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Abstract. There is a plethora of third and fourth convergence order algorithms for solving
Banach space valued equations. These orders are shown under conditions on higher than one
derivatives not appearing on these algorithms. Moreover, error estimations on the distances
involved or uniqueness of the solution results if given at all are also based on the existence of
high order derivatives. But these problems limit the applicability of the algorithms. That is why
we address all these problems under conditions only on the first derivative that appear in these
algorithms. Our analysis includes computable error estimations as well as uniqueness results
based on ω− continuity conditions on the Fréchet derivative of the operator involved.
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1 Introduction

Let X,Y denote Banach spaces [6, 7, 31], Ω ⊂ X be an open and convex set, and F : Ω −→ Y
be a differentiable operator (according to Fréchet [31]). There is a plethora of applications from
computational sciences that using mathematical modeling [2, 5, 7–9, 25, 32] can be reduced to
finding a solution x∗ of equation

F (x) = 0. (1)

But the solution x∗ can be found in closed form only in special cases. That explains why
algorithms are used generating sequences approximating x∗ under certain conditions on the
initial data.
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Recently, due also to the development of new and faster computers there is a greater need
for developing high convergence order algorithms. Looking at this direction Noor et al. [28]
provided the ball convergence of the third and fourth order classes of algorithms defined for
x0 ∈ Ω and all n = 0, 1, 2, . . . by

yn = xn − F ′(xn)−1F (xn),

xn+1 = yn − [

m∑
i=1

qiF
′(xn + θi(yn − xn))]−1F (yn), (2)

and

yn = xn − F ′(xn)−1F (xn),

zn = yn −A−1n F (yn), (3)

xn+1 = zn −B−1n F (zn),

respectively, where m is a fixed natural number, qi are weights and θi suitably chosen real
numbers so that limn−→∞ xn = x∗. By specifying m, qi, θi these algorithms reduce to popu-
lar ones studied under a variety of conditions all requiring the existence of higher than one
derivatives not appearing on the algorithms limiting their applicability. Operators F ′(xn), An =
[
∑m

i=1 qiF
′(xn + θi(yn−xn))], Bn = [

∑m
i=1 qiF

′(xn + θi(zn−xn))] should be linear and invertible
for the iterates to exist in method (2) and (3). We refer the reader to [28] where these methods
were originated for further details and to avoid repetitions for these methods.

The assumptions on the fifth or higher order derivative limit the application of these methods,
even for scalar examples. Let X = Y = R, Ω = [−1

2 ,
3
2 ]. Define f on Ω by

f(s) = s3 log s2 + s5 − s4,

Then, we have x∗ = 1, and

f ′(s) = 3s2 log s2 + 5s4 − 4s3 + 2s2,

f ′′(s) = 6x log s2 + 20s3 − 12s2 + 10s,

f ′′′(s) = 6 log s2 + 60s2 − 24s+ 22.

Obviously f ′′′(s) is not bounded on Ω. So, the convergence of algorithms (2) and (3) are not
guaranteed by the analysis in [28].

The error estimations on ‖xn − x∗‖ or the uniqueness of x∗ if given at all also involve high
derivatives. That is why our ball convergence involves only ω− continuity condition on f ′ which
actually appears on these algorithms. Our work improves as well studies [1–32].

The technique is given in Section 2, the numerical experiments in Section 3 and the conclu-
sions in Section 4.

2 Ball convergence

We shall use some real functions and parameters in our convergence analysis. Set

α = |
m∑
i=1

qi|, β =
m∑
i=1

|qi|, γ =
β

α
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and T = [0,∞).
Suppose that there exists function w0 : T −→ T continuous and nondecreasing such that

equation
w0(s)− 1 = 0, (1)

has a least solution ρ1 ∈ T − {0}. Set T1 = [0, ρ0).
Suppose that there exists function w : T1 −→ T continuous and nondecreasing such that for

g1(s) =

∫ 1

0
w((1− θ)s)dθ

1− w0(s)
, h1(s) = g1(s)− 1,

equation
h1(s) = 0, (2)

has a least solution r1 ∈ (0, ρ1).
Suppose that equation

w0(γs)− 1 = 0, (3)

has a least solution ρ2 ∈ (0, ρ1]. Set T2 = [0, ρ2).
Suppose that there exists a function w1 : T2 −→ T such that for

g2(s) = (1 +

∫ 1

0
w1(θg1(s)s)dθ

α(1− γw0(s))
)g1(s),

h2(s) = g2(s)− 1,

g3(s) = (1 +

∫ 1

0
w1(θg2(s)s)dθ

α(1− γw0(s))
)g2(s),

h3(s) = g3(s)− 1, equations

h2(s) = 0, (4)

and
h3(s) = 0, (5)

have least solutions r2, r3 ∈ (0, ρ2]. We shall show that r defined by

r = min{rj}, j = 1, 2, 3, (6)

is a radius of convergence for algorithm (3). It follows by these definitions that for each s ∈ [0, r)

0 ≤ w0(s) < 1, (7)

0 ≤ w0(γs) < 1, (8)

and
0 ≤ gj(s) < 1. (9)

Let U(u, λ) and Ū(u, λ) stand for the open and closed balls in X with center u ∈ X and of
radius λ > 0.

The conditions (A) shall be used in the ball convergence.
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(a1) There exists a simple solution x∗ of equation F (x) = 0, and a real sequence {θi} such that
|1− θi|+ |θi| ≤ 1.

(a2) There exists a function w0 : T −→ T continuous and nondecreasing such that for all x ∈ Ω

‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ w0(‖x− x∗‖).

Set U0 = Ω ∩ U(x∗, ρ1), where ρ1 given in (1) exists.

(a3) There exists a functions w : T0 −→ T such that for each x, y ∈ U0

‖F ′(x∗)−1(F ′(y)− F ′(x))‖ ≤ w(‖y − x‖)

Set U1 = Ω ∩ U(x∗, ρ2), where ρ2 exists and is given in (3).

(a4) There exists a function w1 : T1 −→ T such that for each x ∈ U1

‖F ′(x∗)−1F (x)‖ ≤ w1(‖x− x∗‖).

(a5) Ū(x∗, r) ⊂ Ω, where r is defined by (6).

(a6) There exists r∗ ≥ r such that ∫ 1

0
w0(θr∗)dθ < 1.

Set U2 = Ω ∩ Ū(x∗, r∗).

Next, the ball convergence of algorithm (3) is presented using the conditions (A) and the
preceding notation.

Theorem 1. Suppose the conditions (A) hold. Then, for x0 ∈ U(x∗, r) − {x∗}, sequence {xn}
generated by algorithm (3) is well defined in U(x∗, r), remains in U(x∗, r) for each n = 0, 1, 2, . . .
and limn−→∞ xn = x∗. Moreover, the following error estimations hold for en = ‖xn − x∗‖ and
each n = 0, 1, 2, . . . :

‖yn − x∗‖ ≤ g1(en)en ≤ en < r, (10)

‖zn − x∗‖ ≤ g2(en)en ≤ en, (11)

and
‖xn+1 − x∗‖ ≤ g3(en)en ≤ en, (12)

where the functions gj are given previously and r is defined in (6). Furthermore, x∗ is the only
solution of equation F (x) = 0 in the set U2 given in (a6).

Proof. Let u ∈ U(x∗, r)− {x∗}. Using (1) and (6), we obtain

‖F ′(x∗)−1(F ′(u)− F ′(x∗))‖ ≤ w0(‖u− x∗‖) ≤ w0(r) < 1,

imply by the Banach lemma on invertible operators [31], that F ′(u) is invertible and

‖F ′(u)−1F ′(x∗)‖ ≤ 1

1− w0(‖u− x∗‖)
. (13)
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By setting u = x0, we see that y0 is well defined by the first substep of algorithm (3) for n = 0.
Then, we can also write

y0 − x∗ = x0 − x∗ − F ′(x0)−1F (x0). (14)

In view of (a1)-(a3), (6), (9) (for j = 1) and (14), we get in turn that

‖y0 − x∗‖ = ‖(F ′(x0)−1F ′(x∗))(
∫ 1

0
F ′(x∗)−1(F ′(x∗ + θ(x0 − x∗))− F ′(x0)(x0 − x∗)dθ‖

≤ ‖F ′(x0)−1F ′(x∗)‖‖
∫ 1

0
F ′(x∗)−1(F ′(x∗ + θ(x0 − x∗))− F ′(x0)dθ‖‖x0 − x∗‖

≤
[
∫ 1
0 w((1− θ)e0)dθe0

1− w0(e0)

≤ g1(e0)e0 ≤ e0 < r, (15)

so y0 ∈ U(x∗, r) and (10) is verified for n = 0.
Next, set for convenience

Mn =

m∑
i=1

qiF
′(xn + θi(yn − xn)).

Then, by (a1), (6), (8), (15) and (a2), we have

‖(
m∑
i=1

qiF
′(x∗))−1(

m∑
i=1

qi(F
′(x0 + θi(y0 − x0))− F ′(x∗))‖

≤ 1

α
‖

m∑
i=1

qiF
′(x∗)−1(F ′(x0 + θi(y0 − x0))− F ′(x∗))‖

≤ 1

α
‖

m∑
i=1

|qi|‖F ′(x∗)−1(F ′(x0 + θi(y0 − x0))− F ′(x∗))‖

≤ 1

α
‖

m∑
i=1

|qi|w0(|1− θi|e0 + |θi|e0)‖

≤ 1

α
‖

m∑
i=1

|qi|w0((|1− θi|+ |θi|)e0)‖

≤ 1

α
‖

m∑
i=1

|qi|w0(e0)‖ = γw0(e0)

≤ γw0(e0) < 1,

so

‖M−10 F ′(x∗)‖ ≤ 1

α(1− γw0(e0))
, (16)

and z0 is well defined by the second substep of algorithm (3) for n = 0. Moreover, we can write

z0 − x∗ = y0 − x∗ −M−10 F (y0).
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Then, by (6), (9) (for j = 2), and (15)-(16), we have in turn that

‖z0 − x∗‖ ≤ ‖y0 − x∗‖+ ‖M−10 F ′(x∗)‖‖F ′(x∗)−1F (y0)‖[1 +

∫ 1
0 w1(θ‖y0 − x∗‖)dθ
α(1− γw0(e0))

]‖y0 − x∗‖

≤ g2(e0)e0 ≤ e0 < r, (17)

so z0 ∈ U(x∗, r), (11) is verified for n = 0. Set

Nn =
m∑
i=1

qiF
′(xn + θi(zn − xn)).

Then, as in the calculations for (16) but with zn replacing yn, we also get

‖N−10 F ′(x∗)‖ ≤ 1

α(1− γw0(e0))
, (18)

so x1 is well defined too by the last substep of algorithm (3) for n = 0. Furthermore, we can
write

x1 − x∗ = z0 − x∗ −N−10 F (z0). (19)

Then, by (6), (9) (for j = 3), (a3) and (17)- (19), we get in turn that

e1 ≤ ‖z0 − x∗‖+ ‖N−10 F ′(x∗)‖‖F ′(x∗)−1F (z0)‖

≤ [1 +

∫ 1
0 w1(θ‖z0 − x∗‖)dθ
α(1− γw0(e0))

]‖z0 − x∗‖

≤ g3(e0)e0 ≤ e0 < r, (20)

so (12) is verified for n = 0 and x1 ∈ U(x∗, r). Hence, the induction for estimation (10)-(12) is
completed for n = 0. Suppose these estimations hold for all p = 0, 1, 2, . . . , n. Then, by repeating
the preceding calculations with x0, y0, z0, x1 by xp, yp, zp, xp+1, we complete the induction for
estimations (13)-(15). Then, from the estimation

ep+1 ≤ cep < r, (21)

where c = g3(e0) ∈ [0, 1), we conclude that limp−→∞ xp = x∗, and xp+1 ∈ U(x∗, r). Finally,
consider x∗∗ ∈ U2 with F (x∗∗) = 0. Then, by (a2) and (a6) for

T =

∫ 1

0
F ′(x∗∗ + θ(x∗ − x∗∗))dθ,

we obtain in turn that

‖F ′(x∗)−1(T − F ′(x∗))‖ ≤
∫ 1

0
w0(θ‖x∗ − x∗∗‖)dθ ≤

∫ 1

0
w0(θr∗)dθ < 1,

so x∗ = x∗∗ follows from the invertability of T and the identity 0 = F (x∗) − F (x∗∗) = T (x∗ −
x∗∗).
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Remark 1.

1. By (a2), and the estimate

‖F ′(x∗)−1F ′(x)‖ = ‖F ′(x∗)−1(F ′(x)− F ′(x∗)) + I‖
≤ 1 + ‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖
≤ 1 + w0(‖x− x∗‖)

second condition in (a3) can be dropped, and w1 be defined as

w1(t) = 1 + w0(t).

Notice that, if w1(t) < 1 + w0(t), then R1 can be large (see Example 1).

2. The results obtained here can be used for operators G satisfying autonomous differential
equations [5–10] of the form

F ′(x) = T (F (x))

where T is a continuous operator. Then, since F ′(x∗) = T (F (x∗)) = T (0), we can apply
the results without actually knowing x∗. For example, let F (x) = ex − 1. Then, we can
choose: T (x) = x+ 1.

3. The local results obtained here can be used for projection algorithms such as the Arnoldi’s
algorithm, the generalized minimum residual algorithm (GMRES), the generalized conju-
gate algorithm(GCR) for combined Newton/finite projection algorithms and in connection
to the mesh independence principle can be used to develop the cheapest and most efficient
mesh refinement strategies [5–10].

4. Let w0(t) = L0t, and w(t) = Lt. The parameter rA = 2/(2L0 + L) was shown by us to be
the convergence radius of Newton’s algorithm [10]

xn+1 = xn − F ′(xn)−1F (xn) for each n = 0, 1, 2, . . . ,

under the conditions (a1)-(a3) (w1 is not used). It follows that the convergence radius
R of algorithm (2) cannot be larger than the convergence radius rA of the second order
Newton’s algorithm. As already noted in [5–10] rA is at least as large as the convergence
ball given by Rheinboldt [31]

rTR =
2

3L1
,

where L1 is the Lipschitz constant on Ω, L0 ≤ L1 and L ≤ L1. In particular, for L0 < L1

or L < L1, we have that
rTR < rA

and
rTR

rA
→ 1

3
as

L0

L1
→ 0.

That is our convergence ball rA is at most three times larger than Rheinboldt’s. The same
value for rTR was given by Traub [32].
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5. It is worth noticing that algorithm (2) is not changing, when we use the conditions (A) of
Theorem 1 instead of the stronger conditions used in [28]. Moreover, we can compute the
computational order of convergence (COC) defined by

µ = ln

(
‖xn+1 − x∗‖
‖xn − x∗‖

)
/ ln

(
‖xn − x∗‖
‖xn−1 − x∗‖

)
or the approximate computational order of convergence

µ1 = ln

(
‖xn+1 − xn‖
‖xn − xn−1‖

)
/ ln

(
‖xn − xn−1‖
‖xn−1 − xn−2‖

)
.

This way we obtain in practice the order of convergence in a way that avoids the bounds
given in [28] involving estimates up to the seventh Fréchet derivative of operator F.

6. Clearly, if g3 is dropped, zn is xn+1 and

r̄ = min{r1, r2}, (22)

we obtain from Theorem 1, the corresponding results for algorithm (2).

3 Numerical examples

In all the examples, we have taken m = 2 and qi = 1
2 .

Example 1. Let X = Y = R. Define F (x) = sinx. Then, we get that x∗ = 0, w0(s) = w(s) = s
and w1(s) = 1. The parameters are given in Table 1.

Table 1: Radius for Example 1.

Radius ω1(s) = e
1

e−1 ω1(s) = 1 + ω0(s)

r1 0.6667 0.6667
r2 0.4226 0.4140
r3 0.2643 0.2581

Example 2. Let X = Y = C[0, 1], the space of continuous functions defined on [0, 1] with the
max norm. Let Ω = U(0, 1). Define function F on Ω by

F (ϕ)(x) = ϕ(x)− 5

∫ 1

0
xθϕ(θ)3dθ. (1)

We have that

F ′(ϕ(ξ))(x) = ξ(x)− 15

∫ 1

0
xθϕ(θ)2ξ(θ)dθ, for each ξ ∈ Ω.

Then, we get that x∗ = 0, w0(s) = w1(s) = 15
2 s, w1(s) = 15. The parameters are given in Table

2.



Unified ball convergence of third and fourth convergence order ... 181

Table 2: Radius for Example 2.

Radius ω1(s) = e
1

e−1 ω1(s) = 1 + ω0(s)

r1 0.0889 0.0889
r2 0.0543 0.0552
r3 0.0069 0.0344

Example 3. Let X = Y = R3, Ω = U(0, 1), x∗ = (0, 0, 0)T and define F on Ω by

F (x) = F (u1, u2, u3) = (eu1 − 1,
e− 1

2
u2

2 + u2, u3)
T . (2)

For the points u = (u1, u2, u3)
T , the Fréchet derivative is given by

F ′(u) =

 eu1 0 0
0 (e− 1)u2 + 1 0
0 0 1

 .

Using the norm of the maximum of the rows and since G′(x∗) = diag(1, 1, 1), we get by conditions

(A) w0(s) = (e− 1)s, w(s) = e
1

e−1 s, and w1(s) = e
1

e−1 . The parameters are given in Table 3.

Table 3: Radius for Example 3.

Radius ω1(s) = e
1

e−1 ω1(s) = 1 + ω0(s)

r1 0.3827 0.3827
r2 0.2797 0.2364
r3 0.1433 0.1468

Example 4. Returning back to the motivational example at the introduction of this study, we
have w0(s) = w(s) = 96.662907s, w1(s) = 1.0631. The parameters are given in Table 4.

Table 4: Radius for Example 4.

Radius ω1(s) = e
1

e−1 ω1(s) = 1 + ω0(s)

r1 0.0069 0.0069
r2 0.0069 0.0043
r3 0.0048 0.0027

4 Conclusions

We present a new technique for comparing competing algorithms based only on the first deriva-
tive that actually appears on these algorithms in contrast to earlier ones using higher than one
derivatives. Our technique is so general that it can be used to extend the applicability of other
algorithms along the same lines. Our technique also provides computable error estimations and
uniqueness results based on ω− continuity conditions on F ′ not possible in earlier works [1–32].
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[24] A.A. Magreñán, Cordero, M.J. Gutiérrez, J.R. Torregrosa, Real qualitative behavior of a
fourth-order family of iterative methods by using the convergence plane, Math. Comput.
Simul. 105 (214) 49-61.
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