تعداد نشریات | 31 |
تعداد شمارهها | 743 |
تعداد مقالات | 7,072 |
تعداد مشاهده مقاله | 10,150,472 |
تعداد دریافت فایل اصل مقاله | 6,858,171 |
نانوبومسمشناسی نانوذرات اکسید آهن مغناطیسی فیکوبیوژن در مراحل رویانی و لاروی ماهی گورخری (Danio rerio) | ||
فیزیولوژی و بیوتکنولوژی آبزیان | ||
دوره 8، شماره 2، شهریور 1399، صفحه 21-46 اصل مقاله (948.02 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/japb.2020.12949.1324 | ||
نویسندگان | ||
سکینه مشجور1؛ علی شهریاری* 2؛ مرتضی یوسف زادی3؛ مجتبی علیشاهی4 | ||
1دکتری زیستشناسی دریا، گروه زیستشناسی دریا، دانشکده علوم و فنون دریایی، دانشگاه هرمزگان، بندرعباس، ایران | ||
2استاد گروه بیوشیمی و زیستشناسی مولکولی، دانشکده دامپزشکی، دانشگاه شهید چمران اهواز، اهواز، ایران | ||
3دانشیار گروه زیستشناسی دریا، دانشکده علوم و فنون دریایی، دانشگاه هرمزگان، بندرعباس، ایران | ||
4استاد گروه علوم درمانگاهی، دانشکده دامپزشکی، دانشگاه شهید چمران اهواز، اهواز، ایران | ||
چکیده | ||
به منظور پیشبینی اثرات زیستمحیطی نانوذرات اکسید آهن مغناطیسی (مگنتیت یا Bio-Fe3O4) زیستتولید شده توسط جلبک سبز دریایی Ulva flexuosa در محیطهای آبی، سمیت آن بر مراحل رویانی و لاروی ماهی گورخری Danio rerio به عنوان یک مدل آبزی، ارزیابی شد. برای این منظور، تعداد10 تخم لقاح یافته ماهی در معرض غلظتهای مختلف نانوذرات Bio-Fe3O4 (0 ،10، 50، 100، 200 و500 میلیگرم در لیتر) در پلیت های 6 خانه و در 6 تکرار قرار گرفت و ارزیابی نمونهها بعد از 12، 48، 72 ،96، 110و 134ساعت صورت پذیرفت. نتایج به دست آمده نشان داد که درصد تفریخ تخم ماهی گورخری و نرخ بقای لاروی با افزایش زمان مواجهه و غلظت نانوذرات مگنتیت کاهش یافت (05/0p <)، به نحوی که در بالاترین غلظت (500 میلیگرم در لیتر) پس از 48 ساعت نرخ تفریخ تا 6/36 درصد کاهش نشان داد (LC50 h48: 2/638 میلیگرم در لیتر) و نرخ بقای لاروی نیز پس از 134ساعت به 3/43 درصد رسید (LC50 h134: 4/645 میلیگرم در لیتر). میانگین درصد کل ناهنجاریهای اسکلتی در ماهیان گورخری به طور معنیداری تابع الگوی افزایش غلظت و زمان در طی مجاورت با نانوذرات بود و در بالاترین غلظت (500 میلیگرم در لیتر) به 3/13 درصد رسید (05/0p <). از این رو، احتمال میرود اثرات سمیت تا حدودی متاثر از اندازه ذره (8/13 نانومتر) و عملکرد کینتیکی بالقوه سمی ذرات در مقیاس نانو باشد. | ||
کلیدواژهها | ||
سمیت؛ Danio rerio؛ جلبک دریایی سبز؛ نانوذرات مگنتیت | ||
مراجع | ||
Adeleye A.S., Conway J.R., Garner K., Huang Y., Su Y. and Keller A.A. 2016. Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability. Chemical Engineering Journal, 286: 640–662. Ates M., Daniels J., Arslan Z. and Farah I.O. 2013. Effects of aqueous suspensions of titanium dioxide nanoparticles on Artemia salina: Assessment of nanoparticle aggregation, accumulation, and toxicity. Environmental Monitoring and Assessment, 185(4): 3339–3348. Awwad A.M. and Salem N.M. 2012. A green and facile approach for synthesis of magnetite nanoparticles. Journal of Nanoscience and Nanotechnology, 2(6): 208–213. Basson P.W. 1978. Marine algae of the Arabian Gulf coast of Saudi Arabia (first half). Botanica Marina, 22: 47–64. Caceres-Velez P.R., Fascineli M.L., Grisolia C.K., De Oliveira Lima E.C., Sousa M.H., De Morais P.C. and Bentes De Azevedo R. 2016. Genotoxic and histopathological biomarkers for assessing the effects of magnetic exfoliated vermiculite and exfoliated vermiculite in Danio rerio. Science of the Total Environment, 551-552: 228–237. Chouly C., Pouliquen D., Lucet L., Jeune J.J. and Jallet P. 1996. Development of superparamagnetic nanoparticles for MRI: Effect of particle size, charge and surface nature on biodistribution. Journal of Microencapsulation, 13: 245–255. Das R.K., Brar S.K. and Verma M. 2016. Checking the biocompatibility of plant-derived metallic nanoparticles: Molecular perspectives. Trends in Biotechnology, 34(6): 440–449. De Clerck O. and Coppejans E. 1996. Marine algae of the Jubail marine wildlife sanctuary, Saudi Arabia. P: 199–289. In: Krupp F., Abuzinada A.H. and Nader I.A. (Eds.). A Marine Wildlife Sanctuary for the Arabian Gulf: Environmental Research and Conservation Following the 1991 Gulf War Oil Spill. NCWCD, Riyadh and Senckenberg Research Institute, Frankfurt. Dobson J. 2006. Gene therapy progress and prospects: Magnetic nanoparticle-based gene delivery. Gene Therapy, 13: 283–287. Duan J., Yu Y., Shi H., Tian L., Guo C., Huang P., Zhou X., Peng S. and Sun Z. 2013. Toxic effects of silica nanoparticles on zebrafish embryos and larvae. PLoS One, 8(9): 1–9 (e74606). El-Kassa H.Y., Aly-Eldeen M.A. and Gharib S.M. 2016. Green synthesis of iron oxide (Fe3O4) nanoparticles using two selected brown seaweeds: Characterization and application for lead bioremediation. Acta Oceanologica Sinica, 35(8): 89–98. Garcia A., Espinosa R., Delgado L., Casals E., Gonzalez E., Puntes V., Barata C.,Font X. and SánchezA. 2011. Acute toxicity of cerium oxide, titanium oxide and iron oxide nanoparticles using standardized tests. Desalination, 269: 136–141. Gatoo M.A., Naseem S., Arfat M.Y., Dar A.M., Qasim K. and Zubair S. 2014. Physicochemical properties of nanomaterials: Implication in associated toxic manifestations. BioMed Research International, 2014: 1–8 (498420). Ghobadian M., Nabiuni M., Parivar K., Fathi M. and Pazooki J. 2015. Toxic effects of magnesium oxide nanoparticles on early developmental and larval stages of zebrafish (Danio rerio). Ecotoxicology and Environmental Safety, 122: 260–267. Hafeli U.O. and Pauer G.J. 1999. In vitro and in vivo toxicity of magnetic microspheres. Journal of Magnetism and Magnetic Materials, 194: 76–82. Iravani S. 2011. Green synthesis of metal nanoparticles using plants. Green Chemistry, 13: 2638–2650. Jeng H.A. and Swanson J. 2006. Toxicity of metal oxide nanoparticles in mammalian cells. Journal of Environmental Science and Health A,41: 2699 –2711. Karlsson H.L., Gustafsson J., Cronholm P. and Moller L. 2009. Size-dependent toxicity of metal oxide particles- A comparison between nano and micrometer size. Toxicology Letters, 188: 112–118. Karthikeyeni S., Vijayakumar S., Vasanth1 S., Ganesh A., Manimegalai M. and Subramanian P.T. 2013. Biosynthesis of iron oxide nanoparticles and its haematological effects on fresh water fish Oreochromis mossambicus. Journal of Academia and Industrial Research, 1(10): 645–649. Kharissova O.V., Dias H.V.R., Kharisov B.I., Perez B.O. and Perez V.M.J. 2013. The greener synthesis of nanoparticles. Trends in Biotechnology, 31 (4): 240–248. Kim J.S., Yoon T.J., Yu K.N., Kim B.G., Park S.J., Kim H.W., Lee K.H., Park S.B., Lee J.K. and Cho M.H. 2006. Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicological Sciences, 89: 338–347. Kimmel C.B., Ballard W.W., Kimmel S.R., Ullmann B. and Schilling T.F. 1995. Stages of embryonic development of the zebrafish. Developmental Dynamics, 203(3): 253–310. Kiruba Daniel S.C.G., Kumar R., Sathish V., Sivakumar M., Sunitha S. and Anitha Sironmani T. 2011. Green synthesis (Ocimum tenuiflorum) of silver nanoparticles and toxicity studies in zebra fish (Danio rerio) model. International Journal of NanoScience and Nanotechnology, 2: 103–117. Lapresta-Fernandez A., Fernandez A. and Blasco J. 2012. Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms. Trends in Analytical Chemistry, 32: 40–59. Laurent S., Dutz S., Hafeli U.O. and Mahmoudi M. 2011. Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Advances in Colloid and Interface Science, 166: 8–23. LewisOscar F., Vismaya S., Arunkumar M., Thajuddin N., Dhanasekaran D. and Nithya C. 2016. Algal nanoparticles: Synthesis and biotechnological potentials. P: 157–182. In: Thajuddin N. and Dhanasekaran D. (Eds.). Algae-organisms for Imminent Biotechnology. InTech Publisher, Croatia. Lin S., Zhao Y., Nel A.E. and Lin S. 2013. Zebrafish: An in vivo model for nano EHS studies. Small, 9(0): 1608–1618. Lovric J., Bazzi H.S., Cuie Y., Fortin G.R.A., Winnik F.M. and Maysinger D. 2005. Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. Journal of Molecular Medicine, 83: 377–385. Mahdavi M., Namvar F., Ahmad M.B. and Mohamad R. 2013. Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules, 18: 5954–5964. Mahmoudi M., Sant S., Wang B., Sophie Laurent S. and Sen T. 2011. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Advanced Drug Delivery Reviews, 63: 24–46. Mal J., Veneman W.J., Nancharaiah Y.V., Hullebusch E.D.V., Peijnenburg W.J.G.M., Vijver M.G. and Lens P.N.L. 2017. A comparison of fate and toxicity of selenite, biogenically, and chemically synthesized selenium nanoparticles to zebrafish (Danio rerio) embryogenesis. Nanotoxicology, 11(1): 87–97. Mohseni Kouchesfehani H., Kiani S., Rostami A.A. and Fakheri R. 2013. Cytotoxic effect of iron oxide nanoparticles on mouse embryonic stem cells by MTT assay. Iranian Journal of Toxicology, 7(21): 849–853. Nadagouda M.N. and Varma R.S. 2009. Risk reduction via greener synthesis of noble metal nanostructures and nanocomposites. Nato Science for Peace and Security, 3: 209–217. Noori A., Parivar K., Modaresi M., Messripour M., Yousefi M.H. and Amiri G.R. 2011. Effect of magnetic iron oxide nanoparticles on pregnancy and testicular development of mice. African Journal of Biotechnology, 10: 1221–1227. OECD. 1992. OECD guidelines for the testing of chemicals. Test No. 210: Fish, early-life stage toxicity test. Organization for Economic Cooperation and Development, France. 24P. OECD. 1998. OECD guidelines for the testing of chemicals. Test No. 212: Fish, short term toxicity test on embryo and sac-fry stages. Organization for Economic Cooperation and Development, France. 20P. Parsa H., Shamsasenjan K., Movassaghpour A.A., Akbarzadeh P., Amoghli Tabrizi B., Dehdilani N., Lotfinegad P. and Soleimanloo F. 2015. Effect of superparamagnetic iron oxide nanoparticles-labeling on mouse embryonic stem cells. Cell Journal, 17(2): 221–230. Qualhato G., Rocha T.L., De Oliveira Lima E.C., Silva D.M., Cardoso J.R., Grisolia C.K. and De Saboia-Morais S.M.T. 2017. Genotoxic and mutagenic assessment of iron oxide (maghemite-γ-Fe2O3) nanoparticle in the guppy Poecilia reticulata. Chemosphere, 183: 305–314. Raghunath A. and E. Perumal 2018. Analysis of lethality and malformations during zebrafish (Danio rerio) development. P: 337–363. In: Felix L. (Ed.). Teratogenicity Testing. Methods in Molecular Biology, Vol. 1797. Humana Press, USA. Saif S., Tahir A. and Chen Y. 2016. Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials, 6: 1–26 (209). Shubayev V.I., Pisanic T.R. and Jin S. 2009. Magnetic nanoparticles for theragnostics. Advanced Drug Delivery Reviews, 61: 467–477. Staal Y.C.M., Meijer J., Van Der Kris R.J.C., De Bruijn A.C., Boersma A.Y., Gremmer E.R., Zwart E.P., Beekhof P.K., Slob W. and Van Der Ven L.T.M. 2018. Head skeleton malformations in zebrafish (Danio rerio) to assess adverse effects of mixtures of compounds. Archives of Toxicology, 92(12): 3549–3564. Suganya T., Varman M., Masjuki H.H. and Renganathan S. 2016. Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renewable and Sustainable Energy Reviews, 55: 909–941. Sunderland C.J., Steiert M., Talmadge J.E., Derfus A.M. and Barry S.E. 2006. Targeted nanoparticles for detecting and treating cancer. Drug Development and Delivery, 67: 70–93. UN (United Nation). 2009. Globally Harmonized System of Classification and Labelling of Chemicals (GHS). United Nations, New York and Geneva. P: 215-220. Valdiglesias V., Kilic G., Costa C., Fernandez-Bertolez N., Pasaro E., Teixeira J.P. and Laffon B. 2015. Effects of iron oxide nanoparticles: Cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Environmental and Molecular Mutagenesis, 56(2):125–148. Wang B., Feng W.Y., Zhu M.T., Wang Y., Wang M., Gu Y., Ouyang H., Wang H., Li M., Zhao Y., Chai Y. and Wang H. 2009. Neurotoxicity of low-dose repeatedly intranasal instillation of nano- and submicron-sized ferric oxide particles in mice. Journal of Nanoparticle Research, 11: 41–53. Wehmas L.C., Anders C., Chess J., Punnoose A., Pereira C.B., Greenwood J.A. and Tanguay R.L. 2015. Comparative metal oxide nanoparticle toxicity using embryonic zebrafish. Toxicology Reports, 2: 702–715. Xu P., Zeng G.M., Huang D.L., Feng C.L., Hu S., Zhao M.H., Lai C., Wei Z., Huang C., Xie G.X. and Liu Z.F. 2012. Use of iron oxide nanomaterials in waste water treatment: A review. Science of the Total Environment, 424: 1–10. Yew Y.P., Shameli K., Miyake M., Kuwano N., Khairudin N.B.B.A., Mohamad S.E.B. and Lee K.X. 2016. Green synthesis of magnetite (Fe3O4) nanoparticles using seaweed (Kappaphycus alvarezii) extract. Nanoscale Research Letters, 11(1): 1–7 (276). Yuvakkumar R. and Hong S.I. 2014. Green synthesis of spinel magnetite ironoxide nanoparticles. Advanced Materials Research, 1051: 39–42. Zhu X., Tian S. and Cai Z. 2012. Toxicity assessment of iron oxide nanoparticles in zebrafish (Danio rerio) early life stages. PLoS ONE, 7(9): 1–6 (e46286). | ||
آمار تعداد مشاهده مقاله: 1,538 تعداد دریافت فایل اصل مقاله: 607 |