Journal of Algebra and Related Topics Vol. 8, No 2, (2020), pp 9-21

TRACES OF PERMUTING *n*-ADDITIVE MAPPINGS **IN *-PRIME RINGS**

A. ALI AND K. KUMAR *

ABSTRACT. In this paper, we prove that a nonzero square closed *-Lie ideal U of a *-prime ring \Re of Char $\Re \neq (2^n - 2)$ is central, if one of the following holds: $(i)\delta(x)\delta(y) \equiv x \circ y \in Z(\Re), (ii)[x, y] \delta(xy)\delta(yx) \in Z(\Re), (iii)\delta(x) \circ \delta(y) \mp [x, y] \in Z(\Re), (iv)\delta(x) \circ \delta(y) \mp$ $xy \in Z(\Re), (v)\delta(x)\delta(y) \mp yx \in Z(\Re),$ where δ is the trace of n- $\text{additive map } F:\underbrace{\Re\times \Re\times \ldots\times \Re}_{n-times}\longrightarrow \Re, \text{ for all } x,y\in U.$

1. INTRODUCTION

Throughout the paper, \Re will denote an associative ring with centre $Z(\Re)$. A ring \Re is said to be *-prime if $a\Re b = a\Re b^* = \{0\}$ implies that either a = 0 or b = 0. For each pair of elements $x, y \in \Re$ we shall write [x, y] the commutator xy - yx; while the symbol $x \circ y$ will stand for the anti-commutator xy + yx. An additive map $x \to x^*$ of \Re into itself is called an involution on \Re if it satisfies the conditions: (i) $(x^*)^* = x$, (ii) $(xy)^* = y^*x^*$ for all $x, y \in \Re$. A ring \Re equipped with an involution * is called a *-ring or ring with involution. An additive subgroup U of a ring \Re is said to be a Lie ideal of \Re if $[U, \Re] \subset U$. A Lie ideal U of a *-ring \Re is said to be a *-Lie ideal, if $U^* = U$. A Lie ideal U is said to be square closed, if for all $u \in U$, then $u^2 \in U$. An element x in a *-ring \Re is said to be hermitian element if $x^* = x$ and skew-hermitian if $x^* = -x$. The set of hermitian and skew-hermitian elements of \Re

MSC(2010): 16W25; 16N60; 16U80

Keywords: Prime rings, *-prime rings, *-Lie ideals, n-additive maps, Trace of n-additive maps.

Received: 18 April 2020, Accepted: 4 September 2020.

^{*}Corresponding author .

ALI AND KUMAR

will be denoted by $H(\Re)$ and $S(\Re)$, respectively. The involution * is said to be of the first kind if $Z(\Re) \subseteq H(\Re)$, otherwise it is said to be of the second kind. In the later case $S(\Re) \cap Z(\Re) \neq \{0\}$.

An additive map $f : \Re \to \Re$ is said to be a derivation, if f(xy) = f(x)y + xf(y) for all $x, y \in \Re$. An additive map $g : \Re \to \Re$ is said to be a generalized derivation, if there exists a derivation $f : \Re \to \Re$ such that g(xy) = g(x)y + xf(y) for all $x, y \in \Re$. Let $n \ge 2$ be a fixed positive integer. A map $F : \underbrace{\Re \times \Re \times \ldots \times \Re}_{n-times} \longrightarrow \Re$ is said to be symmetric

(permuting), if $F(x_1, x_2, ..., x_n) = F(x_{\pi(1)}, x_{\pi(2)}, ..., x_{\pi(n)})$ for all $x_i \in \Re$ for every permutation $(\pi(1), \pi(2), ..., \pi(n))$.

 $A \max_{F} F : \underbrace{\Re \times \Re \times \ldots \times \Re}_{n-times} \longrightarrow \Re \text{ is said to be } n\text{-additive, if } F \text{ is additive, if } F \text{ additive, if } F \text{ is additive, } F \text{ additi$

tive in each variable x_i ; i = 1, 2, ..., n i.e., $F(x_1, x_2, ..., x_i + y_i, ..., x_n) = F(x_1, x_2, ..., x_i, ..., x_n) + F(x_1, x_2, ..., y_i, ..., x_n)$ for all $x_i, y_i \in \Re$ and i = 1, 2, ..., n. On the other hand, let $\Re = \left\{ \begin{bmatrix} 0 & 0 \\ a & b \end{bmatrix} \mid a, b \in \mathbb{C} \right\}$, where \mathbb{C} is a complex field. It is clear that, \Re is a noncommutative ring under matrix addition and matrix multiplication.

Define map
$$F : \underbrace{\Re \times \Re \times \dots \times \Re}_{n-times} \longrightarrow \Re$$
 by
$$F\left[\begin{bmatrix} 0 & 0 \\ a_1 & b_1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ a_2 & b_2 \end{bmatrix}, \cdots, \begin{bmatrix} 0 & 0 \\ a_n & b_n \end{bmatrix} \right] = \begin{bmatrix} 0 & 0 \\ a_1a_2a_3\dots a_n & 0 \end{bmatrix}.$$

Then it is easy to see that F is a symmetric *n*-additive map.

Let $n \geq 2$ be a fixed positive integer and let a map $\delta : \Re \to \Re$ defined by $\delta(x) = F(x, x, ..., x)$ is called the trace of F. It is obvious that in case, when $F : \underbrace{\Re \times \Re \times ... \times \Re}_{n-times} \longrightarrow \Re$ is a symmetric *n*-additive

mapping, the trace δ of F satisfies the relation $\delta(x+y) = \delta(x) + \delta(y) + \sum_{k=1}^{n-1} {n \choose k} h_k(x, y)$. Since we have $F(0, x_2, ..., x_n) = F(0, x_2, ..., x_n) + F(0, x_2, ..., x_n)$ for all $x, y \in \Re$, we obtain $F(0, x_2, ..., x_n) = 0$ for all $x_i \in \Re$; i = 1, 2, ..., n. Hence we get $0 = F(0, x_2, ..., x_n)$, i.e. $0 = F(x_1 - x_1, x_2, ..., x_n)$. This implies that $0 = F(x_1, x_2, ..., x_n) + F(-x_1, x_2, ..., x_n)$. It gives that $F(-x_1, x_2, ..., x_n) = -F(x_1, x_2, ..., x_n)$ for all $x_i \in \Re$; i = 1, 2, ..., n. This tells us that δ is an odd function, if n is odd and δ is an even

function, if n is even.

In 1992, Daif and Bell [7, Theorem 1] proved that if a semiprime ring \Re admits a derivation f such that $f([x, y]) - [x, y] \in Z(\Re)$ for all $x, y \in \Re$,

then \Re is commutative. Further, Ashraf at. el. in [6] obtained the commutativity of a prime ring \Re admitting a generalized derivation g on \Re satisfying one of the following : (i) $q(xy) \mp xy \in Z(\Re)$, (ii) $g(xy) \neq yx \in Z(\Re)$, (iii) $g(x)g(y) \neq xy \in Z(\Re)$ for all x, y in some appropriate subset of \Re . In 2007, Oukhtite and Salhi [5] proved that let \Re be a *-prime ring such that char $\Re \neq 2, 3$. Let L be a nonzero Lie ideal of \Re and d a nonzero derivation of \Re commuting with *. If $d^2(L) \subset Z(\Re)$, then $L \subset Z(\Re)$.

Motivated by the aforementioned results, we prove that a nonzero square closed *-Lie ideal U of a *-prime ring \Re of Char $\Re \neq (2^n - 2)$ is central, if it satisfies one of the following: $(i)\delta(x)\delta(y) \equiv x \circ y \in$ $Z(\Re), (ii)[x,y] - \delta(xy)\delta(yx) \in Z(\Re), (iii)\delta(x) \circ \delta(y) \mp [x,y] \in Z(\Re),$ $(iv)\delta(x)\circ\delta(y) \equiv xy \in Z(\Re), (v)\delta(x)\delta(y) \equiv yx \in Z(\Re),$ where δ is the trace of an *n*-additive map $F : \underbrace{\Re \times \Re \times \dots \times \Re}_{n-times} \longrightarrow \Re.$

$$n-times$$

2. Main results

We should do a great deal of calculation with commutators and anticommutator routinely using the following basic identities:

$$x \circ (yz) = (x \circ y)z - y[x, z] = y(x \circ z) + [x, y]z$$

(xy) \circ z = x(y \circ z) - [x, z]y = (x \circ z)y + x[y, z]
[x, yz] = (x \circ y)z - y(x \circ z) = y[x, z] + [x, y]z

Lemma 2.1. [5, Lemma 1] Let \Re be a *-prime ring and U be a nonzero square closed *-Lie ideal of \Re . If [U, U] = 0, then $U \subseteq Z(\Re)$.

Theorem 2.2. Let \Re be a *-prime ring of Char $\Re \neq (2^n-2)$ and U be a nonzero square closed *-Lie ideal of \Re . Let $F : \underbrace{\Re \times \Re \times \ldots \times \Re}{\longrightarrow} \longrightarrow \Re$ n-times

be a symmetric n-additive map and δ be the trace of F. If $\delta(x)\delta(y) \mp$ $x \circ y \in Z(\Re)$ for all $x, y \in U$, then $U \subseteq Z(\Re)$.

Proof. Suppose that

$$\delta(x)\delta(y) - x \circ y \in Z(\Re) \text{ for all } x, y \in U.$$
(2.1)

Replacing y by y + z in (2.1), we get

$$\delta(x)(\delta(y) + \delta(z) + \sum_{k=1}^{n-1} \binom{n}{k} h_k(y, z)) - x \circ y - x \circ z \in Z(\Re).$$
(2.2)

Comparing (2.1) and (2.2), we have

$$\delta(x)\sum_{k=1}^{n-1} \binom{n}{k} h_k(y,z) \in Z(\Re).$$

That is

$$\delta(x)\left(\binom{n}{1}h_1(y,z) + \dots + \binom{n}{n-1}h_{n-1}(y,z)\right) \in Z(\Re).$$
(2.3)

Substituting y for z in (2.3), we get

$$\delta(x)\left(\binom{n}{1}h_1(y,y) + \binom{n}{2}h_2(y,y) + \dots + \binom{n}{n-1}h_{n-1}(y,y)\right) \in Z(\Re).$$

This implies that

$$\begin{split} \delta(x) \Biggl(\binom{n}{1} \mathcal{F}(\underbrace{y, y, ..., y}_{(n-1)-times}, \underbrace{y}_{1-times}) + \binom{n}{2} \mathcal{F}(\underbrace{y, y, ..., y}_{(n-2)-times}, \underbrace{y}_{2-times}) + ... \\ &+ \binom{n}{n-1} \mathcal{F}(\underbrace{y}_{1-times}, \underbrace{y, y, ..., y}_{(n-1)-times}) \Biggr) \Biggr) \in Z(\Re) \text{ for all } x, y \in U \end{split}$$

This gives

$$\delta(x)\left(\binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n-1}\right) \mathcal{F}(y, y, \dots, y) \in Z(\Re) \text{ for all } x, y \in U.$$

That is

$$(2^n - 2)\delta(x)F(y, y, ..., y) \in Z(\Re)$$
 for all $x, y \in U$.

Since \Re is $(2^n - 2)$ torsion free, we have

$$\delta(x) F(y, y, ..., y) \in Z(\Re)$$
 for all $x, y \in U$.

This implies that

$$\delta(x)\delta(y) \in Z(\Re) \text{ for all } x, y \in U.$$
 (2.4)

Using (2.1) and (2.4), we obtain

$$x \circ y \in Z(\Re)$$
 for all $x, y \in U$. (2.5)

Thus $[r, (x \circ y)] = 0$ for all $x, y \in U$, $r \in \Re$. Replacing y by 2yx and again using the fact that Char $\Re \neq (2^n - 2)$, we get

$$(y \circ x)[r, x] = 0 \text{ for all } x, y \in U, \ r \in \Re.$$

$$(2.6)$$

Substituting sr for r, we have

$$(y \circ x)\Re[r, x] = \{0\} \text{ for all } x, y \in U, \ r \in \Re.$$

$$(2.7)$$

For all $x \in U \cap S_*(\Re)$, relation (2.7), yields that $(y \circ x)\Re[r, x] = \{0\} = (y \circ x)\Re([r, x])^*$. Since \Re is *-prime ring, we obtain either $(y \circ x) = 0$ or [r, x] = 0. Now for any $x \in U$, using the fact $x - x^* \in U \cap S_*(\Re)$, we get $y \circ (x - x^*) = 0$ or $[r, x - x^*] = 0$. If $y \circ (x - x^*) = 0$, then $(y \circ x - y \circ x^*) = 0$, as $y \circ x = 0$; $y \circ x^* = 0$, so we have either $y \circ x = 0$ or [r, x] = 0. On the other hand, if $[r, x - x^*] = 0$, then $[r, x] = [r, x^*]$. This implies that, $[r, x^*] = 0$. In conclusion, for all $x, y \in U$, $r \in R$, we have either $(y \circ x) = 0$ or [r, x] = 0. Let $A = \{x \in U \mid (y \circ x) = 0\}$, $B = \{x \in U \mid [r, x] = 0\}$, for all $x, y \in U$, $r \in \Re$. Then A and B both are additive subgroups of U and $A \cup B = U$. But a group cannot be union of two its proper subgroups and therefore A = U or B = U. If A = U, then $(y \circ x) = 0$ for all $x, y \in U$. Replacing x by [x, rx] in the last expression, we get [x, r][y, x] = 0 for all $x, y \in U$, $r \in \Re$. Again replacing r by sr, we get

$$[x, s]\Re[y, x] = \{0\} \text{ for all } x, y \in U; \text{ for all } s \in \Re.$$

$$(2.8)$$

If $x \in U \cap S_*(\Re)$, then $[x, s]\Re[y, x] = ([x, s])^*\Re[y, x] = \{0\}$. Thus *-primeness of \Re yields that, either [x, s] = 0 or [y, x] = 0, but for any $x \in U$, $x - x^*, x + x^* \in U \cap S_*(\Re)$. Then either $[x - x^*, s] = 0$ or $[y, x - x^*] = 0$. If $[x - x^*, s] = 0$, then from (2.8) $[x, s]\Re[y, x] =$ $([x, s])^*\Re[y, x] = \{0\}$ for all $x, y \in U$ for all $s \in U$. Hence either [x, s] = 0 or [y, x] = 0. Let $A_1 = \{x \in U \mid [x, s] = 0\}$ and $B_1 =$ $\{x \in U \mid [y, x] = 0\}$. Again A_1 and B_1 are additive subgroups of U such that $A_1 \cup B_1 = U$. But a group can not be union of two its proper subgroups and therefore $A_1 = U$ or $B_1 = U$. If $A_1 = U$, then [x, s] = 0 for all $x \in U$ this implies that $U \subseteq Z(\Re)$ on the other hand, if $B_1 = U$, then we have [y, x] = 0 for all $x, y \in U$ and hence $U \subseteq Z(\Re)$ by Lemma 2.1. Thus, in both the cases we find that $U \subseteq Z(\Re)$. Now if B = U then [x, s] = 0 for all $x \in U$ for all $s \in \Re$ and again $U \subseteq Z(\Re)$

Similarly, we can prove the result in case $\delta(x)\delta(y) + x \circ y \in Z(\Re)$ for all $x, y \in U$.

Theorem 2.3. Let \Re be a *-prime ring of Char $\Re \neq (2^n-2)$ and U be a nonzero square closed *-Lie ideal of \Re . Let $F : \underbrace{\Re \times \Re \times \ldots \times \Re}_{n-times} \longrightarrow \Re$ be a symmetric n-additive map and δ be the trace of F. If $\delta(x) \circ \delta(y) \mp x \circ y \in Z(\Re)$ for all $x, y \in U$, then $U \subseteq Z(\Re)$.

Proof. Suppose

$$\delta(x) \circ \delta(y) - x \circ y \in Z(\Re) \text{ for all } x, y \in U.$$
(2.9)

Replacing y by y + z in (2.9), we get

$$\delta(x) \circ (\delta(y) + \delta(z) + \sum_{k=1}^{n-1} \binom{n}{k} h_k(y, z)) - x \circ y - x \circ z \in Z(\mathfrak{R}).$$
(2.10)

Comparing (2.9) and (2.10), we have

$$\delta(x) \circ \sum_{k=1}^{n-1} \binom{n}{k} h_k(y, z) \in Z(\Re).$$

This gives

$$\delta(x) \circ \left(\binom{n}{1} h_1(y, z) + \dots + \binom{n}{n-1} h_{n-1}(y, z) \right) \in Z(\Re). \quad (2.11)$$

Substituting y for z in (2.11), we get

$$\delta(x) \circ \left(\binom{n}{1} h_1(y, y) + \binom{n}{2} h_2(y, y) + \dots + \binom{n}{n-1} h_{n-1}(y, y) \right) \in Z(\mathfrak{R}).$$

This implies that

$$\delta(x) \circ \left(\binom{n}{1} F(\underbrace{y, y, \dots, y}_{(n-1)-times}, \underbrace{y}_{1-times}) + \binom{n}{2} F(\underbrace{y, y, \dots, y}_{(n-2)-times}, \underbrace{y}_{2-times}) + \dots + \binom{n}{n-1} F(\underbrace{y}_{1-times}, \underbrace{y, y, \dots, y}_{(n-1)-times}) \right) \in Z(F) \text{ for all } x, y \in U.$$

This gives

$$\delta(x) \circ \left(\binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n-1} \right) \mathcal{F}(y, y, \dots, y) \in Z(\Re) \text{ for all } x, y \in U.$$

Therefore, we have

 $(2^n-2)\delta(x) \circ F(y, y, ..., y) \in Z(\Re)$ for all $x, y \in U$.

Since \Re is $(2^n - 2)$ torsion free. Then

$$\delta(x) \circ F(y, y, ..., y) \in Z(\Re)$$
 for all $x, y \in U$.

This implies that

$$\delta(x) \circ \delta(y) \in Z(\Re) \text{ for all } x, y \in U.$$
(2.12)

Using (2.9) and (2.12), we obtain

$$x \circ y \in Z(\Re)$$
 for all $x, y \in U$.

Using the same arguments, as we have done in the proof of the Theorem 2.2, we get the result.

Theorem 2.4. Let \Re be a *-prime ring of Char $\Re \neq (2^n - 2)$ and U be a nonzero square closed *-Lie ideal of \Re . Let $F : \underbrace{\Re \times \Re \times \ldots \times \Re}_{n-times} \longrightarrow \Re$ be a symmetric n-additive map and δ be the trace of F. If $[x, y] - \delta(xy) + \delta(yx) \in Z(\Re)$ for all $x, y \in U$, then $U \subseteq Z(\Re)$.

Proof. Suppose that

$$[x, y] - \delta(xy) + \delta(yx) \in Z(\Re) \text{ for all } x, y \in U.$$
(2.13)

Replacing y by y + z in (2.13), we get

$$[x,y] + [x,z] - \delta(xy) - \delta(xz) - \sum_{k=1}^{n-1} \binom{n}{k} h_k(xy,xz) + \delta(yx) + \delta(zx) + \sum_{k=1}^{n-1} \binom{n}{k} h_k(yx,zx) \in Z(\Re).$$
(2.14)

Comparing (2.13) and (2.14), we have

$$\sum_{k=1}^{n-1} \binom{n}{k} h_k(yx, zx) - \sum_{k=1}^{n-1} \binom{n}{k} h_k(yx, zx) \in Z(\Re).$$
(2.15)

Substituting z for y in (2.15), we get

$$\sum_{k=1}^{n-1} \binom{n}{k} h_k(yx, yx) - \sum_{k=1}^{n-1} \binom{n}{k} h_k(xy, xy) \in Z(\Re) \text{ for all } x, y \in U.$$

We obtain

$$\binom{n}{1}h_1(yx,yx) + \binom{n}{2}h_2(yx,yx) + \dots + \binom{n}{n-1}h_{n-1}(yx,yx) - \binom{n}{1}h_1(xy,xy) - \binom{n}{2}h_2(xy,xy) - \dots - \binom{n}{n-1}h_{n-1}(xy,xy) \in Z(\Re)$$

This implies that

$$\begin{pmatrix} \binom{n}{1} \mathcal{F}(\underbrace{yx, yx, \dots, yx}_{(n-1)-times}, \underbrace{yx}_{1-times}) + \binom{n}{2} \mathcal{F}(\underbrace{yx, yx, \dots, yx}_{(n-2)-times}, \underbrace{yx}_{2-times}) + \dots \\ + \binom{n}{n-1} \mathcal{F}(\underbrace{yx}_{1-times}, \underbrace{yx, yx, \dots, yx}_{(n-1)-times}) - \binom{n}{1} \mathcal{F}(\underbrace{xy, xy, \dots, xy}_{(n-1)-times}, \underbrace{xy}_{1-times}) \\ - \binom{n}{2} \mathcal{F}(\underbrace{xy, xy, \dots, xy}_{(n-2)-times}, \underbrace{xy}_{2-times}) - \dots \\ - \binom{n}{n-1} \mathcal{F}(\underbrace{xy}_{1-times}, \underbrace{xy, xy, \dots, xy}_{(n-1)-times}) \end{pmatrix} \in Z(\Re).$$

This gives

$$\begin{pmatrix} \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n-1} \end{pmatrix} \mathcal{F}(yx, yx, \dots, yx) \\ - \begin{pmatrix} \binom{n}{1} + \dots + \binom{n}{n-1} \end{pmatrix} \mathcal{F}(xy, xy, \dots, xy) \in Z(\Re).$$

That is

$$(2^n - 2)\delta(yx) - (2^n - 2)\delta(xy) \in Z(\Re) \text{ for all } x, y \in U.$$

Therefore, we have

$$(2^n - 2)\left(\delta(yx) - \delta(xy)\right) \in Z(\Re) \text{ for all } x, y \in U.$$

Since \Re is $(2^n - 2)$ torsion free, then

$$\delta(yx) - \delta(xy) \in Z(\Re) \text{ for all } x, y \in U.$$
(2.16)

Comparing (2.13) and (2.16), we get $[x, y] \in Z(\Re)$ Thus [r, [x, y]] = 0 for all $x, y \in U, r \in \Re$. Replacing y by 2yx and using the fact that \Re is not of characteristic (2^n-2) , we get [r, [x, yx]] = [r, [x, y]x] = [x, y][r, x]. Again, replacing r by ry, we have $[y, x]\Re[y, x] = \{0\}$ for all $x, y \in U$. Therefore, $[y, x]\Re[y, x] = [y, x]\Re([y, x])^* = \{0\}$ and hence *-primeness of \Re yields that [y, x] = 0 for all $x, y \in U$, by Lemma 2.1, $U \subseteq Z(\Re)$.

Theorem 2.5. Let \Re be a *-prime ring of Char $\Re \neq (2^n-2)$ and U be a nonzero square closed *-Lie ideal of \Re . Let $F : \underbrace{\Re \times \Re \times \ldots \times \Re}_{n-times} \longrightarrow \Re$

be a symmetric n-additive map and δ be the trace of F. If $\delta(x) \circ \delta(y) \mp [x, y] \in Z(\Re)$ for all $x, y \in U$, then $U \subseteq Z(\Re)$.

Proof. Suppose that

$$\delta(x) \circ \delta(y) - [x, y] \in Z(\Re) \text{ for all } x, y \in U.$$
(2.17)

Replacing y by y + z in (2.17), we get

$$\delta(x) \circ (\delta(y) + \delta(z) + \sum_{k=1}^{n-1} \binom{n}{k} h_k(y, z)) - [x, y] - [x, z] \in Z(\Re). (2.18)$$

Comparing (2.17) and (2.18), we have

$$\delta(x) \circ \sum_{k=1}^{n-1} \binom{n}{k} h_k(y, z) \in Z(\Re).$$

This implies that

$$\delta(x) \circ \left(\binom{n}{1} h_1(y, z) + \dots + \binom{n}{n-1} h_{n-1}(y, z) \right) \in Z(\Re).$$
 (2.19)

Substituting z for y in (2.19), we get

$$\delta(x) \circ \left(\binom{n}{1} h_1(y, y) + \binom{n}{2} h_2(y, y) + \dots + \binom{n}{n-1} h_{n-1}(y, y) \right) \in Z(\mathfrak{R}).$$

Therefore, we have

$$\begin{split} \delta(x) \circ \left(\binom{n}{1} \mathcal{F}(\underbrace{y, y, ..., y}_{(n-1)-times}, \underbrace{y}_{1-times}) + \binom{n}{2} \mathcal{F}(\underbrace{y, y, ..., y}_{(n-2)-times}, \underbrace{y}_{2-times}) + ... \\ &+ \binom{n}{n-1} \mathcal{F}(\underbrace{y}_{1-times}, \underbrace{y, y, ..., y}_{(n-1)-times}) \right) \in Z(\Re) \text{ for all } x, y \in U. \end{split}$$

That is

$$\delta(x) \circ \left(\binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n-1} \right) F(y, y, \dots, y) \in Z(\Re) \text{ for all } x, y \in U,$$

and we have

 $(2^n - 2)\delta(x) \circ F(y, y, ..., y) \in Z(\Re)$ for all $x, y \in U$.

Since \Re is $(2^n - 2)$ torsion free, we get

$$\delta(x) \circ F(y, y, ..., y) \in Z(\Re)$$
 for all $x, y \in U$.

This implies that

$$\delta(x) \circ \delta(y) \in Z(\Re). \tag{2.20}$$

ALI AND KUMAR

Using (2.17) and (2.20), we obtain $[x, y] \in Z(\Re)$ for all $x, y \in U$. Arguing the similar manner as in the proof of Theorem 2.4, we get the result.

Similarly, we can prove the case if, $\delta(x) \circ \delta(y) + [x, y] \in Z(\Re)$ for all $x, y \in U$.

Theorem 2.6. Let \Re be a *-prime ring of Char $\Re \neq (2^n-2)$ and U be a nonzero square closed *-Lie ideal of \Re . Let $F : \underbrace{\Re \times \Re \times \ldots \times \Re}_{n-times} \longrightarrow \Re$ be a symmetric n-additive map and δ be the trace of F. If $\delta(x) \circ \delta(y) \mp xy \in Z(\Re)$ for all $x, y \in U$, then $U \subseteq Z(\Re)$.

Proof. Assume that

$$\delta(x) \circ \delta(y) - xy \in Z(\Re) \text{ for all } x, y \in U.$$
(2.21)

Replacing y by y + z in (2.21), we get

$$\delta(x) \circ (\delta(y) + \delta(z) + \sum_{k=1}^{n-1} \binom{n}{k} h_k(y, z) - xy - xz \in Z(\Re). \quad (2.22)$$

Comparing (2.21) and (2.22), we have

$$\delta(x) \circ \sum_{k=1}^{n-1} \binom{n}{k} h_k(y, z) \in Z(\Re).$$

Thus, we obtain

$$\delta(x) \circ \left(\binom{n}{1} h_1(y, z) + \dots + \binom{n}{n-1} h_{n-1}(y, z) \right) \in Z(\Re). \quad (2.23)$$

Substituting y for z in (2.23), we get

$$\delta(x) \circ \left(\binom{n}{1} h_1(y, y) + \binom{n}{2} h_2(y, y) + \dots + \binom{n}{n-1} h_{n-1}(y, y) \right) \in Z(\Re).$$

This implies that

$$\begin{split} \delta(x) \circ \left(\binom{n}{1} \mathcal{F}(\underbrace{y, y, ..., y}_{(n-1)-times}, \underbrace{y}_{1-times}) + \binom{n}{2} \mathcal{F}(\underbrace{y, y, ..., y}_{(n-2)-times}, \underbrace{y}_{2-times}) + ... \\ &+ \binom{n}{n-1} \mathcal{F}(\underbrace{y}_{1-times}, \underbrace{y, y, ..., y}_{(n-1)-times}) \right) \in Z(\Re). \end{split}$$

Therefore, we have

$$\delta(x) \circ \left(\binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n-1} \right) \mathcal{F}(y, y, \dots, y) \in Z(\mathfrak{R}).$$

This implies that

$$(2^n - 2)\delta(x) \circ F(y, y, ..., y) \in Z(\Re)$$
 for all $x, y \in U$.

Since \Re is $(2^n - 2)$ torsion free, we get

$$\delta(x) \circ F(y, y, ..., y) \in Z(\Re)$$
 for all $x, y \in U$.

This implies that

$$\delta(x) \circ \delta(y) \in Z(\Re). \tag{2.24}$$

Using (2.21) and (2.24), we obtain

$$xy \in Z(\Re)$$
 for all $x, y \in U$. (2.25)

Interchanging the role of x and y in (2.25) and subtracting from (2.25), we find

$$[x, y] \in Z(\Re)$$
 for all $x, y \in U$.

Arguing in the similar manner as in the Theorem 2.5, we get the result.

The prove is same for the case $\delta(x) \circ \delta(y) + xy \in Z(\Re)$ for all $x, y \in U$.

Theorem 2.7. Let \Re be a *-prime ring of Char $\Re \neq (2^n-2)$ and U be a nonzero square closed *-Lie ideal of \Re . Let $F : \underbrace{\Re \times \Re \times \ldots \times \Re}_{n-times} \longrightarrow \Re$ be a symmetric n-additive map and δ be the trace of F. If $\delta(x) \circ \delta(y) \mp$ $yx \in Z(\Re)$ for all $x, y \in U$, then $U \subseteq Z(\Re)$.

Proof. The proof runs on the same parallel lines as of the Theorem 2.6. \Box

The following examples illustrates that \Re to be *-prime ring and Char $\Re \neq (2^n - 2)$ for n > 1 are essential in the hypothesis of the above theorems.

Example 2.8. Let
$$\Re = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \mid a, b, c \in \mathbb{S}, \text{ ring of integers} \right\}$$
 and $U = \left\{ \begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix} \mid b \in \mathbb{S} \right\}$. Then $Z(\Re) = \left\{ \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} \mid a \in \mathbb{S} \right\}$. Define

map
$$F : \underbrace{\Re \times \Re \times \dots \times \Re}_{n-times} \longrightarrow \Re$$
 by
$$F\left[\begin{bmatrix} a_1 & b_1 \\ 0 & c_1 \end{bmatrix}, \begin{bmatrix} a_2 & b_2 \\ 0 & c_2 \end{bmatrix}, \cdots, \begin{bmatrix} a_n & b_n \\ 0 & c_n \end{bmatrix} \right] = \begin{bmatrix} a_1 a_2 a_3 \dots a_n & 0 \\ 0 & 0 \end{bmatrix}.$$

It can be verified that \mathcal{F} is *n*-additive with trace δ defined by $\delta : \Re \longrightarrow \Re$ as $\delta \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} = \mathcal{F} \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}, \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}, \cdots, \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \end{bmatrix}$ satisfying hypothesis of the above Theorems. However $U \nsubseteq Z(\Re)$.

Example 2.9. Let $\Re = \left\{ \begin{bmatrix} x & 0 \\ y & z \end{bmatrix} \mid x, y, z \in \mathbb{S}, \text{ ring of integers} \right\}$ and $U = \left\{ \begin{bmatrix} 0 & 0 \\ y & 0 \end{bmatrix} \mid y \in \mathbb{S} \right\}, \text{ here } Z(\Re) = \left\{ \begin{bmatrix} x & 0 \\ 0 & x \end{bmatrix} \mid x \in \mathbb{S} \right\}.$ Define a map $F : \underbrace{\Re \times \Re \times \ldots \times \Re}_{n-times} \longrightarrow \Re$ by $F \left[\begin{bmatrix} x_1 & 0 \\ y_1 & z_1 \end{bmatrix}, \begin{bmatrix} x_2 & 0 \\ y_2 & z_2 \end{bmatrix}, \cdots, \begin{bmatrix} x_n & 0 \\ y_n & z_n \end{bmatrix} \right] = \begin{bmatrix} 0 & 0 \\ 0 & z_1 z_2 z_3 \ldots z_n \end{bmatrix}.$ It can be verified that F is n-additive with trace δ defined by

 $\delta: \Re \longrightarrow \Re \text{ as } \delta \begin{bmatrix} x & 0 \\ y & z \end{bmatrix} = F \begin{bmatrix} x & 0 \\ y & z \end{bmatrix}, \begin{bmatrix} x & 0 \\ y & z \end{bmatrix}, \cdots, \begin{bmatrix} x & 0 \\ y & z \end{bmatrix} \end{bmatrix}$ satisfying hypothesis of the above Theorems. However $U \nsubseteq Z(\Re)$.

Acknowledgments

The authors would like to thank the referee for careful reading.

References

- A. Ali, F. Shujat and K. Kumar, Some functional identities with generalized skew derivation on *-prime rings, Palestine Journal of Mathematics, 07 (2018), 88–98.
- I.N. Herstien, *Rings with involution*, Chicago lectures in mathematics, University of Chicago press, Chicago, III, USA, (1976).
- K.H. Park, On prime and semiprime rings with symmetric n-derivations, J. Chungcheong Math. Soc., 22 (2009), 451–458.
- K.H. Park and Y.S. Jung, On permuting 3-derivations and commutativity in prime near rings, Commun. Korean Math. Soc., 25 (2010), 1–9, DOI 10. 4134/CKMS. 2010. 25. 1001.

- 5. L. Oukhtite and S. Salhi, *Lie ideals and derivations of* σ *prime rings*, International Journal of Algebra, **17** (2007), 25–30.
- M. Ashraf, A. Ali and S. Ali, Some commutativity theorems for rings with generalized derivations, Southeast Asian Bull. Math., 31 (2007), 415–421.
- M.N. Daif and H.E. Bell, Remarks on derivations on semiprime rings, Int. J. Math. and Math. Sci., 15 (1992), 205–206.

A. Ali

Department of Mathematics Aligarh Muslim University, Aligarh-202002, Aligarh, India. Email: asma_ali2@rediffmail.com

K. Kumar

Department of Mathematics Aligarh Muslim University, Aligarh-202002, Aligarh, India. Email: 01kapilmathsamu@gmail.com