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CHARACTERIZATION OF SOME SPECIAL RINGS
VIA LINKAGE

M. JAHANGIRI ∗ AND KH. SAYYARI

Abstract. Providing a description of linked ideals in a commu-

tative Noetherian ring in terms of some associated prime ideals, we

make a characterization of Cohen-Macaulay, Gorenstein and regu-

lar local rings in terms of their linked ideals. More precisely, it is

shown that the local ring (R,m) is Cohen-Macaulay if and only if

any linked ideal is unmixed. Also, (R,m) is Gorenstein if and only

if any unmixed ideal a is linked by every maximal regular sequence

in a.

We also compute the annihilator of top local cohomology mod-

ules in some special cases.

1. introduction

Throughout the paper, R denotes a non-trivial commutative Noe-

therian ring, a and b are non-zero proper ideals of R and M will denote

a finitely generated R-module.

The theory of linkage is an important topic in commutative algebra

and algebraic geometry. It refers to Halphen (1870) and M. Noether

[11](1882) who worked to classify space curves. In 1974 the significant
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work of Peskine and Szpiro [12] stated this theory in the modern alge-

braic language; a and b are said to be linked if there exists a regular

sequence x in their intersection such that a = (x) :R b and b = (x) :R a.

In a recent paper [7], inspired by the works in the ideal case, the

authors present the concept of the linkage of ideals over a module. Let

I ⊆ a∩b be an ideal of R which is generated by an M -regular sequence

and aM 6= M 6= bM . Then, a and b are said to be linked by I over M

if bM = IM :M a and aM = IM :M b. This is a generalization of the

classical concept of linkage when M = R.

In this paper, first we consider the above generalization and define

the set S(I;M), which contains the set of linked radical ideals of R over

M by I. In Section 2, we study some basic properties of this set and,

using them, we characterize the linked radical ideals. Indeed, it is

shown that a radical ideal a is linked if and only if a =
⋂

p∈Λ p for some

R-regular sequence x and some Λ ⊆ Ass R
(x)

(Corollary 2.8).

Computing the annihilator of local cohomology modules is one of

the main problems in this theory and attracts lots of interest, see for

example [1], [13] and [14]. As an application of the above result, we

study the annihilator of local cohomology modules. More precisely, we

show that the radical of the annihilator of top local cohomology module

is a linked ideal (see Proposition 2.14 and Example 3.3).

In Section 3, using the results provided in Section 2, we characterize

Cohen-Macaulay, Gorenstein and regular local rings in terms of their

linked ideals. In particular, it is shown that the finitely generated

module M over a local ring is Cohen-Macaulay if and only if M
aM

is an

unmixed module for all ideals a which are linked over M (see Theorem

3.5). Also, the local ring R is Gorenstein if and only if any unmixed

ideal a is linked by every maximal R-regular sequence in a. A charac-

terization of Gorenstein local rings in term of the ”horizontally linked

modules” is provided, too (Theorem 3.7).



CHARACTERIZATION OF SOME SPECIAL RINGS VIA LINKAGE 69

2. linked ideals over a module

In this section, first, we study some basic properties of ”linked ideals

over a module” and provide some characterization of them. Then, using

this characterization, we make a description of linked ideals in R.

Definition 2.1. Assume that aM 6= M 6= bM and let I ⊆ a ∩ b be an

ideal generated by an M-regular sequence. Then we say that the ideals

a and b are linked by I over M , denoted a ∼(I;M) b, if bM = IM :M a

and aM = IM :M b. The ideals a and b are said to be geometrically

linked by I over M if aM ∩ bM = IM . Also, we say that the ideal a is

linked over M if there exist ideals b and I of R such that a ∼(I;M) b.

If M = R, for abbreviation, a is said to be linked.

Remark 2.2. (1) Note that in the case where M = R, the above

concept is the classical concept of linkage of ideals in [12]. In

general case, linkedness of two ideals over M does not imply

linkedness of them over R and vice versa (see M. Jahangiri and

Kh. Sayyari, Linkage of ideals over a module, [7]).

(2) One can see that by the above definition, I is actually generated

by a maximal M-regular sequence in a ∩ b.

Lemma 2.3. Let I be a proper ideal of R such that a ∼(I;M) b. Then,
M
aM

can be embedded in finite copies of M
IM

.

Proof. It follows from [7, 2.8]. �

In the following, we construct the set of ideals S(I;M) which plays a

fundamental role in the paper. This set, as we show, contains all linked

radical ideals by I over M .

Convention 2.4. Assume that I is an ideal of R which is generated

by an M-regular sequence. Set

S(I;M) := {a / R|I $ a, a = IM :R (IM :M a)}.

Note that S(I;R) actually contains all linked ideals by I.
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Some basic properties of the set S(I;M) are presented in the following

Lemma.

Lemma 2.5. Let I be an ideal of R which is generated by an M-regular

sequence. Then

(i) Ass R
a
⊆ Ass M

IM
, for all a ∈ S(I;M).

(ii) Ass M
IM
− {I} = Spec S(I;M), the set of prime ideals of S(I;M)

(note that I need not to be a prime ideal).

(iii) S(I;M) is closed under finite intersection. More precisely, a1 ∩
a2 ∈ S(I;M), for all a1, a2 ∈ S(I;M) with a1 ∩ a2 6= I.

(iv) S(I;M) is closed under radical. In particular, if a ∈ S(I;M) then
√
a =

⋂
p∈Λ p ∈ S(I;M) for some Λ ⊆ Ass M

IM
− {I}.

(v)
√
a + Ann M ∈ S(I;M), for all ideals a of R which are linked by

I over M .

Proof. Note that it is enough to consider the case where I = 0.

(i) Let a ∈ S(0;M), N := 0 :M a and assume that N = Σt
i=1Rαi for

some α1, ..., αt ∈ N. Then, by the assumption, a = 0 :R N and

using the natural monomorphism R
0:RN

→ ⊕t
i=1Rαi, we get

Ass
R

a
⊆

t⋃
i=1

Ass Rαi ⊆ Ass M.

(ii) Let α ∈M such that p = 0 :R α ∈ Ass M − {0}. Hence,

p = 0 :R α = 0 :R (0 :M p) ∈ S(0;M).

The converse follows from (i).

(iii) It follows from the fact that

a1 ∩ a2 ⊆ 0 :R (0 :M (a1 ∩ a2)) ⊆ (0 :R (0 :M a1)) ∩ (0 :R (0 :M a2)).

(iv) First note that
√
a is a non-zero ideal. Hence

√
a =

⋂
p∈Min a p ∈

S(0;M), by (iii) and (ii).

(v) First, note that
√
a + Ann M =

⋂
p∈Ass M

aM
p. Therefore, by

the assumption and 2.3,
√
a + Ann M =

⋂
p∈Λ p for some Λ ⊆

Ass M and the result follows from (i), (ii) and the fact that

I $ a.
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�

In the following proposition we study when the set S(I;M) is empty.

Proposition 2.6. Let I be a proper ideal of R which is generated by

an M-regular sequence. Then, the following statements hold.

(i) If S(I;M) = ∅ then I is prime.

(ii) If I is prime and M is flat or M
IM

is torsion-free then S(I;M) = ∅.
(iii) If S(I;M) 6= ∅ then Max S(I;M) = Max Ass M

IM
.

Proof. (i) Note that Ass M
IM
6= ∅ and so, by the assumption and

2.5(ii), I ∈ Ass M
IM

.

(ii) If M is flat then Ass M
IM

= {I}, by [10, 23.2].

Also, if M
IM

is torsion-free then, as M
IM

has finite rank, it em-

beds in a finite copies of R
I

. Hence Ass M
IM
⊆ Ass R

I
= {I}.

Now, assume that there exists a ∈ S(I;M). Then, by 2.5,

√
a =

⋂
p∈Λ

p ∈ S(I;M)

for a subset Λ of Ass M
IM
−{I} = ∅, and this is a contradiction.

(iii) Let a ∈ Max S(I;M). Then, by 2.5(iv), a =
√
a =

⋂
p∈Λ p ∈

S(I;M) for some Λ ⊆ Ass M
IM
− {I}. Therefore, by 2.5(ii), a ∈

Max Ass M
IM

.

Now, let p ∈ Max Ass M
IM

. Then, p 6= I, otherwise, as

Max S(I;M) ⊆ Max Ass
M

IM
⊆ V (I),

p = I ⊆ q for all q ∈ Max S(I;M). So, I = q ∈ S(I;M), which is

a contradiction.

Therefore, p ∈ Ass M
IM
−{I} and, by 2.5(ii), p ∈ Max S(I;M).

�

As a corollary of the above proposition, we have a criterion for the

existence of an ideal of R linked by a fixed R-regular sequence I.
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Corollary 2.7. Let I be a proper non-prime ideal of R which is gen-

erated by a R-regular sequence. Then,

Max {a / R|a is linked by I} = Max Ass
R

I
.

We can also characterize linked ideals, as follows.

Corollary 2.8. The following statements hold.

(i) A radical ideal a is linked if and only if a =
⋂

p∈Λ p for some

R-regular sequence x and some Λ ⊆ Ass R
(x)

.

(ii) Non-zero elements of Max (R) and Min R are linked ideals.

(iii) If R isn’t reduced then the nilradical ideal
√

0 is a linked ideal.

Proof. (i) Assume that a is a linked ideal by I. Hence, by [9, Proposi-

tion 5. p594], Ass R
a
⊆ Ass R

I
and a =

⋂
p∈Λ p for some Λ ⊆ Ass R

I
.

Now, let x = x1, ..., xn be a regular sequence and a =
⋂

p∈Λ p for some

Λ ⊆ Ass R
(x)

. Then, in view of [10, 6.3 and Exersice 6.7] and considering

the regular sequence x1, ..., xn−1, x
2
n, we may assume that (x) /∈ Ass R

(x)

and that a % (x). Now, the result follows from 2.5(ii) and (iii).

(ii) and (iii) follow from (i).

�

One may ask whether linking over a module implies linking over

the ring and vice versa. In the following corollary, we consider a case

where linking over the canonical module implies linking over R. For

some other cases, we refer the reader to ”M. Jahangiri and Kh. Sayyari,

Linkage of ideals over a module, [7], Sec.4”.

Corollary 2.9. Let (R,m) be an unmixed complete local ring with the

canonical module wR and a and b be two ideals of R such that a ∼(0;wR)

b. Then
√
a is a linked ideal over R.

Proof. By local duality theorem [2, 11.2.6] and [2, 11.2.7(iii)],

wR
∼= Hom R(Hdim R

m (R), E(
R

m
)).

Therefore, in view of [2, 7.3.2 and 10.2.20],

Ass wR = Att Hdim R
m (R) = Assh R. (1)
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Also, using [6, 2.2(e)], Ann wR = Ker(R → Hom R(wR, wR)) = 0.

Hence, by 2.5,
√
a =

⋂
p∈Λ p for some Λ ⊆ Ass wR. Now, the result

follows from (1) and 2.8(i).

�

Definition 2.10. Let (−)∗ := Hom R(−, R) and consider an exact

sequence F2
f→ F1

g→ M → 0, where F1 and F2 are free R-modules.

Setting Tr M := Coker f ∗ and λM := Ω Tr M , where ”Ω” is the first

syzygy module, we get the exact sequences

0→M∗ g∗→ (F1)∗ → λM → 0

and

0→M∗ g∗→ (F1)∗
f∗
→ (F2)∗ → Tr M → 0.

Now, following [9], a finitely generated R-module M is said to be hor-

izontally linked if λ(λM) ∼= M.

As another example of linked ideals we have the following corollary.

Also, in [4], the authors study the relation between linkdness of M and

that of Ann M as an ideal. In the following, we consider this problem,

too.

Corollary 2.11. Let M be a horizontally linked R-module such that

Ann M 6= 0 or R is not reduced. Then
√

Ann M is a linked ideal.

Proof. As M is a syzygy, Ass M ⊆ Ass R and
√

Ann M = ∩p∈Λp for

some Λ ⊆ Ass R. Also, using the assumption, 0 $
√

0 ⊆
√

Ann M

and the result follows from 2.8. �

In the next two items we describe the ideals that are linked by a

radical ideal and show that they are, actually, geometrically linked.

Theorem 2.12. Let I be an ideal of R which is generated by an R-

regular sequence and Ass R
I

= Min Ass R
I
. Let I = ∩ni=1qi be a minimal

primary decomposition of I. Then

(i) ∩i∈Λqi and ∩i∈{1,...,n}−Λqi are linked by I, where Λ ⊂ {1, ..., n}.
(ii) If I is radical then all ideals which are linked by I are radical.
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Proof. (i) Let qi be pi-primary, for all i = 1, ..., n and let r ∈
{1, ..., n}. We have

I : (∩ri=1qi) = ∩nj=1(qj : (∩ri=1qi))

= ∩nj=r+1(qj : (∩r
i=1qi)) = ∩nj=r+1qj

The last equality follows from the fact that ∩r
i=1qi * pj for all

j > r.

(ii) Assume that a is linked by I. If a = ∩r
j=1Qj is a minimal

primary decomposition of a then, by [9, Proposition 5. p594],

for all j = 1, ..., r, Qj is pj-primary for some pj ∈ Ass R
I

. For

all j = 1, ..., r, we have

I ⊆ Qj ∩ ∩p∈Ass R
I
−{pj}p ⊆ ∩p∈Ass R

I
p = I.

Therefore, Qj ∩ ∩p∈Ass R
I
−{pj}p is another minimal decomposi-

tion of I. Via of Ass R
I

= Min Ass R
I

and second uniqueness

theorem, Qj = pj for all j = 1, ..., r. Therefore, a is radical.

�

Corollary 2.13. Let I be a radical ideal of R which is generated by

an R-regular sequence. Then the ideal a is linked by I if and only if

a = ∩p∈Λp for some Λ ⊂ Ass R
I

. In this case, a and b := ∩p∈Ass R
I
−Λp

are geometrically linked.

In the theory of local cohomology modules, computing the annihila-

tor of these modules attracts lots of interest, see for example [1], [13]

and [14].

The following proposition consider a case where the annihilator of

some local cohomology modules are linked. For another case see exam-

ple 3.3.

Proposition 2.14. Let (R,m) be a complete local ring of dimension

d > 0 and a and b be two ideals of R such that a ∼(0;R) b and cd (a, R) =

d. Then, the following statements hold.

(i)
√

0 : Hd
a (R) is a linked ideal.
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(ii) If R is unmixed and a+b is m-primary then 0 : Hd
a (R) = b and

0 : Hd
b (R) = a.

Proof. (i) First we claim that 0 : Hd
a (R) 6= 0. Suppose the contrary.

Then, in view of [8, 2.4], Ass R = Assh R and
√
a + p = m for

all p ∈ Assh R. On the other hand, by [9, Proposition 5. p594],

there are some p ∈ Ass R such that p ⊇ a. This implies that

p = m which is a contradiction.

Now, let 0 = ∩n
i=1qi be a minimal primary decomposition of

0 such that qi is pi-primary, for all i = 1, ..., n. Then, by [8,

2.4],

0 : Hd
a (R) = ∩rj=1qij , (2)

for some {i1, ..., ir} ⊂ {1, ..., n}. Therefore, by 2.8,
√

0 : Hd
a (R)

is a linked ideal.

(ii) Let R be unmixed. Hence, by theorem 2.12 and (2), 0 : Hd
a (R)

is a linked ideal. Also, by [2, 8.2.6] and the fact that d > 0,

Att Hd
a (R) ⊆ Ass R − V (a). Let p ∈ Ass R − V (a). Then,

p ⊇ b and by the assumption
√
a + p = m. This implies that

p ∈ Att Hd
a (R). Therefore, Att Hd

a (R) = Ass R− V (a) and

0 : Hd
a (R) =

n⋂
i=1,pi+a

qi. (3)

Similarly, Att Hd
b (R) = Ass R−V (b).We claim thatHd

b (R) 6=
0. Suppose the contrary, i.e. Ass R = V (b). So, by [9, Propo-

sition 5. p594], there are some p ∈ Ass R such that p ⊇ a + b.

It follows from the assumption that p = m which is a contra-

diction. Then,

0 : Hd
b (R) =

n⋂
i=1,pi+b

qi. (4)

On the other hand, let a = ∩ki=1Qi and b = ∩lj=1Q
′
j be the

minimal primary decompositions of a and b. Then, by the fact

that Ass R∩V (a+b) = ∅, a and b are geometrically linked and

so a ∩ b = 0. Hence, 0 = ∩ri=1Qi

⋂
∩l

j=1Q
′
j is another minimal
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primary decompositions of 0 and using the second uniqueness

theorem, without lose of generality, one may assume that a =

∩ri=1qi and b = ∩ni=r+1qi. Now, let pi + a, for some i = 1, ..., n.

Then, qi + a and so i > r and qi ⊇ b. Also, if qi ⊇ b, for some

i = 1, ..., n, then qi + a, else pi ⊇ a and pi ∈ Ass R∩V (a+b) =

∅. Hence

{qi|qi ⊇ b} = {qi|qi + a}.

This implies that b = ∩ni=1,pi+aqi and a = ∩ni=1,pi+bqi. Now, the

result follows from (3) and (4).

�

3. characterization of some special rings in terms of

linkage

In this section, we characterize Cohen-Macaulay, Gorenstein and reg-

ular local rings in terms of the linked ideals.

Proposition 3.1. Let R be a Cohen-Macaulay ring. Then

(i) p is a linked ideal, for all p ∈ Spec R− {0}.
(ii) p1 ∩ p2 is a linked ideal, for all p1, p2 ∈ Spec R with p1 ∩ p2 6= 0

and ht p1 = ht p2.

Proof. (i) Let p ∈ Spec R−{0} and t := ht p. Then there exists an

R-regular sequence x1, ..., xt in p and q ∈ Ass R( R
(x1,...,xt)

) such

that p ⊆ q. Via the assumption, p = q and, by 2.8, p is a linked

ideal.

(ii) Let p1, p2 ∈ Spec R such that p1 ∩ p2 6= 0 and t := ht p1 =

ht p2. Then there exists a R-regular sequence x1, ..., xt ∈ p1∩p2.

By the proof of (i), p1, p2 ∈ Ass R( R
(x1,...,xt)

) and the assertion

follows, again, from 2.8.

�

As a corollary of the above proposition and 2.8(i), one can character-

ize the linked radical ideals in a Cohen-Macaulay ring. Recall that M

is said to be relative Cohen-Macaulay with respect to a if H i
a(M) = 0

for all i 6= grade Ma.
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Corollary 3.2. Let R be a Cohen-Macaulay ring. Then

(i) A radical ideal a is a linked ideal in R if and only if a is unmixed.

(ii) If R is relative Cohen-Macaulay with respect to the radical ideal

a then a is linked.

In theorem 3.5, we will show that, in a certain case, part (i) of the

above corollary characterize Cohen-Macaulay rings.

Example 3.3. Let (R,m) be a Cohen-Macaulay complete local ring

and M be a finitely generated R-module. Then, by 3.1(i), every non-

zero prime ideal of Supp M is a linked ideal. Also, by [2, 7.2.11(ii) and

7.3.2], √
Ann Hdim M

m (M) =
⋂

p∈Att Hdim M
m (M)

p =
⋂

p∈Assh M

p

is an unmixed ideal. Therefore, if Ann Hdim M
m (M) 6= 0 then, by 3.2(i),√

Ann Hdim M
m (M) is a linked ideal.

In spite of the proposition 3.1, there are non-Cohen-Macaulay rings

for which every prime ideal is linked.

Example 3.4. Let R be a one dimensional ring with depth R = 0.

Then Spec R = Max R ∪Min R and, by 2.8(ii) and (iii), every prime

ideal of R is linked.

In the rest of this section, we classify regular, Gorenstein and Cohen-

Macaulay rings in terms of their linked ideals.

Theorem 3.5. Let (R,m) be a local ring and Ass M = Min Ass M .

Then the following statements are equivalent.

(i) M is Cohen-Macaulay.

(ii) M
aM

is an unmixed module for all ideals a which are linked over

M .

Proof. ”(i) ⇒ (ii)” Let a be an ideal which is linked by the ideal I

generating by an M -regular sequence over M and let p ∈ Ass R
M
aM

.

Then, by 2.3, p ∈ Ass R
M
IM

. Via Cohen-Macaulayness of M
IM

, dim R
p

=
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dim M
IM

. On the other hand dim M
IM
≥ dim M

aM
. Putting together both

of the estimates, the desired equality is shown to be true.

”(ii) ⇒ (i)” In the case where m ∈ Ass M, clearly, M is Cohen-

Macaulay. So, assume that depth M > 0. Let t ∈ N, x1, ..., xt be an M -

regular sequence and p ∈ Ass R( M
(x1,...,xt)M

). As (x1, ..., xt) ∼((x2
1,...,xt);M)

(x1, ..., xt), by the assumption, M
(x1,...,xt)M

is unmixed. Therefore,

dim M−t ≥ dim M−ht Mp ≥ dim
R

p
= dim

M

(x1, ..., xt)M
= dim M−t.

This implies that ht Mp = t and, hence, M is Cohen-Macaulay.

�

Corollary 3.6. Let (R,m) be a local ring and Ass R = Min R. Then

the following statements are equivalent.

(i) R is Cohen-Macaulay.

(ii) For any ideal I which is generated by an R-regular sequence,

the horizontally linked R
I

-modules are unmixed.

(iii) Any linked ideal is unmixed.

In ”M.T. Dibaei and Y. Khalatpour, Characterizations of generically

Gorenstein and Gorenstein local rings, arxiv: 1708.07948 ” a character-

ization of Gorenstein local rings is presented in terms of the ”generically

linked” ideals, provided R is a Cohen-Macaulay ring.

In the following, we have a general characterization without the as-

sumption that R is Cohen-Macaulay.

Theorem 3.7. Let (R,m) be a local ring. Then the following are equiv-

alent.

(i) R is Gorenstein.

(ii) For any ideal I which is generated by an R-regular sequence,

the unmixed stable R
I

-module M with grade Ann M = grade I

is horizontally linked as R
I

-module.

(iii) Any unmixed ideal a is linked by every maximal R-regular se-

quence (x) with (x) ⊂ a.

Proof. ”(i)⇒ (ii)” It follows from [9, Corollary 9. p.601].
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”(ii)⇒ (iii)” It is clear.

”(iii) ⇒ (i)” We proceed by induction on d := dim R. Let d = 0.

Then every non-zero ideal a of R is unmixed of grade zero and, by the

assumption, 0 :R (0 :R a) = a. Therefore, in view of [3, 3.2.15], R is

Gorenstein.

Now assume that d > 0 and the assertion has been proved for all

local ring of dimension < d. We claim that depth R > 0. Assume to

the contrary that m ∈ Ass R. Then, by the assumption, mj is linked

by the zero ideal and 0 :R (0 :R mj) = mj for all j ∈ N. On the other

hand, there is i ∈ N such that 0 :R mi = 0 :R mi+1. This implies that

mi = 0 and d = 0, which is a contradiction.

Now, let x ∈ m − Z(R), a be an unmixed ideal of grade l and

y1, ..., yl be an arbitrary maximal R-regular sequence in a such that

a 6= (y1, ..., yl), where − : R → R
Rx

is the natural homomorphism.

Then, by [10, Exersice 6.7], a is an unmixed ideal of grade l + 1, and,

by the assumption,

(x, y1, ..., yl) :R ((x, y1, ..., yl) :R a) = a.

In other words,

(y1, ..., yl) :R ((y1, ..., yl) :R a) = a.

This means that a is a linked ideal by (y1, ..., yl). Now, using the

inductive hypothesis, R, and so R, is Gorenstein.

�

As another consequence of 2.5, one can also characterize the regular

local rings.

Proposition 3.8. A local ring (R,m) is regular if and only if there

exists a maximal R-regular sequence x1, ..., xt such that m is not linked

by (x1, ..., xt).

Proof. Let R be a regular local ring and set t := dim R. Then, there

exists a R-regular sequence x1, ..., xt such that m = (x1, ..., xt). There-

fore, m is not linked by (x1, ..., xt).
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Now, assume that there exists a maximalR-regular sequence x1, ..., xt

such that m is not linked by (x1, ..., xt). As m ∈ Ass R
(x1,...,xt)

, by 2.5

(i), m = (x1, ..., xt). Therefore, R is a regular ring.

�
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