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TRACES OF PERMUTING n-ADDITIVE MAPPINGS
IN »-PRIME RINGS

A. ALI AND K. KUMAR *

ABSTRACT. In this paper, we prove that a nonzero square closed
x-Lie ideal U of a #-prime ring $ of Char & # (2" — 2) is central,
if one of the following holds: (:)d(z)d(y) Faxoy € Z(R), (ii)[x,y] —
§(zy)o(yz) € Z(R), (i1i)d(x)od(y) F [z, y] € Z(R), (iv)d(z)od(y)F
xy € Z(N), (v)0(z)é(y) F yr € Z(RN), where 0 is the trace of n-
additive map F : R X R x ... x ® — R, for all z,y € U.

n—times

1. INTRODUCTION

Throughout the paper, & will denote an associative ring with centre
Z(R). A ring R is said to be *-prime if aRb = a¥tb* = {0} implies that
either a = 0 or b = 0. For each pair of elements x,y € R we shall write
[z, y] the commutator xzy — yz; while the symbol = o y will stand for
the anti-commutator zy 4+ yx. An additive map z — x* of R into itself
is called an involution on R if it satisfies the conditions: (i) (z*)* = z,
(ii) (zy)* = y*z* for all z,y € R. A ring R equipped with an involution
x is called a x-ring or ring with involution. An additive subgroup U of
a ring R is said to be a Lie ideal of R if [U,R] C U. A Lie ideal U of
a *-ring R is said to be a *-Lie ideal, if U* = U. A Lie ideal U is said
to be square closed, if for all u € U, then u? € U. An element z in a
*-ring RN is said to be hermitian element if x* = x and skew-hermitian
if z* = —x. The set of hermitian and skew-hermitian elements of R

MSC(2010): 16W25; 16N60; 16U80
Keywords: Prime rings, *-prime rings, *-Lie ideals, n-additive maps, Trace of n-additive
maps.
Received: 18 April 2020, Accepted: 4 September 2020.
*xCorresponding author .
9



10 ALI AND KUMAR

will be denoted by H(R) and S(R), respectively. The involution * is
said to be of the first kind if Z(R) C H(R), otherwise it is said to be
of the second kind. In the later case S(R) N Z(R) # {0}.

An additive map f : ® — R is said to be a derivation, if f(zy) =
f(z)y + zf(y) for all z,y € R. An additive map g : &+ — R is said to
be a generalized derivation, if there exists a derivation f :  — R such
that g(xy) = g(z)y + xf(y) for all z,y € R. Let n > 2 be a fixed posi-
tive integer. Amap f : ¥ X R x ... x B — R is said to be symmetric

n—times
(permuting), if F (21, %2, ..., ) = F (Tr(1), Tr(2), .-y Tr(ny) for all z; € R
for every permutation (7(1),7(2),...,7(n)).
Amap F : R x R x ... x T — R is said to be n-additive, if F is addi-

n—times

tive in each variable x;; i = 1,2, ...,n i.e., F (T1,%2, ..., Ti + Yiy ooy Tp) =
F(z1, 20, Ty ooy X)) + F (21,225 oy Yiy ooy k) for all x;,y; € R and
i = 1,2,...,n. On the other hand, let ® = { {2 2} | a,b € C },
where C is a complex field. It is clear that, } is a noncommutative
ring under matrix addition and matrix multiplication.

Define map f : R x R x ... x ¥ — RN by

n—times

c[[o o o 0] [o o0]]_ 0 0
aq b1 ’ a9 bg ’ ’ Qp, bn o a10a203...Qy, 0 '

Then it is easy to see that f is a symmetric n-additive map.

Let n > 2 be a fixed positive integer and let a map 6 : ® — R de-
fined by §(z) = F (z, z, ..., x) is called the trace of f. It is obvious that
in case, when f : R xR x ... xR — RN is a symmetric n-additive

-
n—times

mapping, the trace § of F satisfies the relation

S(x4y) = 6(x)+0(y)+> 0, () hi(z,y). Since we have F (0, zs, ..., z,) =
FO+0,z9,...,2,) = F(0,29,....,x,) + F (0,29, ..., z,) for all x,y € R,
we obtain f (0, z,...,x,) = 0 for all z; € R; i = 1,2,...,n. Hence
we get 0 = F(0,29,...,2,), ie. 0 = F(r; — x1,%2,...,x,). This
implies that 0 = F (z1,29,...,2,) + F (=21, 29, ...,x,). It gives that
F(—z1,29,....x,) = —F(x1,29,...,x,) for all z; € R;i = 1,2,...,n.
This tells us that ¢ is an odd function, if n is odd and ¢ is an even
function, if n is even.

In 1992, Daif and Bell [7, Theorem 1] proved that if a semiprime ring $
admits a derivation f such that f([z,y])—[z,y] € Z(R) for all z,y € R,




TRACES OF PERMUTING n-ADDITIVE MAPPINGS IN %-PRIME RINGS 11

then R is commutative. Further, Ashraf at. el. in [0] obtained the
commutativity of a prime ring ® admitting a generalized derivation
g on R satisfying one of the following : (i) g(zy) F zy € Z(R), (ii)
g(xy) Fyzr € Z(R), (iii) g(x)g(y) F zy € Z(R) for all z,y in some
appropriate subset of R. In 2007, Oukhtite and Salhi [5] proved that
let R be a *-prime ring such that char ® # 2,3. Let L be a nonzero
Lie ideal of R and d a nonzero derivation of R commuting with *. If
d*(L) C Z(R), then L C Z(R).

Motivated by the aforementioned results, we prove that a nonzero
square closed x-Lie ideal U of a *-prime ring R of Char R # (2" — 2)
is central, if it satisfies one of the following: (i)0(z)d(y) Fx oy €
Z(R), (ii)[z,y] — 6(xy)d(yz) € Z(R), (1ii)d(x) 0 0(y) F [z,y] € Z(R),
(iv)d(x) o 6(y) Fay € Z(R), (v)o(z)d(y) Fyxr € Z(R), where § is the
trace of an n-additive map f : R x N x ... x R — R.

vV
n—times

2. MAIN RESULTS

We should do a great deal of calculation with commutators and anti-
commutator routinely using the following basic identities:

zo(yz)=(xoy)z—vylr,z] =ylxoz)+ [x,ylz
(zy)oz==a(yoz) — [z, 2y = (zo2)y+zly, 2|
[z,yz] = (xoy)z —y(z 0 2) = ylz, 2] + [z,y]z

Lemma 2.1. [5, Lemma 1] Let R be a -prime ring and U be a nonzero
square closed x-Lie ideal of R. If [U,U] =0, then U C Z(R).

Theorem 2.2. Let R be a x-prime ring of Char R # (2"—2) and U be a
nonzero square closed x-Lie ideal of R. Let F : R X | x ... x R — RN

-~

n—times
be a symmetric n-additive map and § be the trace of F. If 6(x)d(y) F
roy € Z(R) for all x,y € U, then U C Z(R).

Proof. Suppose that
5(x)d(y) —xoy e Z(R) for all z,y € U. (2.1)
Replacing y by y + z in (2.1), we get

3(x)(0(y) +d(2) + i <Z> hi(y,2)) —xoy—xoze Z(RN). (2.2)
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Comparing (2.1) and (2.2), we have

n—1

( )hk y,z) € Z(R).

k=1
That is

5(35)((?) hi(y, 2) + ... + (n " 1) hnl(y,z)> cZR).  (23)

Substituting y for z in (2.3), we get

6(x) ((?)hl(y,y) + (Z)hz(y,y) +ot (n " 1)hnl(y:y)) € Z(R).

This implies that

5(x)<(7>F(W’$)+<Z)F(W’JL>+”'

(n—1)—times l—times (n—2)—times 2—tlimes

+( " )F( Yy ,y,y,...,y)))EZ(?R)forallx,yEU.
Y

n—1
1—times (n—1)—times
This gives
5(:1:)((") + (n) +ot ( ! ))F(y,y,.-',y) € Z(R) for all z,y € U.
1 2 n—1
That is

(2" = 2)0(2)F (y,y,...,y) € Z(R) for all z,y € U.
Since R is (2" — 2)

Sx)F (y,y,...,y) € Z(R) for all z,y € U.
This implies that

torsion free, we have

d(z)o(y) € Z(R) for all z,y € U. (2.4)
Using (2.1) and (2.4), we obtain
roye Z(R) for all z,y € U. (2.5)

Thus [r,(z oy)] = 0 for all z,y € U, r € R. Replacing y by 2yx and
again using the fact that Char & # (2" — 2), we get

(yox)[r,z] =0 for all z,y € U, r € R. (2.6)
Substituting sr for r, we have

(yox)R[r,x] = {0} for all z,y € U, r € R. (2.7)
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For all z € U N S,(R), relation (2.7), yields that (y o x)R[r,z] = {0} =
(y o )R([r, x])*. Since RN is *-prime ring, we obtain either (yoz) =0
or [r,z] =0 . Now for any x € U, using the fact x — 2* € U N S, (RN),
we get yo(x —z*) =0or [r,z—a*] =0. If yo(z—a*) =0, then
(yox—yoz*)=0,asyoxr =0; yoz* =0, so we have either yoxr =0
or [r,z] = 0. On the other hand, if [r,z — 2*] = 0, then [r,z] = [r, 2*].
This implies that, [r,z*] = 0. In conclusion, for all z,y € U, r € R,
we have either (yox) =0or [r,z] =0. Let A={zx €U | (yox) =0},
B={xeU||[r,z] =0}, forall z,y € U, r € R. Then A and B both
are additive subgroups of U and AU B = U. But a group cannot be
union of two its proper subgroups and therefore A =U or B = U. If
A =U, then (yox) =0 for all z,y € U. Replacing x by [z, rx] in the
last expression, we get [z,7][y,x] = 0 for all z,y € U, r € R. Again
replacing r by sr, we get

[z, s]R[y, x| = {0} for all z,y € U; for all s € R. (2.8)

If x € UNS,(RN), then [z,s|R[y,z] = ([z,s])*R[y,z] = {0}. Thus
«-primeness of R yields that, either [z,s] = 0 or [y,z] = 0, but for
any r € U, v —z*, 2 +2* € UN S,(RN). Then either [z — z*,s] =0
or [y,x —z*] = 0. If [z — z*,s] = 0, then from (2.8) [z, s|R[y,z] =
([z,s])* Ry, z] = {0} forall z,y € U forall s € U. Hence either
[z,s] = 0 or [y,z] = 0. Let Ay = {z € U | [x,s] = 0} and B, =
{z € U | [y,xz] = 0}. Again A; and B; are additive subgroups of
U such that A; U By = U. But a group can not be union of two its
proper subgroups and therefore Ay = U or By = U. If A; = U, then
[z,s] = 0 for all x € U this implies that U C Z(R) on the other hand,
if By = U, then we have [y, z] = 0 for all z,y € U and hence U C Z(R)
by Lemma 2.1. Thus, in both the cases we find that U C Z(R). Now if
B =U then [z,s] =0 for all z € U for all s € ® and again U C Z(R)
and hence in both the cases we find that U C Z(R).

Similarly, we can prove the result in case 6(x)d(y) + x oy € Z(R)
for all x,y € U.
0

Theorem 2.3. Let R be a x-prime ring of Char R # (2"—2) and U be a
nonzero square closed x-Lie ideal of R. Let F : R X | x ... x R — RN

n—times
be a symmetric n-additive map and 0 be the trace of F. If §(x)od(y) F
roy € Z(R) for all x,y € U, then U C Z(R).
Proof. Suppose
d(z)od(y) —xoy e Z(R) for all z,y € U. (2.9)
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Replacing y by y + z in (2.9), we get

n—1
n

d(z) o (0 )+ k)hk y,2)) —xoy—zoze Z(RN).(2.10)
k=1

Comparing (2.9) and (2.10), we have

n—

5(z) o i <Z) hi(y, 2) € Z(R).

k=

This gives

5(x) o ((T) ha(y, 2) + oo + <nf 1> B (4, z)) e Z(R). (2.11)

Substituting y for z in (2.11), we get

5(x) o ((?) Iy, y) + (Z) haly,y) + .. + (n " 1) hn_l(y,y)> e Z(R).

This implies that

5(x)o((T>F(w,\y/)+(g>F(w,\y/)Jr...

(n—1)—times l—times (n—2)—times 2—times
n
—i—( )F( Yy ,y,y,...,y))GZ(F)forallx,yEU.
n—1 ~ | = —
1—times (n—1)—times

This gives

5(x) o (G) + (Z) bt (nﬁ 1>)F(y,y, ny) € Z(R) for all 2,y € U.

Therefore, we have
(2" —=2)o(x) o F (y,y,...,y) € Z(R) for all z,y € U.
Since R is (2" — 2) torsion free. Then
5(x) o F(y,y,....,y) € Z(R) for all x,y € U.
This implies that
d(x)od(y) € Z(R) for all z,y € U. (2.12)
Using (2.9) and (2.12), we obtain
roy € Z(R) for all x,y € U.
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Using the same arguments, as we have done in the proof of the Theorem
2.2, we get the result.

OJ

Theorem 2.4. Let R be a x-prime ring of Char R # (2"—2) and U be a
nonzero square closed x-Lie ideal of . Let [ : ¥ x R x ... x ¥ — N

Vv
n—times

be a symmetric n-additive map and 6 be the trace of F. If [z,y] —
d(zy) + 0(yx) € Z(R) for all x,y € U, then U C Z(R).

Proof. Suppose that
[z,y] — 0(zy) + d(yz) € Z(R) for all z,y € U. (2.13)

Replacing y by y + z in (2.13), we get

—_

[z, y] + [2,2] — 0(zy) — 6(x2) — g Z hi(zy, 22)

(]

1

T

(2.14)

—_

+ d(yzx) + d(zx) +

hi(yzx, zz) € Z(R).

N
> 3
N——

—_

Comparing (2.13) and (2.14), we have
n—1 n—1
( )hk yx, 2x) Z ( >hk yx, zx) € Z(RN). (2.15)
=1 =1
Substituting z for y in (2.15), we get
— < /n
2 ( )hk YT, yT) Zl (k:) hi(zy,zy) € Z(R) for all z,y € U.

We obtain

(Z”) hy (yz, yz) + (Z) ha(ya, ya) + ... + (n ’ 1) -1y, yo)

— (T) hy(zy, xy) — (Z) ho(zy, 2y) — ... — (n i 1) hn1(zy, zy) € Z(R).
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This implies that

n n
< )F(y'xaywa“'7y$7 yr >+ ( )F(y‘r7yx7"'7yx7 yx )+
1 —_— =~ 2 —_— =~

(n—1)—times l—times (n—2)—times  2—times
n n
+ F( yx ’yx7 yx7"'7yx> - F(xy7 xy7”'7xy7
n—1 N — 1 —— ——

1-times (n—1)—times (n—1)—times

n
- (Q)F(xy7 xy7 "‘nyJ xy ) e
—_——

(n—2)—times 2—times

—( ! )F( Ty ,xy,xy,.-.,:vy)> € Z(R).
n—1 —~  ———

1—times  (n—1)—times

This gives

(@ * @ Tt (nf 1>>F(yx,yx,...,yx)

ry )
—~—

1—times

- <<T) ot (nﬁ 1>>F(xy,xyw,xy) € Z(R).

That is
(2" = 2)d(yzx) — (2" — 2)d(xy) € Z(R) for all x,y € U.

Therefore, we have

(2" — 2)( d(yz) — 5(a:y)) € Z(R) for all z,y € U.

Since R is (2" — 2) torsion free, then
d(yz) — d6(xy) € Z(R) for all x,y € U. (2.16)

Comparing (2.13) and (2.16), we get [z,y] € Z(R) Thus [r,[z,y]] =
0 for all z,y € U, r € R. Replacing y by 2yx and using the fact that R is
not of characteristic (2" —2), we get [r, [z, yz|] = [r, [z, y]x] = [z, y][r, z].
Again, replacing r by ry, we have [y, z|R[y, z] = {0} for all z,y € U.
Therefore, [y, z|R[y, 2] = [y, z]R([y, z])* = {0} and hence *-primeness
of R yields that [y, z] =0 for all z,y € U, by Lemma 2.1, U C Z(R).
U

Theorem 2.5. Let R be a x-prime ring of Char R # (2"—2) and U be a
nonzero square closed x-Lie ideal of . Let [ : |/ x RN x ... x ¥ — N

Vv
n—times
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be a symmetric n-additive map and 0 be the trace of F. If §(x)od(y) F
[z, y] € Z(R) for all x,y € U, then U C Z(R).
Proof. Suppose that

d(z)od(y) — [z,y] € Z(R) for all z,y € U. (2.17)

Replacing y by y + z in (2.17), we get
nfl
5(x) o (5(y) + (Z) hi(y, 2)) — [2.y] — [z, 2] € Z(R).(2.18)

Comparing (2.17) and ( 18), we have
—1

5(z) o (Z) hi(y, 2) € Z(R).

k=1

3

This implies that

5(z) o ((T) hi(y, 2) + .. + (ni‘ 1> Bt (3, z)) e Z(R). (2.19)

Substituting z for y in (2.19), we get

5(x) o ((2’) hi(y,y) + (Z) ha(y, ) + ... + (n " 1) hnl(y,y)) € Z(R).

Therefore, we have

5(x)o((T>F(w,\yP)+(Z>F(w,\y/)Jr...

(n—1)—times l—times (n—2)—times 2—times

+( ! )F( ) 7y7y77y))€Z(§R> fOI‘&H.’L‘,’yEU.
n—1 T N —

1—times (n—1)—times

That is

d(z) o ((?) + (Z) + ..+ <nﬁ 1>)F(y,y, wy) € ZMR) for all z,y € U,

and we have
(2" —2)0(z) o F (y,y,...,y) € Z(R) for all z,y € U.
Since R is (2" — 2) torsion free, we get
5(x) o F(y,y,...,y) € Z(R) for all x,y € U.
This implies that
d(x) o d(y) € Z(R). (2.20)
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Using (2.17) and (2.20), we obtain [z,y| € Z(R) for all z,y € U. Argu-
ing the similar manner as in the proof of Theorem 2.4, we get the result.

Similarly, we can prove the case if, 0(z)od(y)+[z,y] € Z(R) for all x,
yeU.
0J

Theorem 2.6. Let R be a x-prime ring of Char R # (2"—2) and U be a
nonzero square closed x-Lie ideal of ®. Let [ : - x N x ... x ¥ — N

-~

n—times
be a symmetric n-additive map and 0 be the trace of F. If §(x)od(y) F
xy € Z(R) for all z,y € U, then U C Z(R).

Proof. Assume that
d(x) o d(y) —xy € Z(R) for all z,y € U. (2.21)

Replacing y by y + z in (2.21), we get

d(z) o Z ( )hk (y,2)) —xy —xz € Z(RN). (2.22)
Comparing (2.21) and (2.22), we have
n—1
O ( )hk Y, z E Z(%)
k=1

Thus, we obtain

5(x) o ((T) h(y, 2) + ...+ <n7j 1) B (4, z)) e Z(R). (2.23)

Substituting y for z in (2.23), we get

5(z) o ((T) ha(y,y) + (Z) ha(y,y) + . + (n " 1) hnl(y,y)) e Z(R).

This implies that

5(x)o((T>F(M,\y?)+(Z>F(w,\y/)Jr...

(n—1)—times l—times (n—2)—times 2—times

+(n21)F($,w)) € Z(R).

1—times (n—1)—times
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Therefore, we have

5(x) o ((g‘) + (Z) SR (nf 1>)F(y,y,...,y) € Z(R).

This implies that
(2" —=2)o(x) o F (y,9y,...,y) € Z(R) for all z,y € U.
Since R is (2" — 2) torsion free, we get
d(x)o F(y,y,....y) € Z(R) for all z,y € U.
This implies that

d(x) o d(y) € Z(R). (2.24)
Using (2.21) and (2.24), we obtain
zy € Z(R) for all z,y € U. (2.25)

Interchanging the role of z and y in (2.25) and subtracting from (2.25),
we find

[z,y] € Z(R) for all x,y € U.

Arguing in the similar manner as in the Theorem 2.5, we get the result.

The prove is same for the case §(z)od(y)+zy € Z(R) for all x,y € U.
0J

Theorem 2.7. Let R be a x-prime ring of Char R # (2"—2) and U be a
nonzero square closed x-Lie ideal of ®. Let f : ¥ x N x ... x ¥ — N

Vv
n—times

be a symmetric n-additive map and 0 be the trace of F. If 6(x)od(y) F
yr € Z(R) for all x,y € U, then U C Z(R).

Proof. The proof runs on the same parallel lines as of the Theorem 2.6.
O

The following examples illustrates that 3 to be #-prime ring and
Char ® # (2" — 2) for n > 1 are essential in the hypothesis of the
above theorems.

a b
0

U:{[g 8} |b€S}. ThenZ(&e):Hg 2} |a€S}. Define

Example 2.8. Let R = | a,b,c € S, ring of integers » and
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map f R X R x ... x R — RN by

n—times
r ay bl a9 bg o Qp, bn 1 . a1a203...0y 0
0O ca|’] 0 ¢ |’ 10 e | - 0 01"

It can be verified that F is n-additive with trace d defined by

S ) S AR

satisfying hypothesis of the above Theorems. However U ¢ Z(R).

z 0
z

U:HZ 8} |y€S},hereZ(§R):{{g 2} |x€S}. Define a

map f R X R x ... x K — RN by

TV
n—times

r ry O 9 O o z, 0 10 0
yio 2 || Y2 2|7 | Yn Zn 0 2129%3...2n |
It can be verified that F is n-additive with trace o defined by

el R o)

satisfying hypothesis of the above Theorems. However U ¢ Z(R).

Example 2.9. Let R = | z,y,z € S, ring of integers p and
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