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Abstract. We successively apply the rational Haar wavelet to solve the nonlinear Volterra
integro-differential equations and nonlinear Fredholm integro-differential equations. Using the
Banach fixed point theorem for these equations, we prove the convergence. In this method, no
numerical integration is used. Numerical results are presented to show the effectiveness of this
method.
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1 Preliminaries

The integro-differential equations (IDE) have been applied in science, economics, and engineer-
ing, such as electromagnetic theory, involving fluid waves, competition between tumor cells,
and the immune system; see [3]. Many problems in different fields of science and engineer-
ing can be modeled by IDE and nonlinear integro-differential equations (NIDE), such as epi-
demic models, biological models, physical phenomena, and chemical kinetics. Several numerical
methods have been used for approximating the solution of IDE or NIDE such as rationalized
Haar functions [8,11], Galerkin methods [4], Wavelet–Galerkin and cubic B-spline finite element
method [12], periodic quasi-wavelets [13], differential transform method [1], spline approxima-
tion method, Adomian decomposition method [2], spectral collocation method [14], homotopy
perturbation method, variational iterations, interpolation or extrapolation, Laplace transform,
and other methods [5, 8, 15].
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2 Introduction

In the general form, a nonlinear Volterra integro-differential equation (NVIDE) of the second
kind is defined as

ω′(t) + βR1(t, ω(t)) = µ(t) + α

∫ t

0
R2(t, s, ω(s))ds, (1)

and the nonlinear Fredholm integro-differential equation (NFIDE) of the second kind is defined
as

ω′(t) + βR1(t, ω(t)) = µ(t) + α

∫ 1

0
R2(t, s, ω(s))ds, (2)

where

α, β ∈ R, R1(t, ω(t)) ∈ C([0, 1]× R,R), R2(s, t, ω(s)) ∈ C([0, 1]2 × R,R).

in which µ(t) : [0, 1] −→ R is a continuous function.
Also, R1 and R2 are continuous and Lipschitzian functions as

|R1(t, ω1(t))−R1(t, ω2(t))| ≤ q1|ω1(t)− ω2(t)|, ω1 ∈ C([0, 1],R),

|R2(t, s, ω1(t))−R2(t, s, ω2(t))| ≤ q2|ω1(t)− ω2(t)|, ω2 ∈ C([0, 1],R), (3)

in which q1 and q2 are Lipschitz constants. By integrating from (1) and (2) from zero to t, we
have

ω(t) + β

∫ t

0
R1(x, ω(x))dx = ω(0) +

∫ t

0
µ(x)dx+ α

∫ t

0

∫ x

0
R2(x, s, ω(s))dsdx (4)

and

ω(t) + β

∫ t

0
R1(x, ω(x))dx = ω(0) +

∫ t

0
µ(x)dx+ α

∫ t

0

∫ 1

0
R2(x, s, ω(s))dsdx. (5)

3 Numerical approximation

The base of our work is the use of the rational Haar wavelet for approaching the NVIDE
and NFIDE. In fact, the wavelet and its theory have a new powerful area in mathematical
researches, science, and engineering; see [18]. The main character of this method is the elements
of solving the system of algebraic equations; see [7, 8]. Haar wavelets are used to solve science
and engineering problems [6], such as Painleve equations [10], Darboux problem [9], Emden–
Fowler equations [16], and consolidation equation [17]. The RH wavelet has a function defined
as follows.

Definition 1. The RH wavelet has a function defined by

hr(x) = RH(2rx− s), s = 0, 1, . . . , 2l−1, r = 2l + s,

such that

RH(x) =


1, 0 ≤ x < 1

2 ,

−1, 1
2 ≤ x < 1,

0, otherwise.

(6)
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Definition 2 (see [18]). The function w(t) ∈ C([0, 1]) can be written as a series expansion by
the RH function as

w(t) =
m−1∑
i=0

aihi(t), m = 2i+1, i = 0, 1, . . . , (7)

and for i = 2j + k with 0 ≤ k ≤ 2j and j = 0, 1, . . . , n, we have

ai = 2j
∫ 1

0
w(t)hi(t)dx = 2j〈w, hi〉. (8)

For each x, s ∈ [0, 1] and m ∈ N with m = 2i+1 and i = 1, 2, . . . , we recursively define

ωi(t) + β

∫ t

0
R1(x, ωi−1(x))dx = ωi(0) +

∫ t

0
µ(x)dx+ α

∫ t

0

∫ x

0
R2(x, s, ωi−1(s))dsdx (9)

and

ωi(t) + β

∫ t

0
R1(x, ωi−1(x))dx = ωi(0) +

∫ t

0
µ(x)dx+ α

∫ t

0

∫ 1

0
R2(x, s, ωi−1(s))dsdx. (10)

We assume

ψi−1(x) = R1(x, ωi−1(x)) =
∞∑
l=1

alhl(x),

ϕi−1(x, s) = R2(x, s, ωi−1(s)) =
∞∑
l=1

∞∑
q=1

blqhl(x)hq(s). (11)

Let Qm have an orthogonal projection. Then

Qm(ψ)(x) =
m−1∑
l=1

alhl(x), Qm(ϕ)(x, s) =

m−1∑
l=1

m−1∑
q=1

blqhl(x)hq(s),

where al is calculated from (8) and blq = 〈hl(x), 〈ϕ(x, s), hq(s)〉〉. Thus for NVIDE, we have

Ωi(t) = Ωi(0) +

∫ t

0
µ(x)dx (12)

− β
∫ t

0
Qm(ψi−1(x))dx+ α

∫ t

0

∫ s

0
Qm(ϕi−1(x, s))dsdx, i = 1, 2, . . . ,

and for NFIDE, we have

Ωi(t) = Ωi(0) +

∫ t

0
µ(x)dx (13)

− β
∫ t

0
Qm(ψi−1(x))dx+ α

∫ t

0

∫ 1

0
Qm(ϕi−1(x, s))dsdx, i = 1, 2, . . . .
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4 Error analysis

The purpose of this section is to discuss the convergence and to calculate the rate of convergence
of the method. To do so, we use the Banach fixed point theorem. Thus, we need to introduce
the nonlinear integral operator T in the Banach space as follows

T : (C([0, 1]), ‖ · ‖∞) −→ (C([0, 1]), ‖ · ‖∞).

The mapping T for NVIDE and NFIDE are respectively defined as

Tω(t) = ω(0)− β
∫ t

0
R1(x, ω(x))dx+

∫ t

0
µ(x)dx+ α

∫ t

0

∫ x

0
R2(x, s, ω(s))dsdx (14)

and

Tω(t) = ω(0)− β
∫ t

0
R1(x, ω(x))dx+

∫ t

0
µ(x)dx+ α

∫ t

0

∫ 1

0
R2(x, s, ω(s))dsdx. (15)

Similar to (9), (10), and (11), in the ith iteration we have

Tωi(t) = ωi(0)− β
∫ t

0
ψi−1(x)dx+

∫ t

0
µ(x)dx+ α

∫ t

0

∫ x

0
ϕi−1(x, s)dsdx (16)

and

Tωi(t) = ωi(0)− β
∫ t

0
ψi−1(x)dx+

∫ t

0
µ(x)dx+ α

∫ t

0

∫ 1

0
ϕi−1(x, s)dsdx. (17)

Let us start with an NVIDE case; for NFIDE, it is proved similarly.

Lemma 1. Let R1(t, ω(t)) and R2(t, s, ω(s)) be defined in (2). If

q = max{|β|q1, |α|q2} <
1

2
, (18)

and ω is a fixed point of T , then, for all ω0 ∈ C([0, 1],R), we have

‖ω − T i(ω0)‖∞ ≤ ‖T (ω0)− Ω0‖∞
∞∑
j=i

qj . (19)

Also, T in (14) has a unique fixed point.
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Proof. Applying (14) gives∣∣∣Tω1(t)− Tω2(t)
∣∣∣ =

∣∣∣α ∫ t

0

∫ x

0
(R2(x, s, ω1(s))−R2(x, s, ω2(s)))dsdx

− β
∫ t

0
(R1(x, ω1(x))−R1(x, ω2(x)))dx

∣∣∣
≤ |α|

∫ t

0

∫ x

0

∣∣∣R2(x, s, ω1(s))−R2(x, s, ω2(s))
∣∣∣dsdx

+ |β|
∫ t

0

∣∣∣R1(x, ω1(x))−R1(x, ω2(x))
∣∣∣dx

≤ |α|
∫ t

0

∫ x

0
q2|ω1(s)− ω2(s)|dsdx+ |β|

∫ t

0
q1|ω1(x)− ω2(x)|dx

≤ (|α|q2 + |β|q1)‖ω1 − ω2‖∞.

Thus ∣∣∣Tω1(t)− Tω2(t)
∣∣∣ ≤ (|α|q2 + |β|q1)‖ω1 − ω2‖∞, (20)

Using (18) and (20), we have∣∣∣Tω1(t)− Tω2(t)
∣∣∣ ≤ (2q)‖ω1 − ω2‖∞. (21)

By induction on i ∈ N, we get ‖T iω1 − T iω2‖∞ ≤ (2q)i‖ω1 − ω2‖∞. Since q < 1/2, thus T is a
contraction mapping and

∞∑
i=1

‖T iω1 − T iω2‖∞ <∞.

Consequently, (14) has a unique solution.

Theorem 1. Assume that ψi−1 ∈ C([0, 1]), that ϕi−1 ∈ C([0, 1]2), and that {ωi}i≥1 is a subset
of C([0, 1]). Then

‖ω − Ωi‖∞ ≤ ‖T (ω0)− ω0‖∞
∞∑
j=i

qj +

i∑
j=1

qi−jεj , (22)

Proof. From (12) and (16) we have∥∥∥T (ωi)− Ωi

∥∥∥
∞
≤ |β|

∥∥∥∫ t

0
ψi−1(x)−Qm(ψi−1)(x)dx

∥∥∥
∞

(23)

+ |α|
∥∥∥∫ t

0

∫ x

0
ϕi−1(x, s)−Qm(ϕi−1)(x, s)dxds

∥∥∥
∞

≤ |β|‖ψi−1 −Qm(ψi−1)‖∞ + |α|‖ϕi−1 −Qm(ϕi−1)‖∞.

Set
f(t, s) := ϕi−1 −Qm(ϕi−1). (24)
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For variables tl and sj with l, j ≤ m− 1, by using the interpolating property, we have

t0 = 0, tl =
1

2n1+1
+

v1
2n1

, l = 2n1 + v1, n1 ≥ 1,

s0 = 0, sj =
1

2n2+1
+

v2
2n2

, j = 2n2 + v2, n2 ≥ 1.

From (24) and applying the mean-value theorem, we get

‖ϕi−1 −Qm(ϕi−1)‖∞

=

∥∥∥∥f(tl, sj) +
∂f

∂t
(ξ, γ)(ξ − tl) +

∂f

∂s
(ξ, γ)(γ − sj)

∥∥∥∥
∞

=

∥∥∥∥(I −Qm)
∂ϕi−1
∂t

(ξ, γ) + (I −Qm)
∂ϕi−1
∂s

(ξ, γ)

∥∥∥∥
∞

max{‖ξ − tl‖∞, ‖γ − sj‖∞}

≤ 2

2i
‖(I −Qm)‖∞

∥∥∥∥∂ϕi−1
∂t

(ξ, γ) +
∂ϕi−1
∂s

(ξ, γ)

∥∥∥∥
∞
. (25)

We assume

Li−1 = max{‖∂ψi−1
∂t
‖∞, ‖

∂ϕi−1
∂t
‖∞, ‖

∂ϕi−1
∂s
‖∞}, i = 1, 2, . . . . (26)

Then in (25) by setting (26), we have

‖ϕi−1 −Qm(ϕi−1)‖∞ ≤
4Li−1

2i
.

Setting f(t) := ψi−1 −Qm(ψi−1), for ψi−1, we deduce

‖ψi−1 −Qm(ψi−1)‖∞ =

∥∥∥∥f(tl) +
∂f

∂t
(ξ, γ)(ξ − tl)

∥∥∥∥
∞

=

∥∥∥∥(I −Qm)
∂ψi−1
∂t

(ξ, γ)

∥∥∥∥
∞
‖ξ − tl‖∞

≤ 2

2i
‖(I −Qm)‖∞

∥∥∥∥∂ψi−1
∂t

(ξ, γ)

∥∥∥∥
∞
≤ 2Li−1

2i
.

Therefore, in inequality (23), we have

‖T (ωi−1)− Ωi‖∞ ≤ |β|
2Li−1

2i
+ |α|4Li−1

2i
≤ (|β|+ |α|)4Li−1

2i
.

We choose εk > 0 for k = 1, . . . , i as

(|β|+ |α|)4Lk−1
2k

< εk, k = 1, 2, . . . , i,

then

‖T (ωi−1)− Ωi‖∞ < εi. (27)
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Applying the triangle inequality, we achieve

‖ω − Ωi‖∞ ≤ ‖ω − T i(ω0)‖∞ +
i∑

j=1

qj‖T (ωj−1)− ωj‖∞.

Finally, based on (19) in Lemma 1 and (27), we conclude that

‖ω − Ωi‖∞ ≤ ‖T (ω0)− Ω0‖∞
∞∑
j=i

qj +
i∑

j=1

qi−jεj . (28)

Using the geometric series
∞∑
j=i

qj = qi/(1− q), we set

q =
1

2
− 1

2l+1
<

1

2
, l ∈ N. (29)

By using (28) and (29), we have

‖ω − Ωi‖∞ ≤ ‖T (ω0)− Ω0‖∞
qi

1− q
+

i∑
j=1

(
1

2
− 1

2l+1
)i−j

4(|α|+ |β|)Lj−1
2j

. (30)

So the sequence Lj−1 is uniformly bounded for any j ∈ N. Therefore for every 1 ≤ j ≤ i, there
exists N <∞ such that |Lj−1| ≤ N . Thus from (30), we have

‖ω − Ωi‖∞ ≤ ‖T (ω0)− Ω0‖∞
qi

1− q
+

i∑
j=1

(
1

2
− 1

2l+1
)i−j

4(|α|+ |β|)N
2j

= ‖T (ω0)− Ω0‖∞
qi

1− q
+ 4N(|α|+ |β|)(1

2
− 1

2l+1
)i

i∑
j=1

(
1

2
− 1

2l+1
)−j

1

2j

= ‖T (ω0)− Ω0‖∞
qi

1− q
+ 4N(|α|+ |β|)qi

i∑
j=1

(1 +
1

2l − 1
)j . (31)

Since (1 + 1
2l−1) ≤ 2, for any l ∈ N, the inequality (31) implies

‖ω − Ωi‖∞ ≤ ‖T (ω0)− Ω0‖∞
qi

1− q
+ qi4N(|α|+ |β|)

i∑
j=1

2j

≤ ‖T (ω0)− Ω0‖∞
qi

1− q
+ 4N(|α|+ |β|)qii2i. (32)

Since q < 1
2 , if i → ∞, then the first summand of the right-hand side of (32) tends to zero, so

we have
‖ω − Ωi‖∞ ≤ 4N(|α|+ |β|)i(2q)i.

Thus the rate of convergence will be O(i(2q)i).
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5 Illustrative examples

In this section, we give some numerical examples. In our examples, we use the method discussed
in (12) and (13).

Example 1. Consider the NFIDE equation

ω′(x)− 1

68
x3 cos3(2x)ω(x) = µ(x) +

1

30

∫ 1

0
x5 sin2(t)t4ω(t)dt.

Then the exact solution is ω(x) = cos3(2x) − 1 + sin2(2x). In Table 1, the absolute error for
n = 2 and n = 3 is calculated. Moreover, their running times are 0.047 and 0.125 seconds,
respectively. We compare numerical solutions with the exact solutions in Figure 1. Evolutions
of absolute errors for n = 3 or m = 24 are shown in Figure 2.

Table 1: Absolute errors of Example 1.
xi m = 23 m = 24

0.1 1.24E−6 4.64E−7
0.2 1.21E−6 5.53E−7
0.3 1.21E−6 1.15E−6
0.4 1.81E−6 2.63E−6
0.5 3.29E−6 4.35E−6
0.6 5.01E−6 5.07E−6
0.7 5.72E−6 3.73E−6
0.8 4.37E−6 2.61E−6
0.9 1.98E−6 4.07E−6

CPU-Time (s) 0.047 0.125

Figure 1: The plot of exact and numerical solution for m = 24 in Example 1.

Example 2. Consider the NVIDE equation

ω′(x)− 1

45
x3 ln2(x+ 2)ω2(x) = µ(x) +

1

15

∫ x

0
xt ln2(t+ 1)ω3(t)dt.
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Figure 2: Absolute errors of Example 1.

Then the exact solution is ω(x) = 1
5x

3 + 1
7x

5. In Table 2, the absolute error for n = 3 and
n = 4 is calculated. Moreover, their running times are 0.078 and 1.046 seconds, respectively.
We compare numerical solutions with the exact solutions in Figure 3. The values of absolute
errors for n = 4 are shown in Figure 4.

Table 2: Absolute errors of Example 2.
xi m = 25 m = 24

0.1 2.00E−8 2.00E−8
0.2 0.000 3.57E−18
0.3 0.000 9.99E−9
0.4 3.00E−8 2.99E−8
0.5 2.40E−7 2.39E−7
0.6 7.60E−7 1.00E−6
0.7 6.60E−6 5.39E−6
0.8 5.35E−5 2.13E−5
0.9 6.92E−5 9.12E−5

CPU-Time (s) 1.046 0.078

Example 3. Consider the NVIDE equation

ω′(x)− 1

20
(2 + x2) sin2(x) sin3(ω(x)) = µ(x) +

1

40

∫ x

0
x2t2 sin2(t) sin2(ω(t))dt.

The exact solution is ω(x) = 1
8(x)2 − 1

6x
3. In Table 3, the absolute error for n = 2 and n = 3

is calculated. Moreover, their running times are 0.156 and 0.562 seconds, respectively. Also, in
Figure 5, we plot the comparison of the exact and approximate solutions. One can see in Figure
6 the absolute errors for n = 3.
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Figure 3: The plot of exact and numerical solutions for m = 25 in Example 2.

Figure 4: Absolute errors of Example 2.

Table 3: Absolute errors of Example 3.
xi m = 23 m = 24

0.1 2.2E−10 2.2E−10
0.2 1.37E−11 1.37E−11
0.3 1.43E−9 1.33E−9
0.4 4.82E−9 4.74E−9
0.5 1.05E−8 1.05E−8
0.6 1.09E−8 1.15E−8
0.7 1.41E−8 1.41E−8
0.8 3.69E−8 3.67E−8
0.9 4.14E−7 4.106E−7

CPU-Time (s) 0.156 0.562
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Figure 5: The plot of exact and numerical solutions for m = 24 in Example 3.

Figure 6: Absolute errors of Example 3.

6 Conclusion

In this paper, we presented a new method based on the RH wavelet basis for solving the NVIDE,
and NFIDE. In this method, we did not use numerical integrations, and the method dose not
require the solve of the algebraic systems. It means that by using a small number of basis func-
tions we obtain high accuracy. We proved the convergence and computed the rate of convergence
of method that is O(i(2q)i). Moreover, we used the successive method for approximations of (1)
and (2). Also, an advantage of this method is its easy implementing for a computer.
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