skew triangular
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matrix rings Vn(R, σ) given by Isfahani [19]. Let σ be an endomor-
phism of a ring R and MR a right R-module. For n ≥ 2. Consider

Vn(R, σ) :=





a0 a1 a2 a3 . . . an−1
0 a0 a1 a2 . . . an−2
0 0 a0 a1 . . . an−3
...

...
...

...
. . .

...
0 0 0 0 . . . a1
0 0 0 0 . . . a0

 | a0, a2, · · · , an−1 ∈ R


and

Vn(M,σ) :=





m0 m1 m2 m3 . . . mn−1
0 m0 m1 m2 . . . mn−2
0 0 m0 m1 . . . mn−3
...

...
...

...
. . .

...
0 0 0 0 . . . m1

0 0 0 0 . . . m0


| m0,m2, · · · ,mn−1 ∈M


Clearly Vn(M,σ) is a right Vn(R, σ)-module under the usual matrix ad-

dition operation and the following scalar product operation.

m0 m1 m2 m3 . . . mn−1
0 m0 m1 m2 . . . mn−2
0 0 m0 m1 . . . mn−3
...

...
...

...
. . .

...
0 0 0 0 . . . m1

0 0 0 0 . . . m0





a0 a1 a2 a3 . . . an−1
0 a0 a1 a2 . . . an−2
0 0 a0 a1 . . . an−3
...

...
...

...
. . .

...
0 0 0 0 . . . a1
0 0 0 0 . . . a0


=



c0 c1 c2 c3 . . . cn−1
0 c0 c1 c2 . . . cn−2
0 0 c0 c1 . . . cn−3
...

...
...

...
. . .

...
0 0 0 0 . . . c1
0 0 0 0 . . . c0


, where

ci = m0σ
0(ai) + m1σ

1(ai−1) + m2σ
2(ai−2) + · · · + miσ

i(a0) for each 0 ≤
i ≤ n− 1.

We denote elements of Vn(R, σ) by (a0, a1, · · · , an−1), and elements of
Vn(M,σ) by (m0,m1, · · · ,mn−1). There is a ring isomorphism

ϕ : R[x;σ]/(xn)→ Vn(R, σ)

given by ϕ(a0 +a1x+a2x
2 + · · ·+an−1x

n−1 + (xn)) = (a0, a1, a2, · · · , an−1),
and an abelian group isomorphism

φ : M [x, σ]/M [x, σ](xn)→ Vn(M,σ)
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given by φ(m0 + m1x + m2x
2 + · · · + mn−1x

n−1 + (xn)) = (m0,m1,m2,
· · · ,mn−1) such that φ(N(x)A(x)) = φ(N(x))ϕ(A(x)) for anyN(x) = m0 +
m1x + m2x

2 + · · · + mn−1x
n−1 + (xn) ∈ M [x, σ]/M [x, σ](xn) and A(x) =

a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1 + (xn) ∈ R[x;σ]/(xn). The endomorphism
σ of R can be extended to Vn(R, σ) and R[x;σ], and we will denote it in
both cases by σ.

Theorem 3.1. A module MR is σ-skew McCoy if and only if Vn(M,σ) is
σ-skew McCoy as an Vn(R, σ)-module for any nonnegative integer n ≥ 2.

Proof. Note that

Vn(R, σ)[x, σ] ∼= Vn(R[x, σ], σ) and Vn(M,σ)[x, σ] ∼= Vn(M [x, σ], σ)

. We only prove when n = 2, because other cases can be proved with the
same manner. SupposeMR is σ-skew McCoy. Let 0 6= m(x) ∈ V2(M,σ)[x, σ]
and 0 6= f(x) ∈ V2(R, σ)[x, σ] such that m(x)f(x) = 0, where

m(x) =

p∑
i=0

(
m

(i)
11 m

(i)
12

0 m
(i)
11

)
xi =

( ∑p
i=0m

(i)
11x

i
∑p

i=0m
(i)
12x

i

0
∑p

i=0m
(i)
11x

i

)
=

(
α11 α12

0 α11

)

f(x) =

q∑
j=0

(
a
(j)
11 a

(j)
12

0 a
(j)
11

)
xj =

( ∑q
j=0 a

(j)
11 x

j
∑q

j=0 a
(j)
12 x

j

0
∑q

j=0 a
(j)
11 x

j

)
=

(
β11 β12
0 β11

)
Then

(
α11 α12

0 α11

)(
β11 β12
0 β11

)
= 0, which gives α11β11 = 0 and α11β12+

α12σ(β11) = 0 in M [x;σ]. If α11 6= 0, then there exists 0 6= β ∈ {β11, β12}
such that α11β = 0. Since MR is σ-skew McCoy, there exists 0 6= c ∈ R

which satisfies α11c = 0, thus

(
α11 α12

0 α11

)(
0 c
0 0

)
=

(
0 α11c
0 0

)
= 0.

If α11 = 0 then

(
0 α12

0 0

)(
0 c
0 0

)
= 0, for any 0 6= c ∈ R. Therefore,

V2(M,σ) is σ-skew McCoy.
Conversely, suppose V2(M,σ) is a σ-skew McCoy module. Let 0 6= m(x) =

m0 + m1x + · · · + mpx
p ∈ M [x;σ] and 0 6= f(x) = a0 + a1x + · · · + aqx

q ∈
R[x;σ], such that m(x)f(x) = 0. Then(

m(x) 0
0 m(x)

)(
f(x) 0

0 f(x)

)
=

(
m(x)f(x) 0

0 m(x)f(x)

)
= 0.
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So there exists 0 6=
(
a b
0 a

)
∈ V2(R, σ) such that(

m(x) 0
0 m(x)

)(
a b
0 a

)
= 0

because V2(M,σ) is σ-skew McCoy. Thus m(x)a = m(x)b = 0, where a 6= 0
or b 6= 0. Therefore, MR is σ-skew McCoy. �

Corollary 3.2. For a nonnegative integer n ≥ 2, we have:

(1) MR is σ-skew McCoy if and only if M [x;σ]/M [x;σ](xn) is σ-skew
McCoy.

(2) R is σ-skew McCoy if and only if R[x;σ]/(xn) is σ-skew McCoy.
(3) MR is McCoy if and only if M [x]/M [x](xn) is McCoy.
(4) R is McCoy if and only if R[x]/(xn) is McCoy.

For a nonnegative integer n ≥ 2, let R be a ring and M a right R-module.
Consider

Sn(R) :=




a a12 a13 . . . a1n
0 a a23 . . . a2n
0 0 a . . . a3n
...

...
...

. . .
...

0 0 0 . . . a

 | a, aij ∈ R


and

Sn(M) :=




m m12 m13 . . . m1n

0 m m23 . . . m2n

0 0 m . . . m3n
...

...
...

. . .
...

0 0 0 . . . m

 | m,mij ∈M


Clearly, Sn(M) is a right Sn(R)-module under the usual matrix addi-

tion operation and the following scalar product operation. For U = (uij) ∈
Sn(M) andA = (aij) ∈ Sn(R), UA = (mij) ∈ Sn(M) withmij =

∑n
k=1 uikakj

for all i, j. A quasi derivation (σ, δ) of R can be extended to a quasi deriva-
tion (σ, δ) of Sn(R) as follows: σ((aij)) = (σ(aij)) and δ((aij)) = (δ(aij)).

We can easily verify that δ is a σ-derivation of Sn(R).

Theorem 3.3. A module MR is (σ, δ)-skew McCoy if and only if Sn(M) is
(σ, δ)-skew McCoy as an Sn(R)-module for any nonnegative integer n ≥ 2.

Proof. The proof is similar to [5, Theorem 14]. �

Now, for n ≥ 2. Consider
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Vn(R) :=





a0 a1 a2 a3 . . . an−1
0 a0 a1 a2 . . . an−2
0 0 a0 a1 . . . an−3
...

...
...

...
. . .

...
0 0 0 0 . . . a1
0 0 0 0 . . . a0


| a0, a1, a2, · · · , an−1 ∈ R


and

Vn(M) :=





m0 m1 m2 m3 . . . mn−1
0 m0 m1 m2 . . . mn−2
0 0 m0 m1 . . . mn−3
...

...
...

...
. . .

...
0 0 0 0 . . . m1

0 0 0 0 . . . m0


| m0,m1,m2, · · · ,mn−1 ∈M


With the same method as above, Vn(M) is a right Vn(R)-module, and a

quasi derivation (σ, δ) of R can be extended to a quasi derivation (σ, δ) of
Vn(R). Note that Vn(M) ∼= M [x]/M [x](xn) where M [x](xn) is a submodule
of M [x] generated by xn and Vn(R) ∼= R[x]/(xn) where (xn) is an ideal of
R[x] generated by xn.

Proposition 3.4. A module MR is (σ, δ)-skew McCoy if and only if Vn(M)
is (σ, δ)-skew McCoy as an Vn(R)-module for any nonnegative integer n ≥ 2.

Proof. The proof is similar to that of [5, Theorem 14] or [9, Proposition
2.27]. �

Corollary 3.5. For a nonnegative integer n ≥ 2, we have:

(1) MR is (σ, δ)-skew McCoy if and only ifM [x]/M [x](xn) is (σ, δ)-skew
McCoy.

(2) R is (σ, δ)-skew McCoy if and only if R[x]/(xn) is (σ, δ)-skew Mc-
Coy.

(3) R is McCoy if and only if R[x]/(xn) is McCoy.
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