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A GENERALIZATION OF PURE SUBMODULES
F. FARSHADIFAR*

ABSTRACT. Let R be a commutative ring with identity, S a mul-
tiplicatively closed subset of R, and M be an R-module. The goal
of this work is to introduce the notion of S-pure submodules of
M as a generalization of pure submodules of M and prove a num-
ber of results concerning of this class of modules. We say that a
submodule N of M is S-pure if there exists an s € S such that
s(NNIM) C IN for every ideal I of R. Also, We say that M is
fully S-pure if every submodule of M is S-pure.

1. Introduction

Throughout this paper R will denote a commutative ring with iden-
tity and S will denote a multiplicatively closed subset of R.

An R-module M is said to be a multiplication module if for every
submodule N of M, there exists an ideal I of R such that N = IM [7].

In [9], Cohn defined a submodule N of an R-module M a pure sub-
module if the sequence 0 — N ® F' — M ® F' is exact for every
R-module F. In [3], Anderson and Fuller defined the submodule N of
an R-module M a pure submodule if IN = N N IM for every ideal [
of R. In [I1], Ribenboim called a submodule N of an R-module M a
pure submodule if rM NN = rN for each r € R. Although the first
condition implies the second [12, p.158], and the second implies the
third, these definitions are not equivalent in general [12, p.158]. The
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three definitions of purity given above are equivalent if M is flat. In
particular, if M is a faithful multiplication module [2].

In this paper, our definition of purity will be that of Anderson and
Fuller [3].

Let S be a multiplicatively closed subset of R and M be an R-module.
Recently the notions of S-Noetherian rings, S-Noetherian modules, S-
prime submodules, S-multiplication modules, S-2-absorbing submod-
ules, S-comultiplication modules, S-second submodules, and classical
S-2-absorbing submodules introduced and investigated in [5, 1, &, 15,

, 16, 17, 10, 13]. The aim of this paper is to introduce the notion of
S-pure submodules of M as a generalisation of pure submodules. We
provide some information concerning this new class of modules.

2. Main results

Definition 2.1. We say that a submodule N of an R-module M is
S-pure if there exists an s € S such that s(N NIM) C IN for every
ideal I of R.

Definition 2.2. We say that an R-module M is fully S-pure if every
submodule of M is S-pure.

Example 2.3. Let M be an R-module such that Anng(M) NS # 0.
Then M is a fully S-pure R-module.

Proposition 2.4. Every fully pure R-module is a fully S-pure R-
module. The converse is true if S C U(R), where U(R) is the set
of units in R.

Proof. This is clear. O

The following example shows that the converse of Proposition 2.4 is
not true in general.

Example 2.5. Let Z be the ring of integers. For a prime number p,
one can see that the submodule pZ of the Z-module Z is not pure.
Take the multiplicatively closed subset S = {p" : n € NU{0}} of Z.
Then for each k € N, p(pZ N (kZ)) C (pZ)(kZ) implies that pZ is an
S-pure submodule of Z.

Theorem 2.6. Let N and K be two submodules of an R-module M
such that N C K C M. Then we have the following.

(a) If N is an S-pure submodule of K and K is an S-pure submod-
ule of M, then N is an S-pure submodule of M.

(b) If N is an S-pure submodule of M, then N is an S-pure sub-
module of K.
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(c) If K is an S-pure submodule of M, then K/N is an S-pure
submodule of M/N.

(d) If N is an S-pure submodule of M and K/N is an S-pure sub-
module of M/N, then K is an S-pure submodule of M.

(e) If N is an S-pure submodule of M, then there is a bijection
between the S-pure submodules of M containing N and the S-
pure submodules of M/N.

Proof. (a) Let I be an ideal of R. Then since K is an S-pure submodule
of M, there exists an s € S such that s(KNIM) C IK. Since N is an S-
pure submodule of K, there exists an ¢t € S such that {(NNIK) C IN.
Therefore,

tsIMNN)=st(IMNNNK)Cts(IMNK)NstN
CHIKNN)CIN.

(b) Let I be an ideal of R. Then as N is an S-pure submodule of
M, there exists an s € S such that s(NNIM) C IN. Hence

s(NNIK)C s(NNIM)CIN.

(c) Let I be an ideal of R. Then there exists an s € S such that
s(KNIM)CIK. Thus
s(K/NNI(M/N)) = s((K/N)N((IM+N)/N)) = s((KN(IM+N))/N)

=(s(KNN)+s(KNIM))/N C (sN+IK)/N
C(N+IK)/N=I(K/N).

(d) Let I be an ideal of R. Since N is an S-pure submodule of
M, there exists an t € S such that ¢(N N IM) C IN. Since K/N
is an S-pure submodule of M/N, there exists an t € S such that
s(K/NNI(M/N)) C I(K/N). This implies that s(KN(IM+N))+N C
IK+N. Hence IMN(s(KNIM)+N) C (IK+ N)NIM. Therefore,

ts(KNIM)+t(NOIM)CtK+t(NNIM)CtIK +IN C IK.

Thus ts(K NIM) C IK.
(e) This follows from parts (c) and (d). O

Recall that the saturation S* of S is defined as S* = {x € R :
x/1is a unit of S™'R}. Clearly, S* is a multiplicatively closed subset
of R containing S [11].

A multiplicatively closed subset S of R is said to satisfy the mazimal
multiple condition if there exists an s € S such that ¢ | s foreacht € S,

Proposition 2.7. Let M be an R-module. Then we have the following.

(a) If S1 C Sy are multiplicatively closed subsets of R and M is a
fully S1-pure R-module, then M is a fully Sy-pure R-module.



4 FARSHADIFAR

(b) M is a fully S-pure R-module if and only if M is a fully S*-pure
R-module.

(¢) If N is an S-pure submodule of M, then sN is an S-pure sub-
module of M for each s € S.

(d) If N and K are submodules of M such that N + K and N N K
are S-pure submodules of M. Then N is an S-pure submodule
of M.

(e) If S is satisfying the maximal multiple condition (e.g., S is finite
or S C U(R)) and {My}a is a family of submodules of M
with S-pure submodules Ny C My, then Nxea Ny is an S-pure
submodule of NyepMy.

(f) If f : M — M is an endomorphism and there exists an s € S
such that sf(x) = f?(x) for each x € M, then f(M) is an
S-pure submodule of M.

Proof. (a) This is clear.

(b) Let M be a fully S-pure R-module. Since S C S*, by part (a),
M is a fully S*-pure R-module. For the converse, assume that M is a
fully S*-pure module, N is a submodule of M, and [ is an ideal of R.
Then there exists an z € S* such that z(NNIM) C IN. As x € S*,
z/1is a unit of SR and so (z/1)(a/s) = 1 for some a € R and s € S.
This implies that us = uxa for some u € S. Hence,

us(NNIM)=uzxa(NNIM)Cxz(NNIM)CIN.

(c) Let s € S. As N is S-pure, there is an t € S such that ¢(/M N
N) C IN for each ideal I of R. Therefore,

ts(IMNsN) Cts(IMNN)CsIN=1I(sN).

(d) Let I be an ideal of R. Then there exist s,t € S such that
sS(N+K)NIM) CI(N+ K)and t(NNK)NIM) C I(NNK).
Let n € IM N N. Then sn € s(N+ K)NIM C I(N + K). Hence
sn =Y. a;(n; +k;) for some a; € I, n; € N, and k; € K. It follows
that > a;k; € NN K. Hence ty ' a;k; € NN K) C IN. Thus
t> 0 aiki =Y 0 bix; for some b; € I and x; € N. Therefore,

stn = stZami +stixi €IN.
i=1 i=1
Hence, st(NNIM) C N.
(e) Let I be an ideal of R. Then there exists an s € S such that
s(NxNIM) C IN, for each A € A. This implies that

s(((Y V) (VIM) = () s(Na(IM) C I([) M)

AEA AEA AEA
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(f) Let I be an ideal of R and f(z) =Y . ,a;m; € f(M)NIM for
some x,m; € M and a; € I. Then sf(z) = f(f(x)) = >, a;f(m;) €
If(M). This implies that s(f(M)NIM) C If(M). O

Proposition 2.8. Let M be an R-module. Then we have the following.

(a) If N is an S-pure submodule of M, then for each prime ideal p
of R, Ny is an Sy-pure submodule of M, as an R,-module.

(b) If Ny is an Sy-pure submodule of an Ry-module My, for each
maximal ideal m of R, then N is an S-pure submodule of M.

Proof. (a) This is straightforward.
(b) Suppose that I is an ideal of R. Then by assumption, for any
maximal ideal m of R, there is an h/a € Sy, such that

(h(NNIM))w=h/a(Ny N IzMy) C [uNy = (IN)y.
This yields that
h(NNIM)CIN.
OJ

Theorem 2.9. Let S satisfying the mazximal multiple condition and M
be an R-module. Then we have the following.
(a) If {Nx}aen is a chain of S-pure submodules of M, then ) ., N
1s an S-pure submodule of M.
(b) If N is a submodule of M, then there is a submodule K of M

mazximal with respect to K C N and K 1is an S-pure submodule
of M.

Proof. (a) Let I be an ideal of R. Then there exists an s € S such that
s(NxNIM) C IN, for each A € A. This implies that

sO) _NaNIM)=sY (Nx\ONIM)CIY Ny,
AEA AEA AEA
Since { Ny }aea is a chain.
(b) Let
¥ ={H < N|H is a S — pure submodule of M}.
Then 0 € X # (). Let {Ny}rea be a totally ordered subset of 3. Then
Y xea Vi < N and by part (a), Yy, Vi is an S-pure submodule of

M. Thus by using Zorn’s Lemma, one can see that > has a maximal
element, K say, as needed. O

Let R; be a commutative ring with identity and M; be an R;-module,
fori =1,2. Let R = Ry X Ry. Then M = M; x M, is an R-module.
Clearly, every submodule of M is in the form of N = N; x N, for
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some submodules Ny of M; and Ny of M,. Also, if S; is a multiplica-
tively closed subset of R; for each ¢ = 1,2, then S = S; x Sy is a
multiplicatively closed subset of R.

Theorem 2.10. Let M; be an R;-module and S; C R; be a multi-
plicatively closed subset for i = 1,2. Assume that M = M; x Mo,
R =Ry X Ry, and S = 51 X Sy. Then M is a fully S-pure R-module if
and only if M; is a fully S;-pure R;-module fori=1,2.

Proof. First assume that M is a fully S-pure R-module. It is enough
to show that M; is a fully Si-pure R;-module. Let N7 be a submodule
of My and I be an ideal of Ry. Then N; x {0} is a submodule of M
and I; x {0} is an ideal of R. As M is a fully S-pure R-module, there
exists an s = (s1, $2) € S1 X S such that

(s1,82) (N1 x {0}) N M (11 x {0})) € (N1 x {0})(1 x {0}).

By focusing on first coordinate, we have s1(NyN 13 M) C I3 N;. Hence,
M is a fully Si-pure R;-module. Now suppose that M; is a fully S;-
pure Ri;-module and M is a fully Sy-pure Ro-module. Let N be a
submodule of M and I be an ideal of R. Then N = N; x N, and
I = [1 X IQ, where Nl,g Ml,NQ - MQ, [1 - Rl> and [2 - RQ.
As M; is a fully Si-pure R;-module, there exists an s; € S; such
that s1(Ny N 1 My) C 1Ny, As M, is a fully Sy-pure Rp-module,
there exists an element sy € Sy such that so(No N I;My) C 19N, Set
s = (s1,52) € S. Then we have

S(Nﬂ IM) = (81,82)(<N1 X Ng) N (Il X IQ)(Ml X MQ)) =
81<N1 N ]1M1) X 82(N2 N IQMQ) - IlNl X IQNQ =
(]1 X IQ)(Nl X Ng) =1IN.
0

In the following theorem, we characterize the fully pure R-modules.
This theorem is analogous to that for multiplication modules considered
in [4, Theorem 1].

Theorem 2.11. Let M be an R-module. Then the following statements
are equivalent:
(a) M is a fully pure R-module;
(b) M is a fully (R — p)-pure R-module for each prime ideal p of
R;
(¢) M is a fully (R — m)-pure R-module for each mazimal ideal m
of R;
(d) M is a fully (R — m)-pure R-module for each mazimal ideal m
of R with My # Oy.
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Proof. (a) = (b) Let M be a fully pure R-module and p be a prime
ideal of R. Clearly, R — p is multiplicatively closed set of R and hence
M is a fully (R — p)-pure R-module by Proposition 2.4.

(b) = (c) The result follows from the fact that every maximal ideal
is a prime ideal and the part (b).

(¢) = (d) This is clear.

(d) = (a) Let N be a submodule of M, I an ideal of R, and m be
a maximal ideal of R with M, # 0,. As M is a fully (R — m)-pure
module, there exists an s ¢ m such that s(N N IM) C IN. It follows
that

(N IM)w = (s(N O IM))m C (IN)m.

Now we have (NNIM )y, € (IN)y, for each maximal ideal m of R. This
implies that N N IM C IN, as needed. OJ
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