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Abstract.This paper deals with the case of variable weights of the inverse model of the mini-
max circle location problem. The goal of the classic minimax circle location problem is finding a
circle in the plane such that the maximum weighted distance from a given set of existing points
to the circumference of the circle is minimized. In the corresponding inverse model, a circle is
given and we should modify the weights of existing points with minimum cost, such that the
given circle becomes optimal. The radius of the given circle can be fixed or variable. In this
paper, both of these cases are investigated and mathematical models are presented for solving
them.
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1 Introduction

In the most single facility location problems a set of points, represent the location of clients,
are given and the goal is finding the location of a facility such that the cost of servicing clients
by the facility is minimized. There are different criteria and objective functions in facility
location problems. Among them, the minisum and minimax single facility location problems
are two basic models in location theory. The goal of minisum problem is minimizing the sum
of weighted distances between clients and the facility, whereas in the minimax problem the goal
is minimizing the maximum weighted distances between clients and the facility. In the circle
location models, the facility is a circle. The radius of circle can be fixed or variable.

There are many researches devoted on the circle location problem. Among them, Brimberg
et al. [3] showed that in the minisum circle location problem with variable radius, there exists
an optimal circle passing through two of the existing facilities. The discrete case of minisum
circle location problem is investigated by Labb et al. [10]. Gholami and Fathali [9] studied the
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minisum circle location problem with positive and negative weights of the existing points and
developed a meta-heuristic algorithm to solve this problem.

The minimax case of the circle location problems with fixed and variable radius have been
considered by Brimberg et al. [2]. Drezner et al. [7] applied the minimax circle location model
to the out-of-roundness problem and suggested an approximate approach to solve the problem.

In some real applications of location models, the facilities may already exist and the aim is
modifying the parameters of the problem with minimum cost, such that the given locations are
optimal. These kind of location models are called inverse location problems.
Among many researches in inverse location models, Cai et al. [6] showed that the inverse minimax
location problem is NP-hard. The inverse minisum single facility location problem has been
considered by Burkard et al. [5] and [4]. Burkard et al. [4] solved the Euclidean case of this
problem with variable vertex weights in O(nlogn) time. Baroughi-Bonab et al. [1] investigated
the inverse minisum single facility location problem with variable coordinates. They showed
the problem with rectilinear and Chebyshev norms are NP-hard. Nazari et al. [11] studied
the inverse backup of minisum facility location problem with variable coordinates on the plane.
Recently, Fathali [8] proposed a row generation method for solving the general case of continuous
inverse location problem.

The classic circle location problems and their inverse models have been applied to make
many decisions in the real world such as locating circular facilities, e.g., a circular irrigation
pipe, circular conveyor belts, or ring roads and out-of-roundness problem (see e.g. Drezner et
al. [7]).

In this paper, we consider the inverse minimax circle location problem with variable weights.
Let a circle with radius r0 is given. Two cases are considered: 1- The fixed radius problem.
In this case, we want to modify the weights of existing points with minimum cost such that
the given circle becomes the optimal with comparing to all other circles with radius r0. 2-
The variable radius problem. This problem asks to modify the weights of existing points with
minimum cost such that the given circle becomes optimal with compare to all other circles with
positive radius. Using some properties on the classical minimax circle location problems we
presented mathematical models for solving the inverse models.

In what follows, the inverse minimax circle location problem with fixed radius is investigated
in Section 2. In Section 3, a mathematical model for the variable radius case of inverse model
is presented. Section 4 contains the summary and the conclusion on this paper.

2 The inverse fixed radius minimax circle location

In this section we consider the fixed radius case of the inverse circle location problem.

First consider the traditional Fixed radius Minimax Circle Location Problem (FMCLP). In
the FMCLP, a fix radius r0 and n points p1, p2, . . . , pn are given in the plane. Each point
represents the location of a client and for i = 1, . . . , n, the point pi has the weight wi. The
problem is finding a circle C = C(x, r0) with center x and radius r0 such that the maximum
weighted distance between the circumference of the circle C and the existing points is minimized,
i.e.

min
x

g(x) = max
j=1,...,n

{wi|d(x,pj)− r0|}, (1)
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where d(x,pj) represents the distance between point pj and the center of circle C.

The proof of the following theorem can be found in [2].

Theorem 1. Consider any pair (pi,pj) with dij = d(pi,pj) > 2r0, and let xij be the weighted
midpoint on segment [pi,pj ] such that

wi(d(xij ,pi)− r0) = wj(d(xij ,pj)− r0). (2)

Let the circle C∗ with center p∗ be the optimal solution of FMCLP and

gij = wi(d(xij ,pi)− r0), for i, j = 1, . . . , n,

gL =

{
grs = max{gij ; ∀i, j such that dij > 2r0}, If there is (i, j)such that dij > 2r0,
0, Otherwise,

and if gL 6= 0 let xm = xrs.

1. If g(xm) = gL, then p∗ = xm and g∗ = g(xm).

2. If g(xm) > gL, then at least three extreme points pi,pj ,pk, exist such that widi(C
∗) =

wjdj(C
∗) = wkdk(C∗), where dj(C) = |d(x,pj)− r0|, for j = 1, . . . , n.

Unfortunately the sub-problem (2) for an arbitrary triple (pi,pj ,pk) does not appear to have
a close-form solution. Therefore Brimberg et al. [2] proposed an algorithm for solving FMCLP,
by using Theorem 1 and the following mathematical programming instead of sub-problem (2).

min K

K ≥ w2
i (r0 − d(x,pi))

2 ∀ i ∈ S, (3)

where S is the associated set of extreme points.

Now consider the inverse case. Let the circle C∗ = C(p∗, r0) be given and we want to modify
the weight of existing points wj , for j = 1, . . . , n, to w∗j = wj+w+

j −w
−
j with minimum cost, such

that the circle C∗ be the optimal with comparing to any other circle with radius r0. w+
j ≥ 0 and

w−j ≥ 0 are the values of augmenting and reduction of the weight of point pj and bounded from

above by u+j and u−j , respectively. Suppose that c+j and c−j denote the cost of augmenting and
reduction of per unit of wj , respectively. Then the inverse fixed radius minimax circle location
problem with variable weights (IFMCLPW) can be modeled as follow.

min
n∑

i=1

(c+i w
+
i + c−i w

−
i ) (4)

max
i
{w∗i |d(p∗,pi)− r0|} ≤ max

i
{w∗i |d(x,pi)− r0|} ∀x ∈ R2 (5)

w∗i = wi + w+
i − w−i i = 1, . . . , n, (6)

0 ≤ w+
i ≤ u+i i = 1, . . . , n, (7)

0 ≤ w−i ≤ u−i i = 1, . . . , n. (8)
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This is a nonlinear model with infinity constraints. Therefor, we are going to find a simpler
model and its optimal solution by using Theorem 1. According to the Theorem 1 the center of
optimal circle is either one of the weighted midpoint on segment [pi,pj ] i.e. xij , or a point p∗

with at least three extreme points such that the value of the objective function for p∗ is better
than any other point with three extreme points.

First consider the case that p∗ is in the weighted midpoints of segments [pi,pj ]. In this case,
we form the set

L = {(i, j)| i < j, dij > 2r0},

and find xij for all (i, j) ∈ L. Then p∗ can be equal to one of the xij ’s. Let

yij =

{
1, If xij is the optimal solution,
0, Otherwise.

Therefore, the inverse problem is converted to the following model:

(P0) min

n∑
i=1

(c+i w
+
i + c−i w

−
i ) (9)

gij = w∗i (d(xij ,pi)− r0), ∀ (i, j) ∈ L, (10)

gij = w∗i (d(xij ,pj)− r0), ∀ (i, j) ∈ L, (11)

max
(i,j)∈L

{w∗i (d(xij ,pi)− r0)} =
∑

(i,j)∈L

yijgij , (12)

max
i=1,··· ,n

{w∗i |d(p∗,pi)− r0|} =
∑

(i,j)∈L

yijgij , (13)

p∗ =
∑

(i,j)∈L

yijxij , (14)

∑
(i,j)∈L

yij = 1, (15)

yij ∈ {0, 1}, (i, j) ∈ L, (16)

w∗i = wi + w+
i − w−i , i = 1, . . . , n, (17)

0 ≤ w+
i ≤ u+i , i = 1, . . . , n, (18)

0 ≤ w−i ≤ u−i , i = 1, . . . , n. (19)

In the second case, we consider all triples (pj ,pk,pl) and find the candidate point xjkl of each
one by using the problem 3. Note that p∗ can only be equal to one of candidate points, so we
define the following binary variable

yjkl =

{
0, if xjkl is the optimal solution,
1, Otherwise.
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Therefore, in this case the inverse problem can be modeled as follows:

(P1) min
n∑

i=1

(c+i w
+
i + c−i w

−
i ) (20)

min K

K ≥ w∗
2

j (r0 − d(xjkl,pj))
2

K ≥ w∗
2

k (r0 − d(xjkl,pk))2

K ≥ w∗
2

l (r0 − d(xjkl,pl))
2

 , ∀ j < k < l, (21)

∣∣∣∣ max
i=1,··· ,n

{w∗i |d(p∗,pi)− r0|} − w∗j |d(xjkl,pj)− r0|
∣∣∣∣ ≤Myjkl, ∀ j < k < l, (22)

max
i=1,··· ,n

{w∗i |d(p∗,pi)− r0|} ≤ max
i=1,··· ,n

{w∗i |d(xjkl,pi)− r0|}, ∀ j < k < l, (23)

p∗ =

n−2∑
j=1

n−1∑
k=j+1

n∑
l=k+1

(1− yjkl)xjkl, (24)

n−2∑
j=1

n−1∑
k=j+1

n∑
l=k+1

(1− yjkl) = 1, (25)

yjkl ∈ {0, 1}, ∀ j < k < l, (26)

w∗i = wi + w+
i − w−i , i = 1, . . . , n, (27)

0 ≤ w+
i ≤ u+i , i = 1, . . . , n, (28)

0 ≤ w−i ≤ u−i , i = 1, . . . , n. (29)

Finally the solution of inverse problem can be obtained by finding the solutions of the
problems (P0) and (P1) with the least objective value.

3 The inverse variable radius minimax circle location

In this section the variable radius case of the inverse circle location problem is investigated.

Consider the same notations as Section 2. The Variable radius Minimax Circle Location
Problem (VMCLP) asks to find the location of a circle C = C(x, r) such that the maximum
weighted distances between the circumference of C and the existing points is minimized, i.e.

min
x,r

g(x, r) =
n

max
j=1
{wj |d(x,pj)− r|}, (30)

The Theorem 1 has been extended to the variable radius case Brimberg et al. [2] as follows.

Theorem 2. Let C∗ = (x∗, r∗) be an Optimal solution of VMCLP, and S be the associated
set of extreme points with maximum weighted distance to C∗, that is widi(C

∗) = wjdj(C
∗) =

wkdk(C∗) = whdh(C∗). Then, |S| ≥ 4, with at least two extreme points located on each side of
C∗.
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In this case, Brimberg et al. [2] used the Theorem 2 and presented an algorithm for solving
VMCLP, by considering the following sub-problem:

min K

K ≥ w2
i (r − d(x,pi))

2, ∀ i ∈ S. (31)

In the inverse problem, a circle C∗ = C(p∗, r∗) be given and we want to modify the weight
of existing points wj , for j = 1, . . . , n, to

w∗j = wj + w+
j − w−j ,

with minimum cost, such that the circle C∗ be the optimal with comparing to any other circle
with positive radius. The other notations are the same as Section 2.

The inverse variable radius minimax circle location problem (IVMCLP) can be modeled as
follows.

min
n∑

i=1

(c+i w
+
i + c−i w

−
i ) (32)

max
i
{w∗i |d(p∗,pi)− r∗|} ≤ max

i
{w∗i |d(x,pi)− r|}, ∀x ∈ R2, r ∈ R+ (33)

w∗i = wi + q+i − q−i , i = 1, . . . , n, (34)

0 ≤ w+
i ≤ u+i , i = 1, . . . , n, (35)

0 ≤ w−i ≤ u−i , i = 1, . . . , n. (36)

To find a simpler model, note that according to Theorem 2 the center of optimal circle is a point
with at least four extreme points such that the value of the objective function for C∗ is better
than any other circle whose center has four extreme points.

Therefore, we should check all quadruples (pj ,pk,pl,ph) where j < k, l < h, j 6= l, k 6= h
and l, h ∈ J+, j, k ∈ J−, where

J− = {i|d(x,pi) < r},

J+ = {i|d(x,pi) > r}.

Then the candidate circle associated of each extreme point Cjklh = (xjklh, rjklh) is obtained by
solving the mathematical programming problem (31).

Not that, C∗ can be only equal to one of these cadidate circles so we define the following
binary varable,

yjklh =

{
0, If Cjklh is an optimal circle,
1, Otherwise.
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Therefore the inverse problem can be modeled as follows

min

n∑
i=1

(c+i w
+
i + c−i w

−
i ) (37)

min K

K ≥ w∗
2

j (rjklh − d(xjklh,pj))
2

K ≥ w∗
2

k (rjklh − d(xjklh,pk))2

K ≥ w∗
2

l (rjklh − d(xjklh,pl))
2

K ≥ w∗
2

h (rjklh − d(xjklh,ph))2


, ∀ j < k, l < h, j 6= l, k 6= h, (38)

∣∣∣∣ max
i=1,··· ,n

{w∗i |d(p∗,pi)− r∗|} − w∗j |d(xjklh,pj)− rjklh|
∣∣∣∣ ≤Myjklh,

∀ j < k, l < h, j 6= l, k 6= h, (39)

max
i=1,··· ,n

{w∗i |d(p∗,pi)− rjklh|} ≤ max
i=1,··· ,n

{w∗i |d(xjklh,pi)− rjklh|},

∀ j < k, l < h, j 6= l, k 6= h, (40)

p∗ =
n−2∑
j=1

n−1∑
k=j+1

n∑
l=k+1

(1− yjklh)xjklh, (41)

r∗ =
n−1∑

j=1, l=1

n∑
k=j+1, h=l+1

j 6=l, k 6=h

(1− yjklh)rjklh, (42)

n−2∑
j=1

n−1∑
k=j+1

n∑
l=k+1

(1− yjklh) = 1, (43)

yjkl ∈ {0, 1}, ∀ j < k < l, (44)

w∗i = wi + w+
i − w−i , i = 1, . . . , n, (45)

0 ≤ w+
i ≤ u+i , i = 1, . . . , n, (46)

0 ≤ w−i ≤ u−i , i = 1, . . . , n. (47)

4 Summary and conclusion

In this paper, we presented the mathematical models for the fixed and variable radius inverse
minimax circle location problems with variable weights of existing points. As the future works,
the other kind of inverse circle location problems such as inverse circle location problem with
Hamming norm and inverse circle location on networks with variable edge lengths can be con-
sidered.
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