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A GENERALIZATION OF PURE SUBMODULES

F. FARSHADIFAR∗

Abstract. Let R be a commutative ring with identity, S a mul-
tiplicatively closed subset of R, and M be an R-module. The goal
of this work is to introduce the notion of S-pure submodules of
M as a generalization of pure submodules of M and prove a num-
ber of results concerning of this class of modules. We say that a
submodule N of M is S-pure if there exists an s ∈ S such that
s(N ∩ IM) ⊆ IN for every ideal I of R. Also, We say that M is
fully S-pure if every submodule of M is S-pure.

1. Introduction

Throughout this paper R will denote a commutative ring with iden-
tity and S will denote a multiplicatively closed subset of R.

An R-module M is said to be a multiplication module if for every
submodule N of M , there exists an ideal I of R such that N = IM [7].

In [9], Cohn defined a submodule N of an R-module M a pure sub-
module if the sequence 0 → N ⊗ F → M ⊗ F is exact for every
R-module F . In [3], Anderson and Fuller defined the submodule N of
an R-module M a pure submodule if IN = N ∩ IM for every ideal I
of R. In [14], Ribenboim called a submodule N of an R-module M a
pure submodule if rM ∩ N = rN for each r ∈ R. Although the first
condition implies the second [12, p.158], and the second implies the
third, these definitions are not equivalent in general [12, p.158]. The
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three definitions of purity given above are equivalent if M is flat. In
particular, if M is a faithful multiplication module [2].

In this paper, our definition of purity will be that of Anderson and
Fuller [3].

Let S be a multiplicatively closed subset ofR andM be anR-module.
Recently the notions of S-Noetherian rings, S-Noetherian modules, S-
prime submodules, S-multiplication modules, S-2-absorbing submod-
ules, S-comultiplication modules, S-second submodules, and classical
S-2-absorbing submodules introduced and investigated in [5, 1, 8, 15,
4, 16, 17, 10, 13]. The aim of this paper is to introduce the notion of
S-pure submodules of M as a generalisation of pure submodules. We
provide some information concerning this new class of modules.

2. Main results

Definition 2.1. We say that a submodule N of an R-module M is
S-pure if there exists an s ∈ S such that s(N ∩ IM) ⊆ IN for every
ideal I of R.

Definition 2.2. We say that an R-module M is fully S-pure if every
submodule of M is S-pure.

Example 2.3. Let M be an R-module such that AnnR(M) ∩ S 6= ∅.
Then M is a fully S-pure R-module.

Proposition 2.4. Every fully pure R-module is a fully S-pure R-
module. The converse is true if S ⊆ U(R), where U(R) is the set
of units in R.

Proof. This is clear. �

The following example shows that the converse of Proposition 2.4 is
not true in general.

Example 2.5. Let Z be the ring of integers. For a prime number p,
one can see that the submodule pZ of the Z-module Z is not pure.
Take the multiplicatively closed subset S = {pn : n ∈ N ∪ {0}} of Z.
Then for each k ∈ N, p(pZ ∩ (kZ)) ⊆ (pZ)(kZ) implies that pZ is an
S-pure submodule of Z.

Theorem 2.6. Let N and K be two submodules of an R-module M
such that N ⊆ K ⊆M . Then we have the following.

(a) If N is an S-pure submodule of K and K is an S-pure submod-
ule of M , then N is an S-pure submodule of M .

(b) If N is an S-pure submodule of M , then N is an S-pure sub-
module of K.
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(c) If K is an S-pure submodule of M , then K/N is an S-pure
submodule of M/N .

(d) If N is an S-pure submodule of M and K/N is an S-pure sub-
module of M/N , then K is an S-pure submodule of M .

(e) If N is an S-pure submodule of M , then there is a bijection
between the S-pure submodules of M containing N and the S-
pure submodules of M/N .

Proof. (a) Let I be an ideal of R. Then since K is an S-pure submodule
ofM , there exists an s ∈ S such that s(K∩IM) ⊆ IK. SinceN is an S-
pure submodule of K, there exists an t ∈ S such that t(N ∩IK) ⊆ IN .
Therefore,

ts(IM ∩N) = st(IM ∩N ∩K) ⊆ ts(IM ∩K) ∩ stN
⊆ t(IK ∩N) ⊆ IN.

(b) Let I be an ideal of R. Then as N is an S-pure submodule of
M , there exists an s ∈ S such that s(N ∩ IM) ⊆ IN . Hence

s(N ∩ IK) ⊆ s(N ∩ IM) ⊆ IN.

(c) Let I be an ideal of R. Then there exists an s ∈ S such that
s(K ∩ IM) ⊆ IK. Thus

s(K/N∩I(M/N)) = s((K/N)∩((IM+N)/N)) = s((K∩(IM+N))/N)

= (s(K ∩N) + s(K ∩ IM))/N ⊆ (sN + IK)/N

⊆ (N + IK)/N = I(K/N).

(d) Let I be an ideal of R. Since N is an S-pure submodule of
M , there exists an t ∈ S such that t(N ∩ IM) ⊆ IN . Since K/N
is an S-pure submodule of M/N , there exists an t ∈ S such that
s(K/N∩I(M/N)) ⊆ I(K/N). This implies that s(K∩(IM+N))+N ⊆
IK +N . Hence IM ∩ (s(K ∩ IM) +N) ⊆ (IK +N)∩ IM . Therefore,

ts(K ∩ IM) + t(N ∩ IM) ⊆ tIK + t(N ∩ IM) ⊆ tIK + IN ⊆ IK.

Thus ts(K ∩ IM) ⊆ IK.
(e) This follows from parts (c) and (d). �

Recall that the saturation S∗ of S is defined as S∗ = {x ∈ R :
x/1 is a unit of S−1R}. Clearly, S∗ is a multiplicatively closed subset
of R containing S [11].

A multiplicatively closed subset S of R is said to satisfy the maximal
multiple condition if there exists an s ∈ S such that t | s for each t ∈ S.

Proposition 2.7. Let M be an R-module. Then we have the following.

(a) If S1 ⊆ S2 are multiplicatively closed subsets of R and M is a
fully S1-pure R-module, then M is a fully S2-pure R-module.
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(b) M is a fully S-pure R-module if and only if M is a fully S∗-pure
R-module.

(c) If N is an S-pure submodule of M , then sN is an S-pure sub-
module of M for each s ∈ S.

(d) If N and K are submodules of M such that N +K and N ∩K
are S-pure submodules of M . Then N is an S-pure submodule
of M .

(e) If S is satisfying the maximal multiple condition (e.g., S is finite
or S ⊆ U(R)) and {Mλ}Λ is a family of submodules of M
with S-pure submodules Nλ ⊆ Mλ, then ∩λ∈ΛNλ is an S-pure
submodule of ∩λ∈ΛMλ.

(f) If f : M → M is an endomorphism and there exists an s ∈ S
such that sf(x) = f 2(x) for each x ∈ M , then f(M) is an
S-pure submodule of M .

Proof. (a) This is clear.
(b) Let M be a fully S-pure R-module. Since S ⊆ S∗, by part (a),

M is a fully S∗-pure R-module. For the converse, assume that M is a
fully S∗-pure module, N is a submodule of M , and I is an ideal of R.
Then there exists an x ∈ S∗ such that x(N ∩ IM) ⊆ IN . As x ∈ S∗,
x/1 is a unit of S−1R and so (x/1)(a/s) = 1 for some a ∈ R and s ∈ S.
This implies that us = uxa for some u ∈ S. Hence,

us(N ∩ IM) = uxa(N ∩ IM) ⊆ x(N ∩ IM) ⊆ IN.

(c) Let s ∈ S. As N is S-pure, there is an t ∈ S such that t(IM ∩
N) ⊆ IN for each ideal I of R. Therefore,

ts(IM ∩ sN) ⊆ ts(IM ∩N) ⊆ sIN = I(sN).

(d) Let I be an ideal of R. Then there exist s, t ∈ S such that
s((N + K) ∩ IM) ⊆ I(N + K) and t((N ∩ K) ∩ IM) ⊆ I(N ∩ K).
Let n ∈ IM ∩ N . Then sn ∈ s(N + K) ∩ IM ⊆ I(N + K). Hence
sn =

∑n
i=1 ai(ni + ki) for some ai ∈ I, ni ∈ N , and ki ∈ K. It follows

that
∑n

i=1 aiki ∈ N ∩K. Hence t
∑n

i=1 aiki ∈ I(N ∩K) ⊆ IN . Thus
t
∑n

i=1 aiki =
∑n

i=1 bixi for some bi ∈ I and xi ∈ N . Therefore,

stn = st
n∑
i=1

aini + s
n∑
i=1

bixi ∈ IN.

Hence, st(N ∩ IM) ⊆ N .
(e) Let I be an ideal of R. Then there exists an s ∈ S such that

s(Nλ ∩ IM) ⊆ INλ for each λ ∈ Λ. This implies that

s((
⋂
λ∈Λ

Nλ)
⋂

IM) =
⋂
λ∈Λ

s(Nλ

⋂
IM) ⊆ I(

⋂
λ∈Λ

Nλ).
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(f) Let I be an ideal of R and f(x) =
∑n

i=1 aimi ∈ f(M) ∩ IM for
some x,mi ∈ M and ai ∈ I. Then sf(x) = f(f(x)) =

∑n
i=1 aif(mi) ∈

If(M). This implies that s(f(M) ∩ IM) ⊆ If(M). �

Proposition 2.8. Let M be an R-module. Then we have the following.

(a) If N is an S-pure submodule of M , then for each prime ideal p
of R, Np is an Sp-pure submodule of Mp as an Rp-module.

(b) If Nm is an Sm-pure submodule of an Rm-module Mm for each
maximal ideal m of R, then N is an S-pure submodule of M .

Proof. (a) This is straightforward.
(b) Suppose that I is an ideal of R. Then by assumption, for any

maximal ideal m of R, there is an h/a ∈ Sm such that

(h(N ∩ IM))m = h/a(Nm ∩ ImMm) ⊆ ImNm = (IN)m.

This yields that

h(N ∩ IM) ⊆ IN.

�

Theorem 2.9. Let S satisfying the maximal multiple condition and M
be an R-module. Then we have the following.

(a) If {Nλ}λ∈Λ is a chain of S-pure submodules of M , then
∑

λ∈ΛNλ

is an S-pure submodule of M .
(b) If N is a submodule of M , then there is a submodule K of M

maximal with respect to K ⊆ N and K is an S-pure submodule
of M .

Proof. (a) Let I be an ideal of R. Then there exists an s ∈ S such that
s(Nλ ∩ IM) ⊆ INλ for each λ ∈ Λ. This implies that

s(
∑
λ∈Λ

Nλ ∩ IM) = s
∑
λ∈Λ

(Nλ ∩ IM) ⊆ I
∑
λ∈Λ

Nλ,

Since {Nλ}λ∈Λ is a chain.
(b) Let

Σ = {H ≤ N |H is a S − pure submodule of M}.
Then 0 ∈ Σ 6= ∅. Let {Nλ}λ∈Λ be a totally ordered subset of Σ. Then∑

λ∈ΛNλ ≤ N and by part (a),
∑

λ∈ΛNλ is an S-pure submodule of
M . Thus by using Zorn’s Lemma, one can see that Σ has a maximal
element, K say, as needed. �

Let Ri be a commutative ring with identity and Mi be an Ri-module,
for i = 1, 2. Let R = R1 × R2. Then M = M1 ×M2 is an R-module.
Clearly, every submodule of M is in the form of N = N1 × N2 for
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some submodules N1 of M1 and N2 of M2. Also, if Si is a multiplica-
tively closed subset of Ri for each i = 1, 2, then S = S1 × S2 is a
multiplicatively closed subset of R.

Theorem 2.10. Let Mi be an Ri-module and Si ⊆ Ri be a multi-
plicatively closed subset for i = 1, 2. Assume that M = M1 × M2,
R = R1×R2, and S = S1×S2. Then M is a fully S-pure R-module if
and only if Mi is a fully Si-pure Ri-module for i = 1, 2.

Proof. First assume that M is a fully S-pure R-module. It is enough
to show that M1 is a fully S1-pure R1-module. Let N1 be a submodule
of M1 and I1 be an ideal of R1. Then N1 × {0} is a submodule of M
and I1 × {0} is an ideal of R. As M is a fully S-pure R-module, there
exists an s = (s1, s2) ∈ S1 × S2 such that

(s1, s2)((N1 × {0}) ∩M(I1 × {0})) ⊆ (N1 × {0})(I1 × {0}).
By focusing on first coordinate, we have s1(N1∩ I1M1) ⊆ I1N1. Hence,
M1 is a fully S1-pure R1-module. Now suppose that M1 is a fully S1-
pure R1-module and M2 is a fully S2-pure R2-module. Let N be a
submodule of M and I be an ideal of R. Then N = N1 × N2 and
I = I1 × I2, where N1,⊆ M1, N2 ⊆ M2, I1 ⊆ R1, and I2 ⊆ R2.
As M1 is a fully S1-pure R1-module, there exists an s1 ∈ S1 such
that s1(N1 ∩ I1M1) ⊆ I1N1. As M2 is a fully S2-pure R2-module,
there exists an element s2 ∈ S2 such that s2(N2 ∩ I2M2) ⊆ I2N2. Set
s = (s1, s2) ∈ S. Then we have

s(N ∩ IM) = (s1, s2)((N1 ×N2) ∩ (I1 × I2)(M1 ×M2)) =

s1(N1 ∩ I1M1)× s2(N2 ∩ I2M2) ⊆ I1N1 × I2N2 =

(I1 × I2)(N1 ×N2) = IN.

�

In the following theorem, we characterize the fully pure R-modules.
This theorem is analogous to that for multiplication modules considered
in [4, Theorem 1].

Theorem 2.11. Let M be an R-module. Then the following statements
are equivalent:

(a) M is a fully pure R-module;
(b) M is a fully (R − p)-pure R-module for each prime ideal p of

R;
(c) M is a fully (R −m)-pure R-module for each maximal ideal m

of R;
(d) M is a fully (R −m)-pure R-module for each maximal ideal m

of R with Mm 6= 0m.



A GENERALIZATION OF PURE SUBMODULES 7

Proof. (a) ⇒ (b) Let M be a fully pure R-module and p be a prime
ideal of R. Clearly, R− p is multiplicatively closed set of R and hence
M is a fully (R− p)-pure R-module by Proposition 2.4.

(b)⇒ (c) The result follows from the fact that every maximal ideal
is a prime ideal and the part (b).

(c)⇒ (d) This is clear.
(d) ⇒ (a) Let N be a submodule of M , I an ideal of R, and m be

a maximal ideal of R with Mm 6= 0m. As M is a fully (R − m)-pure
module, there exists an s 6∈ m such that s(N ∩ IM) ⊆ IN . It follows
that

(N ∩ IM)m = (s(N ∩ IM))m ⊆ (IN)m.

Now we have (N ∩IM)m ⊆ (IN)m for each maximal ideal m of R. This
implies that N ∩ IM ⊆ IN , as needed. �
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