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TRACES OF PERMUTING n-ADDITIVE MAPPINGS
IN ∗-PRIME RINGS

A. ALI AND K. KUMAR ∗

Abstract. In this paper, we prove that a nonzero square closed
∗-Lie ideal U of a ∗-prime ring < of Char < 6= (2n − 2) is central,
if one of the following holds: (i)δ(x)δ(y)∓x◦y ∈ Z(<), (ii)[x, y]−
δ(xy)δ(yx) ∈ Z(<), (iii)δ(x)◦δ(y)∓ [x, y] ∈ Z(<), (iv)δ(x)◦δ(y)∓
xy ∈ Z(<), (v)δ(x)δ(y) ∓ yx ∈ Z(<), where δ is the trace of n-
additive map z : <× <× ....×<︸ ︷︷ ︸

n−times

−→ <, for all x, y ∈ U .

1. Introduction

Throughout the paper, < will denote an associative ring with centre
Z(<). A ring < is said to be ∗-prime if a<b = a<b∗ = {0} implies that
either a = 0 or b = 0. For each pair of elements x, y ∈ < we shall write
[x, y] the commutator xy − yx; while the symbol x ◦ y will stand for
the anti-commutator xy+ yx. An additive map x→ x∗ of < into itself
is called an involution on < if it satisfies the conditions: (i) (x∗)∗ = x,
(ii) (xy)∗ = y∗x∗ for all x, y ∈ <. A ring < equipped with an involution
∗ is called a ∗-ring or ring with involution. An additive subgroup U of
a ring < is said to be a Lie ideal of < if [U,<] ⊆ U . A Lie ideal U of
a ∗-ring < is said to be a ∗-Lie ideal, if U∗ = U . A Lie ideal U is said
to be square closed, if for all u ∈ U , then u2 ∈ U . An element x in a
∗-ring < is said to be hermitian element if x∗ = x and skew-hermitian
if x∗ = −x. The set of hermitian and skew-hermitian elements of <
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will be denoted by H(<) and S(<), respectively. The involution ∗ is
said to be of the first kind if Z(<) ⊆ H(<), otherwise it is said to be
of the second kind. In the later case S(<) ∩ Z(<) 6= {0}.
An additive map f : < → < is said to be a derivation, if f(xy) =
f(x)y + xf(y) for all x, y ∈ <. An additive map g : < → < is said to
be a generalized derivation, if there exists a derivation f : < → < such
that g(xy) = g(x)y + xf(y) for all x, y ∈ <. Let n ≥ 2 be a fixed posi-
tive integer. A map z : <× <× ....×<︸ ︷︷ ︸

n−times

−→ < is said to be symmetric

(permuting), if z(x1, x2, ..., xn) = z(xπ(1), xπ(2), ..., xπ(n)) for all xi ∈ <
for every permutation (π(1), π(2), ..., π(n)).
A map z : <× <× ....×<︸ ︷︷ ︸

n−times

−→ < is said to be n-additive, if z is addi-

tive in each variable xi; i = 1, 2, ..., n i.e., z(x1, x2, ..., xi + yi, ..., xn) =
z(x1, x2, ..., xi, ..., xn) + z(x1, x2, ..., yi, ..., xn) for all xi, yi ∈ < and

i = 1, 2, ..., n. On the other hand, let < =

{[
0 0
a b

]
| a, b ∈ C

}
,

where C is a complex field. It is clear that, < is a noncommutative
ring under matrix addition and matrix multiplication.

Define map z : <× <× ....×<︸ ︷︷ ︸
n−times

−→ < by

z
[ [

0 0
a1 b1

]
,

[
0 0
a2 b2

]
, · · · ,

[
0 0
an bn

] ]
=

[
0 0

a1a2a3...an 0

]
.

Then it is easy to see that z is a symmetric n-additive map.
Let n ≥ 2 be a fixed positive integer and let a map δ : < → < de-

fined by δ(x) = z(x, x, ..., x) is called the trace of z. It is obvious that
in case, when z : <× <× ....×<︸ ︷︷ ︸

n−times

−→ < is a symmetric n-additive

mapping, the trace δ of z satisfies the relation
δ(x+y) = δ(x)+δ(y)+

∑n−1
k=1

(
n
k

)
hk(x, y). Since we have z(0, x2, ..., xn) =

z(0 + 0, x2, ..., xn) = z(0, x2, ..., xn) + z(0, x2, ..., xn) for all x, y ∈ <,
we obtain z(0, x2, ..., xn) = 0 for all xi ∈ <; i = 1, 2, ..., n. Hence
we get 0 = z(0, x2, ..., xn), i.e. 0 = z(x1 − x1, x2, ..., xn). This
implies that 0 = z(x1, x2, ..., xn) + z(−x1, x2, ..., xn). It gives that
z(−x1, x2, ..., xn) = −z(x1, x2, ..., xn) for all xi ∈ <; i = 1, 2, ..., n.
This tells us that δ is an odd function, if n is odd and δ is an even
function, if n is even.
In 1992, Daif and Bell [7, Theorem 1] proved that if a semiprime ring <
admits a derivation f such that f([x, y])−[x, y] ∈ Z(<) for all x, y ∈ <,
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then < is commutative. Further, Ashraf at. el. in [6] obtained the
commutativity of a prime ring < admitting a generalized derivation
g on < satisfying one of the following : (i) g(xy) ∓ xy ∈ Z(<), (ii)
g(xy) ∓ yx ∈ Z(<), (iii) g(x)g(y) ∓ xy ∈ Z(<) for all x, y in some
appropriate subset of <. In 2007, Oukhtite and Salhi [5] proved that
let < be a ∗-prime ring such that char < 6= 2, 3. Let L be a nonzero
Lie ideal of < and d a nonzero derivation of < commuting with ∗. If
d2(L) ⊂ Z(<), then L ⊂ Z(<).

Motivated by the aforementioned results, we prove that a nonzero
square closed ∗-Lie ideal U of a ∗-prime ring < of Char < 6= (2n − 2)
is central, if it satisfies one of the following: (i)δ(x)δ(y) ∓ x ◦ y ∈
Z(<), (ii)[x, y] − δ(xy)δ(yx) ∈ Z(<), (iii)δ(x) ◦ δ(y) ∓ [x, y] ∈ Z(<),
(iv)δ(x) ◦ δ(y) ∓ xy ∈ Z(<), (v)δ(x)δ(y) ∓ yx ∈ Z(<), where δ is the
trace of an n-additive map z : <× <× ....×<︸ ︷︷ ︸

n−times

−→ <.

2. Main results

We should do a great deal of calculation with commutators and anti-
commutator routinely using the following basic identities:

x ◦ (yz) = (x ◦ y)z − y[x, z] = y(x ◦ z) + [x, y]z

(xy) ◦ z = x(y ◦ z)− [x, z]y = (x ◦ z)y + x[y, z]

[x, yz] = (x ◦ y)z − y(x ◦ z) = y[x, z] + [x, y]z

Lemma 2.1. [5, Lemma 1] Let < be a ∗-prime ring and U be a nonzero
square closed ∗-Lie ideal of <. If [U,U ] = 0, then U ⊆ Z(<).

Theorem 2.2. Let < be a ∗-prime ring of Char < 6= (2n−2) and U be a
nonzero square closed ∗-Lie ideal of <. Let z : <× <× ....×<︸ ︷︷ ︸

n−times

−→ <

be a symmetric n-additive map and δ be the trace of z. If δ(x)δ(y) ∓
x ◦ y ∈ Z(<) for all x, y ∈ U, then U ⊆ Z(<).

Proof. Suppose that

δ(x)δ(y)− x ◦ y ∈ Z(<) for all x, y ∈ U. (2.1)

Replacing y by y + z in (2.1), we get

δ(x)(δ(y) + δ(z) +
n−1∑
k=1

(
n

k

)
hk(y, z))− x ◦ y − x ◦ z ∈ Z(<). (2.2)
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Comparing (2.1) and (2.2), we have

δ(x)
n−1∑
k=1

(
n

k

)
hk(y, z) ∈ Z(<).

That is

δ(x)

((
n

1

)
h1(y, z) + ...+

(
n

n− 1

)
hn−1(y, z)

)
∈ Z(<). (2.3)

Substituting y for z in (2.3), we get

δ(x)

((
n

1

)
h1(y, y) +

(
n

2

)
h2(y, y) + ...+

(
n

n− 1

)
hn−1(y, y)

)
∈ Z(<).

This implies that

δ(x)

((
n

1

)
z( y, y, ..., y︸ ︷︷ ︸

(n−1)−times

, y︸︷︷︸
1−times

) +

(
n

2

)
z( y, y, ..., y︸ ︷︷ ︸

(n−2)−times

, y︸︷︷︸
2−times

) + ...

+

(
n

n− 1

)
z( y︸︷︷︸

1−times

, y, y, ..., y︸ ︷︷ ︸
(n−1)−times

)

))
∈ Z(<) for all x, y ∈ U.

This gives

δ(x)

((
n

1

)
+

(
n

2

)
+ ...+

(
n

n− 1

))
z(y, y, ..., y) ∈ Z(<) for all x, y ∈ U.

That is

(2n − 2)δ(x)z(y, y, ..., y) ∈ Z(<) for all x, y ∈ U.
Since < is (2n − 2) torsion free, we have

δ(x)z(y, y, ..., y) ∈ Z(<) for all x, y ∈ U.
This implies that

δ(x)δ(y) ∈ Z(<) for all x, y ∈ U. (2.4)

Using (2.1) and (2.4), we obtain

x ◦ y ∈ Z(<) for all x, y ∈ U. (2.5)

Thus [r, (x ◦ y)] = 0 for all x, y ∈ U, r ∈ <. Replacing y by 2yx and
again using the fact that Char < 6= (2n − 2), we get

(y ◦ x)[r, x] = 0 for all x, y ∈ U, r ∈ <. (2.6)

Substituting sr for r, we have

(y ◦ x)<[r, x] = {0} for all x, y ∈ U, r ∈ <. (2.7)
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For all x ∈ U ∩ S∗(<), relation (2.7), yields that (y ◦ x)<[r, x] = {0} =
(y ◦ x)<([r, x])∗. Since < is ∗-prime ring, we obtain either (y ◦ x) = 0
or [r, x] = 0 . Now for any x ∈ U , using the fact x − x∗ ∈ U ∩ S∗(<),
we get y ◦ (x − x∗) = 0 or [r, x − x∗] = 0. If y ◦ (x − x∗) = 0, then
(y ◦x− y ◦x∗) = 0, as y ◦x = 0 ; y ◦x∗ = 0, so we have either y ◦x = 0
or [r, x] = 0. On the other hand, if [r, x− x∗] = 0, then [r, x] = [r, x∗].
This implies that, [r, x∗] = 0. In conclusion, for all x, y ∈ U, r ∈ R,
we have either (y ◦ x) = 0 or [r, x] = 0. Let A = {x ∈ U | (y ◦ x) = 0},
B = {x ∈ U | [r, x] = 0}, for all x, y ∈ U, r ∈ <. Then A and B both
are additive subgroups of U and A ∪ B = U . But a group cannot be
union of two its proper subgroups and therefore A = U or B = U . If
A = U , then (y ◦ x) = 0 for all x, y ∈ U . Replacing x by [x, rx] in the
last expression, we get [x, r][y, x] = 0 for all x, y ∈ U, r ∈ <. Again
replacing r by sr, we get

[x, s]<[y, x] = {0} for all x, y ∈ U ; for all s ∈ <. (2.8)

If x ∈ U ∩ S∗(<), then [x, s]<[y, x] = ([x, s])∗<[y, x] = {0}. Thus
∗-primeness of < yields that, either [x, s] = 0 or [y, x] = 0, but for
any x ∈ U , x − x∗, x + x∗ ∈ U ∩ S∗(<). Then either [x − x∗, s] = 0
or [y, x − x∗] = 0. If [x − x∗, s] = 0, then from (2.8) [x, s]<[y, x] =
([x, s])∗<[y, x] = {0} for all x, y ∈ U for all s ∈ U . Hence either
[x, s] = 0 or [y, x] = 0. Let A1 = {x ∈ U | [x, s] = 0} and B1 =
{x ∈ U | [y, x] = 0}. Again A1 and B1 are additive subgroups of
U such that A1 ∪ B1 = U . But a group can not be union of two its
proper subgroups and therefore A1 = U or B1 = U . If A1 = U , then
[x, s] = 0 for all x ∈ U this implies that U ⊆ Z(<) on the other hand,
if B1 = U , then we have [y, x] = 0 for all x, y ∈ U and hence U ⊆ Z(<)
by Lemma 2.1. Thus, in both the cases we find that U ⊆ Z(<). Now if
B = U then [x, s] = 0 for all x ∈ U for all s ∈ < and again U ⊆ Z(<)
and hence in both the cases we find that U ⊆ Z(<).

Similarly, we can prove the result in case δ(x)δ(y) + x ◦ y ∈ Z(<)
for all x, y ∈ U .

�

Theorem 2.3. Let < be a ∗-prime ring of Char < 6= (2n−2) and U be a
nonzero square closed ∗-Lie ideal of <. Let z : <× <× ....×<︸ ︷︷ ︸

n−times

−→ <

be a symmetric n-additive map and δ be the trace of z. If δ(x)◦ δ(y)∓
x ◦ y ∈ Z(<) for all x, y ∈ U, then U ⊆ Z(<).

Proof. Suppose

δ(x) ◦ δ(y)− x ◦ y ∈ Z(<) for all x, y ∈ U. (2.9)
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Replacing y by y + z in (2.9), we get

δ(x) ◦ (δ(y) + δ(z) +
n−1∑
k=1

(
n

k

)
hk(y, z))− x ◦ y − x ◦ z ∈ Z(<).(2.10)

Comparing (2.9) and (2.10), we have

δ(x) ◦
n−1∑
k=1

(
n

k

)
hk(y, z) ∈ Z(<).

This gives

δ(x) ◦

((
n

1

)
h1(y, z) + ...+

(
n

n− 1

)
hn−1(y, z)

)
∈ Z(<). (2.11)

Substituting y for z in (2.11), we get

δ(x) ◦

((
n

1

)
h1(y, y) +

(
n

2

)
h2(y, y) + ...+

(
n

n− 1

)
hn−1(y, y)

)
∈ Z(<).

This implies that

δ(x) ◦
((

n

1

)
z( y, y, ..., y︸ ︷︷ ︸

(n−1)−times

, y︸︷︷︸
1−times

) +

(
n

2

)
z( y, y, ..., y︸ ︷︷ ︸

(n−2)−times

, y︸︷︷︸
2−times

) + ...

+

(
n

n− 1

)
z( y︸︷︷︸

1−times

, y, y, ..., y︸ ︷︷ ︸
(n−1)−times

)

)
∈ Z(z) for all x, y ∈ U.

This gives

δ(x) ◦

((
n

1

)
+

(
n

2

)
+ ...+

(
n

n− 1

))
z(y, y, ..., y) ∈ Z(<) for all x, y ∈ U.

Therefore, we have

(2n − 2)δ(x) ◦z(y, y, ..., y) ∈ Z(<) for all x, y ∈ U.

Since < is (2n − 2) torsion free. Then

δ(x) ◦z(y, y, ..., y) ∈ Z(<) for all x, y ∈ U.

This implies that

δ(x) ◦ δ(y) ∈ Z(<) for all x, y ∈ U. (2.12)

Using (2.9) and (2.12), we obtain

x ◦ y ∈ Z(<) for all x, y ∈ U.
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Using the same arguments, as we have done in the proof of the Theorem
2.2, we get the result.

�

Theorem 2.4. Let < be a ∗-prime ring of Char < 6= (2n−2) and U be a
nonzero square closed ∗-Lie ideal of <. Let z : <× <× ....×<︸ ︷︷ ︸

n−times

−→ <

be a symmetric n-additive map and δ be the trace of z. If [x, y] −
δ(xy) + δ(yx) ∈ Z(<) for all x, y ∈ U, then U ⊆ Z(<).

Proof. Suppose that

[x, y]− δ(xy) + δ(yx) ∈ Z(<) for all x, y ∈ U. (2.13)

Replacing y by y + z in (2.13), we get

[x, y] + [x,z]− δ(xy)− δ(xz)−
n−1∑
k=1

(
n

k

)
hk(xy, xz)

+ δ(yx) + δ(zx) +
n−1∑
k=1

(
n

k

)
hk(yx, zx) ∈ Z(<).

(2.14)

Comparing (2.13) and (2.14), we have

n−1∑
k=1

(
n

k

)
hk(yx, zx)−

n−1∑
k=1

(
n

k

)
hk(yx, zx) ∈ Z(<). (2.15)

Substituting z for y in (2.15), we get

n−1∑
k=1

(
n

k

)
hk(yx, yx)−

n−1∑
k=1

(
n

k

)
hk(xy, xy) ∈ Z(<) for all x, y ∈ U.

We obtain(
n

1

)
h1(yx, yx) +

(
n

2

)
h2(yx, yx) + ...+

(
n

n− 1

)
hn−1(yx, yx)

−
(
n

1

)
h1(xy, xy)−

(
n

2

)
h2(xy, xy)− ...−

(
n

n− 1

)
hn−1(xy, xy) ∈ Z(<).
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This implies that((
n

1

)
z( yx, yx, ..., yx︸ ︷︷ ︸

(n−1)−times

, yx︸︷︷︸
1−times

) +

(
n

2

)
z(yx, yx, ..., yx︸ ︷︷ ︸

(n−2)−times

, yx︸︷︷︸
2−times

) + ...

+

(
n

n− 1

)
z( yx︸︷︷︸

1−times

, yx, yx, ..., yx︸ ︷︷ ︸
(n−1)−times

)−
(
n

1

)
z(xy, xy, ..., xy︸ ︷︷ ︸

(n−1)−times

, xy︸︷︷︸
1−times

)

−
(
n

2

)
z(xy, xy, ..., xy︸ ︷︷ ︸

(n−2)−times

, xy︸︷︷︸
2−times

)− ...

−
(

n

n− 1

)
z( xy︸︷︷︸

1−times

, xy, xy, ..., xy︸ ︷︷ ︸
(n−1)−times

)

)
∈ Z(<).

This gives((
n

1

)
+

(
n

2

)
+ ...+

(
n

n− 1

))
z(yx, yx, ..., yx)

−

((
n

1

)
+ ...+

(
n

n− 1

))
z(xy, xy, ..., xy) ∈ Z(<).

That is

(2n − 2)δ(yx)− (2n − 2)δ(xy) ∈ Z(<) for all x, y ∈ U.
Therefore, we have

(2n − 2)

(
δ(yx)− δ(xy)

)
∈ Z(<) for all x, y ∈ U.

Since < is (2n − 2) torsion free, then

δ(yx)− δ(xy) ∈ Z(<) for all x, y ∈ U. (2.16)

Comparing (2.13) and (2.16), we get [x, y] ∈ Z(<) Thus [r, [x, y]] =
0 for all x, y ∈ U, r ∈ <. Replacing y by 2yx and using the fact that < is
not of characteristic (2n−2), we get [r, [x, yx]] = [r, [x, y]x] = [x, y][r, x].
Again, replacing r by ry, we have [y, x]<[y, x] = {0} for all x, y ∈ U.
Therefore, [y, x]<[y, x] = [y, x]<([y, x])∗ = {0} and hence ∗-primeness
of < yields that [y, x] = 0 for all x, y ∈ U , by Lemma 2.1, U ⊆ Z(<).

�

Theorem 2.5. Let < be a ∗-prime ring of Char < 6= (2n−2) and U be a
nonzero square closed ∗-Lie ideal of <. Let z : <× <× ....×<︸ ︷︷ ︸

n−times

−→ <
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be a symmetric n-additive map and δ be the trace of z. If δ(x)◦ δ(y)∓
[x, y] ∈ Z(<) for all x, y ∈ U, then U ⊆ Z(<).

Proof. Suppose that

δ(x) ◦ δ(y)− [x, y] ∈ Z(<) for all x, y ∈ U. (2.17)

Replacing y by y + z in (2.17), we get

δ(x) ◦ (δ(y) + δ(z) +
n−1∑
k=1

(
n

k

)
hk(y, z))− [x, y]− [x, z] ∈ Z(<).(2.18)

Comparing (2.17) and (2.18), we have

δ(x) ◦
n−1∑
k=1

(
n

k

)
hk(y, z) ∈ Z(<).

This implies that

δ(x) ◦

((
n

1

)
h1(y, z) + ...+

(
n

n− 1

)
hn−1(y, z)

)
∈ Z(<). (2.19)

Substituting z for y in (2.19), we get

δ(x) ◦

((
n

1

)
h1(y, y) +

(
n

2

)
h2(y, y) + ...+

(
n

n− 1

)
hn−1(y, y)

)
∈ Z(<).

Therefore, we have

δ(x) ◦
((

n

1

)
z( y, y, ..., y︸ ︷︷ ︸

(n−1)−times

, y︸︷︷︸
1−times

) +

(
n

2

)
z( y, y, ..., y︸ ︷︷ ︸

(n−2)−times

, y︸︷︷︸
2−times

) + ...

+

(
n

n− 1

)
z( y︸︷︷︸

1−times

, y, y, ..., y︸ ︷︷ ︸
(n−1)−times

)

)
∈ Z(<) for all x, y ∈ U.

That is

δ(x) ◦

((
n

1

)
+

(
n

2

)
+ ...+

(
n

n− 1

))
z(y, y, ..., y) ∈ Z(<) for all x, y ∈ U,

and we have

(2n − 2)δ(x) ◦z(y, y, ..., y) ∈ Z(<) for all x, y ∈ U.
Since < is (2n − 2) torsion free, we get

δ(x) ◦z(y, y, ..., y) ∈ Z(<) for all x, y ∈ U.
This implies that

δ(x) ◦ δ(y) ∈ Z(<). (2.20)
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Using (2.17) and (2.20), we obtain [x, y] ∈ Z(<) for all x, y ∈ U. Argu-
ing the similar manner as in the proof of Theorem 2.4, we get the result.

Similarly, we can prove the case if, δ(x)◦δ(y)+[x, y] ∈ Z(<) for all x,
y ∈ U.

�

Theorem 2.6. Let < be a ∗-prime ring of Char < 6= (2n−2) and U be a
nonzero square closed ∗-Lie ideal of <. Let z : <× <× ....×<︸ ︷︷ ︸

n−times

−→ <

be a symmetric n-additive map and δ be the trace of z. If δ(x)◦ δ(y)∓
xy ∈ Z(<) for all x, y ∈ U, then U ⊆ Z(<).

Proof. Assume that

δ(x) ◦ δ(y)− xy ∈ Z(<) for all x, y ∈ U. (2.21)

Replacing y by y + z in (2.21), we get

δ(x) ◦ (δ(y) + δ(z) +
n−1∑
k=1

(
n

k

)
hk(y, z))− xy − xz ∈ Z(<). (2.22)

Comparing (2.21) and (2.22), we have

δ(x) ◦
n−1∑
k=1

(
n

k

)
hk(y, z) ∈ Z(<).

Thus, we obtain

δ(x) ◦

((
n

1

)
h1(y, z) + ...+

(
n

n− 1

)
hn−1(y, z)

)
∈ Z(<). (2.23)

Substituting y for z in (2.23), we get

δ(x) ◦

((
n

1

)
h1(y, y) +

(
n

2

)
h2(y, y) + ...+

(
n

n− 1

)
hn−1(y, y)

)
∈ Z(<).

This implies that

δ(x) ◦
((

n

1

)
z( y, y, ..., y︸ ︷︷ ︸

(n−1)−times

, y︸︷︷︸
1−times

) +

(
n

2

)
z( y, y, ..., y︸ ︷︷ ︸

(n−2)−times

, y︸︷︷︸
2−times

) + ...

+

(
n

n− 1

)
z( y︸︷︷︸

1−times

, y, y, ..., y︸ ︷︷ ︸
(n−1)−times

)

)
∈ Z(<).
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Therefore, we have

δ(x) ◦

((
n

1

)
+

(
n

2

)
+ ...+

(
n

n− 1

))
z(y, y, ..., y) ∈ Z(<).

This implies that

(2n − 2)δ(x) ◦z(y, y, ..., y) ∈ Z(<) for all x, y ∈ U.

Since < is (2n − 2) torsion free, we get

δ(x) ◦z(y, y, ..., y) ∈ Z(<) for all x, y ∈ U.

This implies that

δ(x) ◦ δ(y) ∈ Z(<). (2.24)

Using (2.21) and (2.24), we obtain

xy ∈ Z(<) for all x, y ∈ U. (2.25)

Interchanging the role of x and y in (2.25) and subtracting from (2.25),
we find

[x, y] ∈ Z(<) for all x, y ∈ U.

Arguing in the similar manner as in the Theorem 2.5, we get the result.

The prove is same for the case δ(x)◦δ(y)+xy ∈ Z(<) for all x, y ∈ U.
�

Theorem 2.7. Let < be a ∗-prime ring of Char < 6= (2n−2) and U be a
nonzero square closed ∗-Lie ideal of <. Let z : <× <× ....×<︸ ︷︷ ︸

n−times

−→ <

be a symmetric n-additive map and δ be the trace of z. If δ(x)◦ δ(y)∓
yx ∈ Z(<) for all x, y ∈ U, then U ⊆ Z(<).

Proof. The proof runs on the same parallel lines as of the Theorem 2.6.
�

The following examples illustrates that < to be ∗-prime ring and
Char < 6= (2n − 2) for n > 1 are essential in the hypothesis of the
above theorems.

Example 2.8. Let < =

{[
a b
0 c

]
| a, b, c ∈ S, ring of integers

}
and

U =

{[
0 b
0 0

]
| b ∈ S

}
. Then Z(<) =

{[
a 0
0 a

]
| a ∈ S

}
. Define
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map z : <× <× ....×<︸ ︷︷ ︸
n−times

−→ < by

z
[ [

a1 b1
0 c1

]
,

[
a2 b2
0 c2

]
, · · · ,

[
an bn
0 cn

] ]
=

[
a1a2a3...an 0

0 0

]
.

It can be verified that z is n-additive with trace δ defined by

δ : < −→ < as δ

[ [
a b
0 c

] ]
= z

[ [
a b
0 c

]
,

[
a b
0 c

]
, · · · ,

[
a b
0 c

] ]
satisfying hypothesis of the above Theorems. However U * Z(<).

Example 2.9. Let < =

{[
x 0
y z

]
| x, y, z ∈ S, ring of integers

}
and

U =

{[
0 0
y 0

]
| y ∈ S

}
, here Z(<) =

{[
x 0
0 x

]
| x ∈ S

}
. Define a

map z : <× <× ....×<︸ ︷︷ ︸
n−times

−→ < by

z
[ [

x1 0
y1 z1

]
,

[
x2 0
y2 z2

]
, · · · ,

[
xn 0
yn zn

] ]
=

[
0 0
0 z1z2z3...zn

]
.

It can be verified that z is n-additive with trace δ defined by

δ : < −→ < as δ

[ [
x 0
y z

] ]
= z

[ [
x 0
y z

]
,

[
x 0
y z

]
, · · · ,

[
x 0
y z

] ]
satisfying hypothesis of the above Theorems. However U * Z(<).
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