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Abstract. Two different methods based on radial basis functions (RBFs) for one-dimensional
Kawahara equation are presented. In the first one, we use MQ-RBF with predictor-corrector
scheme. Then the statistical tool LOOCV is implemented for selecting good value of shape
parameter. In the second one a different scheme is constructed for time and then the RBF-QR
method is implemented. In the both of two approaches, the Not-a-Knot method is used to im-
prove the accuracy at the boundaries. The purpose of this paper is to devot suitable strategies
to obtain more accurate and efficient solutions specially for arising fifth order time-dependent
nonlinear equations comparing with the results from the relevant papers.
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1 Introduction

Nonlinear partial differential equations play major role in various field of physics, applied math-
ematics, fluid mechanics, plasma physics, optical fibers, chemical physics, petroleum reservoir
and geochemistry [2]. So finding an efficient method for solving these nonlinear equations with
good accuracy would be important for researchers. A suitable numerical method for solving
partial differential equations (PDEs) should be easy to implement, high-order accurate, flexi-
ble with respect to geometry and be efficient in computations. The methods that are usually
imposed, fulfill one or two at those characteristics, but not all of them [21].

A new approach for solving PDEs is radial basis functions (RBFs). A radial basis function
depends only on the distance to a center point xcj , (j = 1, 2, . . . , N) and is defined as ψ(‖x−xcj‖).
An important property of a RBF method is that it doesn’t require a mesh grid. Also that RBFs
may have a shape parameter ε which play critical role in accurate solution.
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For the first time RBFs were used by Kansa in 1990 for solving PDEs [15,16]. In last decade
the development of the RBFs as truly meshless for approximating the solution of PDEs has
drawn the attention of many researchers in engineering and science [6, 25,29,31].

In this work, we use two different methods based on RBFs for the numerical solution of
Kawahara equation which was studied by Kawahara in 1972 in context of shallow water waves
[17]. The Kawahara equation also occurs in the theory of magneto-acoustics waves in plasma,
shallow water waves which surface tension and capillary gravity water waves [3, 30]. In recent
decades, some works have been doing in order to find the numerical solution and approximate
the analytical solution of this equation such as: Adomian decomposition method [18], tanh-
function method [33], sine-cosine method [34], homotopy perturbation method and variational
iteration method [14], Crank-Nicolson differential quadrature method [19], homotopy analysis
method [20], reduced differential transform method [1], Predictor-Corrector method [7], Dual-
Petrov Galekin method [32] and RBF collocation method [13,23].

In this paper we consider the numerical solution of Kawahara equation

ut + uux + u3x − u5x = 0, x ∈ Ω = [a, b], t ≥ 0. (1)

The initial and boundary conditions for implementing numerical solution of equation (1) are as
follows: 

u(x, 0) = u0(x), x ∈ Ω = [a, b],

u(a, t) = g1(t), u(b, t) = g2(t),

ux(a, t) = g3(t), ux(b, t) = g4(t), uxx(a, t) = g5(t).

(2)

The local and global existence and uniqueness of solution of equation (1) with (2) are proved
in [8, 26].

The outline of this paper is as follows. In Section 2 we begin with reviewing the radial
basis functions to approximate the solution of the equation. Section 3 is devoted to show the
implementation of the numerical methods for equation (1) with (2). Also an efficient strategy
for selecting good value for shape parameter are mentioned in this section. The numerical
illustrations including comparison between available exact solution and the numerical results
are given in Section 4. Some concluding remarks are given at the end.

2 Multiquadric radial basis function

Considering a spatial domain Ω and time interval [0, T ], we want to obtain a scalar function
u : Ω × [0, T ] → R, which satisfying the equation (1) with (2). The RBF approximation of a
function u(x, t) for Eq. (1) is given as:

u(x, t) =

N∑
j=1

λj(t)ψ(rj) + ϕ(x), x ∈ Ω, (3)

where rj = ‖x − xcj‖ is the Euclidian norm. Also λj(t), (j = 1, 2, . . . , N) are coefficients to
be determined. We can write the Eq. (3) without additional polynomial ϕ(x). We have this
condition when the radial basis function ψ(x) is unconditionally positive definite to force the
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interpolation matrix be solvable. Furthermore, ϕ(x) is always required if ψ(x) is defined as
conditionally positive definite. we have implemented the multiquadric radial basis function
(MQ):

ψ(r, ε) =
√

(1 + (εr)2). (4)

MQ-RBFs are especially attractive for researchers because they have exponential convergence
[22]. Due to these reasons, MQ-RBF will be used as radial basis function in Scheme 3.1 in
section 3.

3 The presented methods

3.1 Scheme 1: The MQ-RBFs based on a predictor-corrector scheme

Firstly, let us discretize the time derivative in equation (1) by using a θ-weighted scheme for
temporal approximation to obtain:

un+1 − un = ∆t · θ(un5x − un3x − (uux)n) + ∆t · (1− θ)(un+1
5x − u

n+1
3x − (uux)n+1), n ≥ 0, (5)

where un = u(x, tn), tn = n∆t, ∆t is the length of the time step, unx =
d

dx
u(x, tn) etc. If θ =

1

2
then the method coincides with the unconditionally stable Crank-Nicolson formula. Suppose
that there are N − 2 interpolation points in the domain Ω, so we can approximate un(x) by:

un(x) = u(x, tn) =

N−2∑
j=1

λnj ψ(rj) + ϕ(x). (6)

All the N − 2 unknown coefficients λj(t) (j = 1, 2, . . . , N − 2) are imposed to the first term of
(6), so we will have

un(x) =

N−2∑
j=1

λnj ψ(rj) + λnN−1(x) + λnN . (7)

To determine the unknown coefficients λ1, λ2, . . . , λN−1, λN , we can impose the collocation
method by using (7) at every data point xi, i = 1, 2, . . . , N − 2. Thus we obtain:

un(xi) =
N−2∑
j=1

λnj ψ(rij) + λnN−1xi + λnN , i = 1, 2, . . . , N − 2. (8)

where rij =
√

(xi − xcj)2. According to relation (8) the additional condition can be written as

N−2∑
j=1

λnj =
N−2∑
j=1

λnj xj = 0. (9)

In order to write Eq. (8) with (9) in terms of matrix form we have:

un = Aλn, (10)
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where un =
[
un1 un2 . . . unN−2 0 0

]T
, λn =

[
λn1 λn2 . . . λnN−1 λnN

]
are N × 1 vectors

A =
[
aij
]

is the N ×N matrix of the form

A =



ψ11 ψ12 · · · ψ(N−2) x1 1

ψ21 ψ22 · · · ψ(N−2) x2 1
...

...
...

...
ψ(N−2)1 ψ(N−2)2 · · · ψ(N−2)(N−2) xN−2 1

x1 x2 · · · xN−2 0 0
1 1 · · · 1 0 0


. (11)

Suppose that in our calculations we have d < N − 2 internal points, b = N − 2 − d boundary
points and two additional conditions (9). Thus we can split the matrix A into: A = Ad+Ae+Ab
for simplicity of computations. So applying (5) together with (10) we obtain:

Bλn+1 = Cλn −∆t · θ[ud(ud)x)n]−∆t · (1− θ)[ud(ud)x)n+1] +Gn+1, (12)

where

Ad = [aij , for 1 ≤ i ≤ d, 1 ≤ j ≤ N, and 0, elsewhere],

Ab = [aij , for d < i ≤ N − 2, 1 ≤ j ≤ N, and 0, elsewhere],

Ae = [aij , for N − 1 ≤ i ≤ N, 1 ≤ j ≤ N, and 0, elsewhere],

B = Ad + ∆t(1− θ)[(Ad)3x − (Ad)5x] +Ab +Ae,

C = Ad −∆tθ[(Ad)3x − (Ad)5x],

Gn+1 =
[
0 . . . 0 gn+1

d+1 . . . gn+1
N−2 0 0

]T
,

and und = Adλ
n. For defining the matrices B and C, we need to compute matrices Ad, (Ad)3x,

(Ad)5x [5, 6] defined as

(Ad)α(xi) =
∂α

∂xα
Ad(xi), α = 1, 3, 5, i = 1, 2, . . . , N.

For initial value problems the predictor-corrector methods are the application of multistep meth-
ods. For solving the nonlinear system (12), we use the following predictor-corrector scheme. As
we cannot find (uux)n+1 and then λn+1 explicitly, we use an iterative procedure for finding
λn+1 in the system of equations (12): P: Predict some value λn+1

(0) for λn+1, E: Evaluate the

system of equations for λn+1
(0) , C: Correct λn+1

(0) to obtain a new λn+1
(1) for λn+1. The sequence of

operations could be written in the form PECECE. . . . When n = 0 at the first time level t0, we
can determine vector u0 by using the initial condition and then vector λ0 can be determined by
the system (10).

For dealing with the nonlinearity at the other time steps, (for example, in time level n =
1, 2, 3, . . .), we propose the following iterative algorithm:
Step 1: In the nonlinear term we set un+1

d = und .
Step 2 : Calculate an “intermediate” value λn+1

(0) which is called predictor from system of

equations (12). So we obtain the following system of equations:

Bλn+1
(0) = Cλn −∆t · θ[ud(ud)x)n]−∆t(1− θ)[ud(ud)x)n] +Gn+1. (13)
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Notice that the value of λn and [ud(ud)x)n] are known from the previous time level n. So by
using the predicted value λn+1

(0) we can approximate λn+1
(1) .

Step 3: we observe that the general iteration of predictor-corrector scheme for µ = 0, 1, 2, 3, . . .
and n = 1, 2, 3, . . . is as follows:

Bλn+1
(µ+1) = Cλn − [∆tθ[ud(ud)x)n]−∆t(1− θ)[ud(ud)x)n+1

(µ) ] +Gn+1. (14)

Step 4: calculate the system of linear equations (14) until getting:

‖un+1
(µ+1) − u

n
(µ)‖∞

‖un+1
(µ) ‖∞

≤ e, (15)

for prescribed tolerance e or until the maximum number of iterations ≤ 65. When the conver-
gence condition is achieved, we can move to the next time level. This procedure is continued
until reaching to the requested time T .

3.2 Choosing the shape parameter

The accuracy of the RBFs approximation depends heavily on the choice of a shape parameter
ε. Theoretically, for a fixed number of centers N , smaller shape parameters produce the more
accurate approximation, but is caused a poorly or ill-conditioned interpolation matrix. The
optimal choice of the shape parameter is an open problem yet. A number of researchers have
been suggested optimal forms of choosing shape parameters by different formulas [9]. In the
scheme 3.1 (MQ − RBF based a predictor-corrector) we use statistical tool, leave one out
cross validation (LOOCV) strategy for selecting good values of the shape parameter. In this
algorithm, an optimal value of ε is selected by minimizing a cost function E = [E1, E2, . . . , En]T

where Ek = |uk − sk(xk)| and sk(x) is the approximate function to a reduced data obtained by
removing the point xk from the original data set. Rippa [24] proved that the kth element of
the error vector Ek can be computed by the formula Ek = λk/A

−1
kk where A−1kk and λk are kth

diagonal element of A−1 and kth element of λ respectively. According to Rippa‘s strategy, a
good value for shape parameter ε is obtained by minimizing ‖E‖ [28].

3.3 Scheme 2: The RBF-QR method

The best accuracy of using RBFs is achieved when the shape parameter ε is small. In recent
years, two numerical methods have been implemented that are able to compute stably when
ε→ 0: the Contour-Pade algorithm and the RBF-QR method [11,12]. The Gaussian radial basis
function leads to the best accuracy when the shape parameter is small. But the obstacle is that
the coefficient matrix will be ill-conditioned as the small shape parameter ε is used. The RBF-
QR method is presented here which are able to present stable computations. To implement the
RBF-QR method for solving equation (1) with (2), let us first discretize the Kawahara equation
(1) by a second-order compact finite difference scheme for temporal approximation. So, we have:

un+1 − un

∆t
− en + ununx + un3x − un5x = 0, n ≥ 0, (16)
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where en is the truncation error given by:

en =
∆t

2
untt +O(∆t2). (17)

To obtain a higher order compact scheme, we can differentiate (16) to construct untt:

untt = −unt unx − unxtun − un3xt + un5xt. (18)

By discretizing the time derivatives in the right hand side of (18) with a forward difference
scheme we get:

untt = (
un+1
5x − un5x

∆t
)− (

un+1
3x − un3x

∆t
)− unx(

un+1 − un

∆t
)− un(

un+1
x − unx

∆t
) +O(∆t). (19)

If we substitute (19) into (16) and put the result of en in (17), after neglecting O(∆t2), we can
get the new numerical scheme as follows:

un+1[1 +
∆t

2
unx]− ∆t

2
un+1
5x +

∆t

2
un+1
3x +

∆t

2
unun+1

x = un +
∆t

2
un5x −

∆t

2
un3x. (20)

Assuming that there are N interpolation points in Ω = [a, b], we can approximate u(x, n) at
every point xi by

u(xi, n) =

N∑
j=1

aijψ(rij), i = 1, 2, . . . , N,

where in matrix form we have

un = Aλn, A =


ψ(r11) ψ(r12) . . . ψ(r1N )
ψ(r21) ψ(r22) . . . ψ(r2N )

...
...

. . .
...

ψ(rN1) ψ(rN2) . . . ψ(rNN )

 (21)

Then equation (20) together with (2), can be written in the matrix form as

B1λ
n+1 = C1λ

n +Gn+1, (22)
B1 = A+

∆t

2
(A∗unx −A5x +A3x + un ∗Ax),

C1 = A+
∆t

2
(A5x −A3x),

(23)

where Gn+1 =
[
0 . . . 0 gn+1

d+1 . . . gn+1
N−2 0 0

]T
is the vector of boundary conditions (2),

symbol (∗) denotes component by component multiplication and

Ajx = [
∂j

∂xj
A(xj)]N×N , i = 1, 2, . . . , N, j = 3, 5.
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In one-dimensional case, the Gaussian radial basis function ψ(r, ε) = e−ε
2r2 is written as the

expansion in terms of the Chebyshev polynomials Tj(x). This leads to

ψk(x) = ψ(‖x− xk‖) =
∞∑
j=0

djcj(xk)e
−ε2x2Tj(x), (24)

where the coefficients are

dj =
2c2j

j!
, cj(xk) = tje

−ε2x2kxjk0F1([], j + 1, ε4x2k),

with tj = 1 for j > 0 and t0 =
1

2
. mFn(z) is the hypergeometric function. The function of the

form 0F1(; a; z) are called confluent hypergeometric limit functions and are closely related to
Bessel functions [4]. After truncating the series for p terms, we can write the coefficient matrix
ψ(‖x− xcj‖) as follows:


ψ(‖x− xc1‖)
ψ(‖x− xc2‖)

...
ψ(‖x− xcN‖)


︸ ︷︷ ︸

ψ(x) N×N

=


c0(x1) c1(x1) . . . cp(x1)
c0(x2) c1(x2) . . . cp(x2)

...
...

. . .
...

c0(xN ) c1(xN ) . . . cp(xN )


︸ ︷︷ ︸

C

·


ε0

ε2

ε2p


︸ ︷︷ ︸

E

·


e−ε

2x2T0(x)

e−ε
2x2T1(x)

...

e−ε
2x2Tp(x)


︸ ︷︷ ︸

F (x)

(25)

At this stage based on the QR-factorization, we are going to find new basis functions that can
overcome the ill-conditioning of the matrix ψ(x). To achieve this, we split C = QR, where Q is
unitary and R is an upper triangular matrix. So we have

ψ(x) = C.E.F (x) = Q.R.E.F (x). (26)

After multiplying the relation (26) by E−1QT from the left, where E denotes the diagonal matrix
with the increasing powers of ε, we create a well-conditioned basis in exactly the same space. It
results in the new set of basis function

E−1.QT .ψ(x)︸ ︷︷ ︸
φ(x)

= E−1. QT .Q︸ ︷︷ ︸
I

.R.E.F (x)⇒ φ(x) = E−1.R.E.F (x). (27)

The matrix E−1.R.E provides the well-conditioned, upper triangular matrix that we will use
numerically. It should be noted that we obtain new basis functions but dont change the space
that is spanned by them. For applying the RBF-QR for solving Kawahara equation (1), only the
collocation matrix A in (22) is replaced by the new basis function in (27). Then the obtained
linear system of equations can be solved by LU the factorization to find un+1.
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3.4 The Not-a-Knot scheme

A usual feature in all RBFs approximation is how they are inaccurate at boundaries. When we
use RBFs for equation (1) if centers cover a domain in a uniform manner, the largest errors will
appear near the boundaries. Also edge errors start to dominate over interior errors. Thus it is
necessary to know how RBFs behave near boundaries and whether there is a way to improve
accuracy there. One of the strategies to reduce errors in the boundary region is to separate
the location of the centers and the data points. It means that the centers which are nearest
to the boundary are moved outside the domain. This strategy is referred to as a Not-a-Knot
(NaK) scheme due to its connection with polynomial splines. The Not-a-Knot method is used
to improve the accuracy at the boundaries especially in nonlinear equation with large N . If
the two extra conditions are chosen so that there is no jump in the third derivative at the first
and last interior data point, tt means that moving the center points at those points outside the
interval. For this reason, in the Not-a-knot method, the set of points at which PDE conditions
(2) are imposed is chosen a little different from the set of RBF centers. The approximation in
the interior is independent of how far the centers are moved outside of the interval [10]. In our
proposed method two nearest centers to the boundary are moved at spatial domain Ω = [a, b]
outside of interval as measure as distance between data points or as much as very small amount.
We should consider the condition that the number of data points and centers remain unchanged.
Table 1 illustrates this fact, with the new centers in the domain.

Table 1: illustrating Not-a-Knot scheme with two new centers in domain [a, b].

New First of Moved Interior Interior - - - - Interior Interior Moved End of New
center interval center center center center center center interval center

4 Numerical illustrations

Problem 1. Consider the Kawahara equation{
ut + uux + u3x − u5x = 0, x ∈ [−20, 30], t ∈ [0, T ],

u(x, 0) = 105
169 sech4[k

′
(x− x0)],

(28)

with the boundary conditions [27]:{
u(−20, t) = 0, u(30, t) = 0,

ux(−20, t) = 0, ux(30, t) = 0, uxx(−20, t) = 0.
(29)

The exact solution given in [19] is:

u(x, y) =
105

169
sech4[k

′
(x− 36

169
t− x0].
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Figure 1: Traveling wave solution of Kawahara equation (28), numerical solution (full line) and
by Scheme 3.1.

Accuracy of the estimated solutions can be calculated by L2 and L∞ error norms which are:

L2 = ‖uex − unum‖2 =

( N∑
i=1

|uex(i)− unum(i)|
)1

2 ,

L∞ = ‖uex − unum‖∞ = max
i
|uex(i)− unum(i)|.

We have three invariants I1, I2 and I3 defined as lowest conserved quantities which are explained
in [19]

In this problem we concern k
′

= 1/(2
√

13), x0 = 2. The computation is calculated up
to time T = 25. L2 and L∞ error norms are obtained at desired time t = 0, 5, 15, 25 with
time step ∆t = 0.001 and N = 51. Numerical solution of (28) with (29) obtained by Scheme
3.1 are tabulated in Table 2, which shows that solving kawahara equation by Scheme 3.1 is
considerable more accurate than [13]. Figure 1 shows the forward motion of the solitary wave
which propagates from left to right with constant speed in different time level. In Figure 2,
motion of solitary wave in 3-dimension is shown. Figure 3 shows error norms L2 and L∞ versus
shape parameter. The good value ε = 4.3 for shape parameter has been selected by the LOOCV
algorithm. We observe that in neighborhood of ε = 4.3 the error norms specially L∞ behave
more stably. The solitary wave motion of Kawahara equation (28) in large N with RBF-QR is
shown in Figure 4. Using Not-a-Knot (NaK) scheme results stability at the boundaries specially
in large number of data points N . The maximum error is not occurred at the boundaries because
we use the Not-a-Knot method that improves the accuracy at the corners of the interval. It is
clear from Table 3 and comparison with Table 2 that the results obtained by MQ-RBF (with
small shape parameter) has good agreement with the exact solution and Scheme 3.1 and show
better accuracy than [13].
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Table 2: Comparison of result for Scheme 3.1 for problem (1) with [13].

Time L2 L∞ I1 I2 I3
Scheme 3.1(MQ-RBF based a predictor-corrector)
0 0 0 5.97357 1.27250 -0.16458
5 5.856e (-7) 1.045e (-7) 5.97361 1.27250 -0.16458
15 4.168e (-7) 1.218e (-7) 5.97364 1.27250 -0.16459
25 5.418e (-7) 2.186e (-7) 5.97364 1.27250 -0.16459
Method in [13]
0 0 0 5.97357 1.27250 -0.16459
5 6.278e (-5) 1.684e (-5) 5.97361 1.27250 -0.16459
15 4.466e (-5) 1.852e (-5) 5.97364 1.27250 -0.16459
25 9.370e (-5) 2.387e (-5) 5.97367 1.27250 -0.16459

Table 3: Comparison between the error norms L2, L∞ of Scheme 3.3 in time step ∆t = 0.001,with
N = 51, t = 25, ε = 0.01.

Time L2 L∞
0 0 0
5 5.901e (-7) 3.344e (-7)
15 5.846e (-7) 3.363e (-7)
25 5.585e (-7) 3.157e (-7)

We observe from Table 4 that the condition number of matrix B1 ≈ 1 in Scheme 3.3 which
shows the stability of our computations with small value of shape parameter. We calculate
spatial rate of convergence [6] in Table 5 by keeping time step ∆t = 0.001 fixed and varying
the number of collocation points (N = 20, 40, 80). We can see that the order of convergence
decreases with the smaller spatial step size.

Problem 2. Here we consider a Kawahara-type equation given as

{
ut + uux + u3x + ux − u5x = 0, x ∈ [−20, 50], t ∈ [0, T ],

u(x, 0) = 105
169 sech4[k

′
(x− x0)].

(30)

Other required data such as x0, k
′

and ∆t are the same as Problem (1). The error norms L2,
L∞ and the conserved quantities Ii (i = 1, 2) by Scheme 3.1 and Scheme 3.3, are given in Table
6. It is clear from Table 6 that all the conserved quantities are well preserved and the results
of Table 6 shows that for Problem (30), Scheme 3.3 is more accurate and suitable than Scheme
3.1. Our schemes have acceptable accuracy. Also we can observe from Figure 5 that motion of
solitary wave propagates from left to right with constant speed in spatial interval [−20, 50].
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Table 4: Condition number of the matrix B1 of Scheme 3.3 in time step ∆t = 0.001, ε = 0.01,
with N = 51, t = 25.

Time RBF-QR method

5 1.00009
10 1.00002
15 1.00013
25 1.00009

Table 5: Spatial rate of convergence for problem (1) with Scheme 3.1.

N L2 order L∞ order

Scheme 3.1
20 0.0003048 0.0001693
40 2.8553e(-4) 5.9004 2.1535e(-4) 5.9178
80 1.2107e(-7) 0.5361 1.1987e(-7) 0.0422

Table 6: Results for Problem (29) for ∆t = 0.001, T = 25 by Scheme 3.1 and Scheme 3.3.

Time L2 L∞ I1 I2
0 0 0 5.97361 1.27250
10 0.666(-5) 0.416(-5) 5.97361 1.27250

S-3.1: 20 1.756(-5) 0.886(-5) 5.97362 1.27250
30 4.784(-5) 1.726(-5) 5.97363 1.27250

0 0 0 5.97371 1.27250
10 1.387e(−7) 2.934e(−7) 5.97371 1.27250

S-3.3: 20 2.920e(−7) 1.507e(−7) 5.97380 1.27250
30 2.981e(−7) 1.298e(−7) 5.97381 1.27250

Table 7: Results for problem (2) for ∆t = 0.001, ε = 0.001, T = 25 by Scheme 3.1 and Gaussian-
RBF.

N L2 L∞
Scheme 3.1
51 1.1376e (+35) 2.9312e (+37)
71 4.0891e (+20) 3.9804e (+19)
91 2.1916e (+24) 6.9012e (+25)

As shown in Table 7, the RBF based a predictor-corrector scheme when using Gaussian RBF



196 Z. Dehghan, J. Rashidinia

-0.2

60

0

0.2

40 30

u
(x

,t
) 0.4

x

0.6

20 20

t

0.8

0 10

-20 0

Figure 2: dimentional motion of solitary wave of Kawahara equation (28).
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Figure 3: Error L2, L∞ versus shape parameter ε for problem (1) by Scheme 3.1.

isn’t stable for ε = 0.001. So, for stability of computations for small value of shape parameter
Scheme 3.3 is recomended.

5 Conclusion

Two numerical methods MQ− RBF based on a predictor-corrector scheme and RBF−QR
method have been applied to find numerical solution of kawahara equation. In MQ-RBF based
predictor-corrector we have used the LOOCV strategy for selecting shape parameter. In both
methods we have used NaK scheme for increasing accuracy at the boundaries. The presented
methods have provided better results and produce efficient and more accurate alternative for
the solution of kawahara equation in comparison with work in [13].
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Figure 4: Travelling wave solution of Kawahara equation (28) for large N = 210, numerical
solution (full line) and exact solution (dot line) by Scheme 3.3.
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Figure 5: Travelling wave solution of Kawahara equation (29), numerical solution (full line) and
exact solution (dot line) by Scheme 3.3 and ∆t = 0.001, N = 81, T = 25.
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