Journal of Algebra and Related Topics Vol. 8, No 2, (2020), pp 1-8

A GENERALIZATION OF PURE SUBMODULES

F. FARSHADIFAR*

ABSTRACT. Let R be a commutative ring with identity, S a multiplicatively closed subset of R, and M be an R-module. The goal of this work is to introduce the notion of S-pure submodules of M as a generalization of pure submodules of M and prove a number of results concerning of this class of modules. We say that a submodule N of M is S-pure if there exists an $s \in S$ such that $s(N \cap IM) \subseteq IN$ for every ideal I of R. Also, We say that M is fully S-pure if every submodule of M is S-pure.

1. Introduction

Throughout this paper R will denote a commutative ring with identity and S will denote a multiplicatively closed subset of R.

An *R*-module *M* is said to be a *multiplication module* if for every submodule *N* of *M*, there exists an ideal *I* of *R* such that N = IM [7].

In [9], Cohn defined a submodule N of an R-module M a pure submodule if the sequence $0 \to N \otimes F \to M \otimes F$ is exact for every R-module F. In [3], Anderson and Fuller defined the submodule N of an R-module M a pure submodule if $IN = N \cap IM$ for every ideal Iof R. In [14], Ribenboim called a submodule N of an R-module M a pure submodule if $rM \cap N = rN$ for each $r \in R$. Although the first condition implies the second [12, p.158], and the second implies the third, these definitions are not equivalent in general [12, p.158]. The

MSC(2010): 13C13, 13A15

Keywords: Pure submodule, S-pure submodule, fully S-pure module.

Received: 31 July 2020, Accepted: 9 September 2020.

^{*}Corresponding author.

three definitions of purity given above are equivalent if M is flat. In particular, if M is a faithful multiplication module [2].

In this paper, our definition of purity will be that of Anderson and Fuller [3].

Let S be a multiplicatively closed subset of R and M be an R-module. Recently the notions of S-Noetherian rings, S-Noetherian modules, Sprime submodules, S-multiplication modules, S-2-absorbing submodules, S-comultiplication modules, S-second submodules, and classical S-2-absorbing submodules introduced and investigated in [5, 1, 8, 15, 4, 16, 17, 10, 13]. The aim of this paper is to introduce the notion of S-pure submodules of M as a generalisation of pure submodules. We provide some information concerning this new class of modules.

2. Main results

Definition 2.1. We say that a submodule N of an R-module M is S-pure if there exists an $s \in S$ such that $s(N \cap IM) \subseteq IN$ for every ideal I of R.

Definition 2.2. We say that an R-module M is fully S-pure if every submodule of M is S-pure.

Example 2.3. Let M be an R-module such that $Ann_R(M) \cap S \neq \emptyset$. Then M is a fully S-pure R-module.

Proposition 2.4. Every fully pure R-module is a fully S-pure R-module. The converse is true if $S \subseteq U(R)$, where U(R) is the set of units in R.

Proof. This is clear.

The following example shows that the converse of Proposition 2.4 is not true in general.

Example 2.5. Let \mathbb{Z} be the ring of integers. For a prime number p, one can see that the submodule $p\mathbb{Z}$ of the \mathbb{Z} -module \mathbb{Z} is not pure. Take the multiplicatively closed subset $S = \{p^n : n \in \mathbb{N} \cup \{0\}\}$ of \mathbb{Z} . Then for each $k \in \mathbb{N}$, $p(p\mathbb{Z} \cap (k\mathbb{Z})) \subseteq (p\mathbb{Z})(k\mathbb{Z})$ implies that $p\mathbb{Z}$ is an S-pure submodule of \mathbb{Z} .

Theorem 2.6. Let N and K be two submodules of an R-module M such that $N \subseteq K \subseteq M$. Then we have the following.

- (a) If N is an S-pure submodule of K and K is an S-pure submodule of M, then N is an S-pure submodule of M.
- (b) If N is an S-pure submodule of M, then N is an S-pure submodule of K.

 $\mathbf{2}$

- (c) If K is an S-pure submodule of M, then K/N is an S-pure submodule of M/N.
- (d) If N is an S-pure submodule of M and K/N is an S-pure submodule of M/N, then K is an S-pure submodule of M.
- (e) If N is an S-pure submodule of M, then there is a bijection between the S-pure submodules of M containing N and the Spure submodules of M/N.

Proof. (a) Let I be an ideal of R. Then since K is an S-pure submodule of M, there exists an $s \in S$ such that $s(K \cap IM) \subseteq IK$. Since N is an S-pure submodule of K, there exists an $t \in S$ such that $t(N \cap IK) \subseteq IN$. Therefore,

$$ts(IM \cap N) = st(IM \cap N \cap K) \subseteq ts(IM \cap K) \cap stN$$
$$\subseteq t(IK \cap N) \subseteq IN.$$

(b) Let I be an ideal of R. Then as N is an S-pure submodule of M, there exists an $s \in S$ such that $s(N \cap IM) \subseteq IN$. Hence

$$s(N \cap IK) \subseteq s(N \cap IM) \subseteq IN.$$

(c) Let I be an ideal of R. Then there exists an $s \in S$ such that $s(K \cap IM) \subseteq IK$. Thus

$$s(K/N \cap I(M/N)) = s((K/N) \cap ((IM+N)/N)) = s((K \cap (IM+N))/N)$$
$$= (s(K \cap N) + s(K \cap IM))/N \subseteq (sN + IK)/N$$
$$\subseteq (N + IK)/N = I(K/N).$$

(d) Let I be an ideal of R. Since N is an S-pure submodule of M, there exists an $t \in S$ such that $t(N \cap IM) \subseteq IN$. Since K/N is an S-pure submodule of M/N, there exists an $t \in S$ such that $s(K/N \cap I(M/N)) \subseteq I(K/N)$. This implies that $s(K \cap (IM+N)) + N \subseteq IK + N$. Hence $IM \cap (s(K \cap IM) + N) \subseteq (IK + N) \cap IM$. Therefore, $ts(K \cap IM) + t(N \cap IM) \subseteq tIK + t(N \cap IM) \subseteq tIK + IN \subseteq IK$. Thus $ts(K \cap IM) \subseteq IK$.

(e) This follows from parts (c) and (d).

Recall that the saturation S^* of S is defined as $S^* = \{x \in R : x/1 \text{ is a unit of } S^{-1}R\}$. Clearly, S^* is a multiplicatively closed subset of R containing S [11].

A multiplicatively closed subset S of R is said to satisfy the maximal multiple condition if there exists an $s \in S$ such that $t \mid s$ for each $t \in S$.

Proposition 2.7. Let M be an R-module. Then we have the following.

(a) If $S_1 \subseteq S_2$ are multiplicatively closed subsets of R and M is a fully S_1 -pure R-module, then M is a fully S_2 -pure R-module.

- (b) M is a fully S-pure R-module if and only if M is a fully S*-pure R-module.
- (c) If N is an S-pure submodule of M, then sN is an S-pure submodule of M for each $s \in S$.
- (d) If N and K are submodules of M such that N + K and $N \cap K$ are S-pure submodules of M. Then N is an S-pure submodule of M.
- (e) If S is satisfying the maximal multiple condition (e.g., S is finite or $S \subseteq U(R)$) and $\{M_{\lambda}\}_{\Lambda}$ is a family of submodules of M with S-pure submodules $N_{\lambda} \subseteq M_{\lambda}$, then $\cap_{\lambda \in \Lambda} N_{\lambda}$ is an S-pure submodule of $\cap_{\lambda \in \Lambda} M_{\lambda}$.
- (f) If $f: M \to M$ is an endomorphism and there exists an $s \in S$ such that $sf(x) = f^2(x)$ for each $x \in M$, then f(M) is an *S*-pure submodule of *M*.

Proof. (a) This is clear.

(b) Let M be a fully S-pure R-module. Since $S \subseteq S^*$, by part (a), M is a fully S^* -pure R-module. For the converse, assume that M is a fully S^* -pure module, N is a submodule of M, and I is an ideal of R. Then there exists an $x \in S^*$ such that $x(N \cap IM) \subseteq IN$. As $x \in S^*$, x/1 is a unit of $S^{-1}R$ and so (x/1)(a/s) = 1 for some $a \in R$ and $s \in S$. This implies that us = uxa for some $u \in S$. Hence,

$$us(N \cap IM) = uxa(N \cap IM) \subseteq x(N \cap IM) \subseteq IN.$$

(c) Let $s \in S$. As N is S-pure, there is an $t \in S$ such that $t(IM \cap N) \subseteq IN$ for each ideal I of R. Therefore,

$$ts(IM \cap sN) \subseteq ts(IM \cap N) \subseteq sIN = I(sN).$$

(d) Let I be an ideal of R. Then there exist $s, t \in S$ such that $s((N + K) \cap IM) \subseteq I(N + K)$ and $t((N \cap K) \cap IM) \subseteq I(N \cap K)$. Let $n \in IM \cap N$. Then $sn \in s(N + K) \cap IM \subseteq I(N + K)$. Hence $sn = \sum_{i=1}^{n} a_i(n_i + k_i)$ for some $a_i \in I$, $n_i \in N$, and $k_i \in K$. It follows that $\sum_{i=1}^{n} a_i k_i \in N \cap K$. Hence $t \sum_{i=1}^{n} a_i k_i \in I(N \cap K) \subseteq IN$. Thus $t \sum_{i=1}^{n} a_i k_i = \sum_{i=1}^{n} b_i x_i$ for some $b_i \in I$ and $x_i \in N$. Therefore,

$$stn = st \sum_{i=1}^{n} a_i n_i + s \sum_{i=1}^{n} b_i x_i \in IN.$$

Hence, $st(N \cap IM) \subseteq N$.

(e) Let I be an ideal of R. Then there exists an $s \in S$ such that $s(N_{\lambda} \cap IM) \subseteq IN_{\lambda}$ for each $\lambda \in \Lambda$. This implies that

$$s((\bigcap_{\lambda\in\Lambda}N_{\lambda})\bigcap IM)=\bigcap_{\lambda\in\Lambda}s(N_{\lambda}\bigcap IM)\subseteq I(\bigcap_{\lambda\in\Lambda}N_{\lambda}).$$

4

(f) Let *I* be an ideal of *R* and $f(x) = \sum_{i=1}^{n} a_i m_i \in f(M) \cap IM$ for some $x, m_i \in M$ and $a_i \in I$. Then $sf(x) = f(f(x)) = \sum_{i=1}^{n} a_i f(m_i) \in If(M)$. This implies that $s(f(M) \cap IM) \subseteq If(M)$. \Box

Proposition 2.8. Let M be an R-module. Then we have the following.

- (a) If N is an S-pure submodule of M, then for each prime ideal p of R, N_p is an S_p-pure submodule of M_p as an R_p-module.
- (b) If N_m is an S_m-pure submodule of an R_m-module M_m for each maximal ideal m of R, then N is an S-pure submodule of M.

Proof. (a) This is straightforward.

(b) Suppose that I is an ideal of R. Then by assumption, for any maximal ideal \mathfrak{m} of R, there is an $h/a \in S_{\mathfrak{m}}$ such that

$$(h(N \cap IM))_{\mathfrak{m}} = h/a(N_{\mathfrak{m}} \cap I_{\mathfrak{m}}M_{\mathfrak{m}}) \subseteq I_{\mathfrak{m}}N_{\mathfrak{m}} = (IN)_{\mathfrak{m}}.$$

This yields that

$$h(N \cap IM) \subseteq IN.$$

Theorem 2.9. Let S satisfying the maximal multiple condition and M be an R-module. Then we have the following.

- (a) If $\{N_{\lambda}\}_{\lambda \in \Lambda}$ is a chain of S-pure submodules of M, then $\sum_{\lambda \in \Lambda} N_{\lambda}$ is an S-pure submodule of M.
- (b) If N is a submodule of M, then there is a submodule K of M maximal with respect to K ⊆ N and K is an S-pure submodule of M.

Proof. (a) Let I be an ideal of R. Then there exists an $s \in S$ such that $s(N_{\lambda} \cap IM) \subseteq IN_{\lambda}$ for each $\lambda \in \Lambda$. This implies that

$$s(\sum_{\lambda \in \Lambda} N_{\lambda} \cap IM) = s \sum_{\lambda \in \Lambda} (N_{\lambda} \cap IM) \subseteq I \sum_{\lambda \in \Lambda} N_{\lambda},$$

Since $\{N_{\lambda}\}_{\lambda \in \Lambda}$ is a chain.

(b) Let

$$\Sigma = \{ H \le N | H \text{ is a } S - pure \text{ submodule of } M \}.$$

Then $0 \in \Sigma \neq \emptyset$. Let $\{N_{\lambda}\}_{\lambda \in \Lambda}$ be a totally ordered subset of Σ . Then $\sum_{\lambda \in \Lambda} N_{\lambda} \leq N$ and by part (a), $\sum_{\lambda \in \Lambda} N_{\lambda}$ is an *S*-pure submodule of *M*. Thus by using Zorn's Lemma, one can see that Σ has a maximal element, *K* say, as needed.

Let R_i be a commutative ring with identity and M_i be an R_i -module, for i = 1, 2. Let $R = R_1 \times R_2$. Then $M = M_1 \times M_2$ is an R-module. Clearly, every submodule of M is in the form of $N = N_1 \times N_2$ for

some submodules N_1 of M_1 and N_2 of M_2 . Also, if S_i is a multiplicatively closed subset of R_i for each i = 1, 2, then $S = S_1 \times S_2$ is a multiplicatively closed subset of R.

Theorem 2.10. Let M_i be an R_i -module and $S_i \subseteq R_i$ be a multiplicatively closed subset for i = 1, 2. Assume that $M = M_1 \times M_2$, $R = R_1 \times R_2$, and $S = S_1 \times S_2$. Then M is a fully S-pure R-module if and only if M_i is a fully S_i -pure R_i -module for i = 1, 2.

Proof. First assume that M is a fully S-pure R-module. It is enough to show that M_1 is a fully S_1 -pure R_1 -module. Let N_1 be a submodule of M_1 and I_1 be an ideal of R_1 . Then $N_1 \times \{0\}$ is a submodule of Mand $I_1 \times \{0\}$ is an ideal of R. As M is a fully S-pure R-module, there exists an $s = (s_1, s_2) \in S_1 \times S_2$ such that

$$(s_1, s_2)((N_1 \times \{0\}) \cap M(I_1 \times \{0\})) \subseteq (N_1 \times \{0\})(I_1 \times \{0\}).$$

By focusing on first coordinate, we have $s_1(N_1 \cap I_1M_1) \subseteq I_1N_1$. Hence, M_1 is a fully S_1 -pure R_1 -module. Now suppose that M_1 is a fully S_1 pure R_1 -module and M_2 is a fully S_2 -pure R_2 -module. Let N be a submodule of M and I be an ideal of R. Then $N = N_1 \times N_2$ and $I = I_1 \times I_2$, where $N_1 \subseteq M_1, N_2 \subseteq M_2$, $I_1 \subseteq R_1$, and $I_2 \subseteq R_2$. As M_1 is a fully S_1 -pure R_1 -module, there exists an $s_1 \in S_1$ such that $s_1(N_1 \cap I_1M_1) \subseteq I_1N_1$. As M_2 is a fully S_2 -pure R_2 -module, there exists an element $s_2 \in S_2$ such that $s_2(N_2 \cap I_2M_2) \subseteq I_2N_2$. Set $s = (s_1, s_2) \in S$. Then we have

$$s(N \cap IM) = (s_1, s_2)((N_1 \times N_2) \cap (I_1 \times I_2)(M_1 \times M_2)) = s_1(N_1 \cap I_1M_1) \times s_2(N_2 \cap I_2M_2) \subseteq I_1N_1 \times I_2N_2 = (I_1 \times I_2)(N_1 \times N_2) = IN.$$

In the following theorem, we characterize the fully pure R-modules. This theorem is analogous to that for multiplication modules considered in [4, Theorem 1].

Theorem 2.11. Let M be an R-module. Then the following statements are equivalent:

- (a) *M* is a fully pure *R*-module;
- (b) M is a fully (R − p)-pure R-module for each prime ideal p of R;
- (c) M is a fully (R − m)-pure R-module for each maximal ideal m of R;
- (d) M is a fully (R − m)-pure R-module for each maximal ideal m of R with M_m ≠ 0_m.

 $\mathbf{6}$

Proof. $(a) \Rightarrow (b)$ Let M be a fully pure R-module and \mathfrak{p} be a prime ideal of R. Clearly, $R - \mathfrak{p}$ is multiplicatively closed set of R and hence M is a fully $(R - \mathfrak{p})$ -pure R-module by Proposition 2.4.

 $(b) \Rightarrow (c)$ The result follows from the fact that every maximal ideal is a prime ideal and the part (b).

 $(c) \Rightarrow (d)$ This is clear.

 $(d) \Rightarrow (a)$ Let N be a submodule of M, I an ideal of R, and \mathfrak{m} be a maximal ideal of R with $M_{\mathfrak{m}} \neq 0_{\mathfrak{m}}$. As M is a fully $(R - \mathfrak{m})$ -pure module, there exists an $s \notin \mathfrak{m}$ such that $s(N \cap IM) \subseteq IN$. It follows that

$$(N \cap IM)_{\mathfrak{m}} = (s(N \cap IM))_{\mathfrak{m}} \subseteq (IN)_{\mathfrak{m}}.$$

Now we have $(N \cap IM)_{\mathfrak{m}} \subseteq (IN)_{\mathfrak{m}}$ for each maximal ideal \mathfrak{m} of R. This implies that $N \cap IM \subseteq IN$, as needed.

References

- H. Ahmed and H. Sana Modules satisfying the S-Noetherian property and S ACCR, Comm. Algebra, 44 (5) (2016), 1941-1951.
- M.M. Ali and D.J. Smith, Pure submodules of multiplication modules, Beiträge Algebra Geom. 45 (1) (2004) 61–74.
- W. Anderson and K. R. Fuller, *Rings and Categories of Modules*, Springer-Verlag, New York-Heidelberg-Berlin, 1974.
- D.D. Anderson, T. Arabaci, U. Tekir and S. Koç, On S-multiplication modules, Comm. Algebra, 48 (8) (2020), 1-10.
- D. D. Anderson and T. Dumitrescu, S-Noetherian rings, Comm. Algebra, 30 (9) 2002, 4407-4416.
- H. Ansari-Toroghy and F. Farshadifar, Fully idempotent and coidempotent modules, Bull. Iranian Math. Soc. 38 (4) (2012), 987-1005.
- 7. A. Barnard, *Multiplication modules*, J. Algebra, **71** (1981), 174–178.
- Z. Bilgin, M. L. Reyes and U. Tekir, On right S-Noetherian rings and S-Noetherian modules Comm. Algebra, 46 (2) (2018), 863-869.
- 9. P. M. Cohn, On the free product of associative rings, Math. Z. 71 (1959) 380–398.
- 10. F. Farshadifar, *S*-second submodules of a module, Algebra and Discrete Mathematics, to appear.
- R. Gilmer, *Multiplicative Ideal Theory*, Queen's Papers in Pure and Applied Mathematics, No. 90. Kingston, Canada: Queen's University, 1992.
- 12. T. Y. Lam, Lectures on Modules and Rings. Springer 1999.
- O. A. Naji, On Classical S 2-absorbing Submodules, Eurasian Bulletin of Mathematics, 3(1) (2020), 12-19.
- 14. P. Ribenboim, Algebraic Numbers. Wiley 1972.
- E.S. Sevim, T. Arabaci, Ü. Tekir and S. Koc, On S-prime submodules, Turkish Journal of Mathematics, 43 (2) (2019), 1036-1046.
- G. Ulucak, U. Tekir and S. Koc, On S-2-absorbing submodules and vn-regular modules, An. St. Univ. Ovidius Constanta, to appear.
- E. Yildiz, U. Tekir and S. Koç, On S-comultiplication modules, https://arxiv.org/abs/2004.01474.

Faranak Farshadifar

Department of Mathematics, Farhangian University Tehran, Iran. Email: f.farshadifar@cfu.ac.ir

8