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CENTERS OF CENTRALIZER NEARRINGS
DETERMINED BY INNER AUTOMORPHISMS OF

SYMMETRIC GROUPS

M. G. BOUDREAUX, G. ALAN CANNON, KENT M. NEUERBURG∗, T. R.
PALMER, AND T. C. TROXCLAIR

Abstract. The question of identifying the elements of the center
of a nearring and of determining when that center is a subnearring
is an area of continued research. We consider the centers of cen-
tralizer nearrings, MI(Sn), determined by the symmetric groups
Sn with n ≥ 3 and the inner automorphisms I = Inn Sn. General
tools for determining elements of the center of MI(Sn) are devel-
oped, and we use these to list the specific elements in the centers
of MI(S4), MI(S5), and MI(S6).

1. Introduction

Let N be a right nearring. The center of N is C(N) = {c ∈ N | cn =
nc for all n ∈ N}. For a ring R, C(R) is always a subring of R. In
the nearring case, however, C(N) is not always a subnearring of N .
Several papers have investigated when C(N) is a subnearring of N .
Foundational papers on the subject are [1], [3], and [8]. More recent
papers include [4], [5], [6], and [9]. Here, we continue the study of
centers of nearrings on a classical structure in nearring theory, the
centralizer nearring. For more information on nearrings see [7], [10],
and [11].

Let (G,+) be a group, written additively, but not necessarily abelian,
with identity 0. Let S be a semigroup of endomorphisms ofG and define
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MS(G) = {f : G→ G | f(0) = 0 and f◦ϕ = ϕ◦f for all ϕ ∈ S}. Under
function addition and composition, (MS(G),+, ◦) is a right nearring,
called the centralizer nearring determined by G and S. Centralizer
nearrings are fundamental in nearring theory since every nearring with
identity is isomorphic to a centralizer nearring for some G and S ([7],
Theorem 14.3). Therefore, restrictions are often placed on G and S to
develop theory for certain subclasses of centralizer nearrings.

We consider the problem of determining centers of centralizer near-
rings determined by the symmetric groups Sn with n ≥ 3 and the set
of all inner automorphisms I = Inn Sn. We first develop theory for
functions in MA(G) and C(MA(G)) for arbitrary finite groups G and
automorphism groups A. Then we determine a method for construct-
ing all functions in MI(Sn). General properties of centers of MI(Sn) are
investigated and then the centers of MI(Sn) are completely determined
for n = 4, 5, and 6.

Throughout the paper we adopt the following notation. We let Ag
denote the orbit of g ∈ G determined by A. For a subset M of G, we
let Z(M) = {c ∈ G | c+m = m+ c for all m ∈M} be the centralizer
of M in G. For g ∈ G, we denote the inner automorphism determined
by g by ϕg(x) = −g + x + g. The identity function is denoted by id.
We often use juxtaposition to denote multiplication (composition) of
functions in MA(G).

2. Properties of Functions in MA(G)

Throughout this section, we let G be a finite group, A be a group of
automorphisms of G, and N = MA(G).

Definition 2.1. Let A be a group of automorphisms of G, and let
g ∈ G. The stabilizer of g in A is StabA(g) = {ϕ ∈ A | ϕ(g) = g}.
Lemma 2.2. ([10], Lemma 3.30) (Betsch’s Lemma) Let 0 6= g1 ∈ G
and g2 ∈ G. Then there exists f ∈ N such that f(g1) = g2 if and only
if StabA(g1) ⊆ StabA(g2).

Lemma 2.3. Let f ∈ N and g ∈ G. Let h ∈ G such that ϕ(g) = h for
some ϕ ∈ A. Then f(h) = ϕf(g), and f(h) is completely determined
by f(g). Also, if f(g) = kg for some integer k, then f(h) = kh. In
addition, f(g) = 0 if and only if f(h) = 0.

Proof. For f ∈ N , g ∈ G, and ϕ(g) = h, we get f(h) = fϕ(g) =
ϕf(g), and f(h) is completely determined by f(g). If f(g) = kg, then
f(h) = ϕf(g) = ϕ(kg) = kϕ(g) = kh. For the last statement, assume
f(g) = 0. Then f(h) = 0 by the previous sentence. If f(h) = 0,
then 0 = f(h) = ϕf(g). Thus f(g) is in the kernel of ϕ. Since ϕ
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is an automorphism, we conclude that f(g) = 0. This completes the
proof. �

For f ∈ N , once a single value f(g) is known, the values of the
function for elements in the orbit determined by g are known as well.
Hence, defining function values on a set of orbit representatives and
then extending the function to values in orbits creates a function in N .
The stabilizer containment condition in Betsch’s Lemma guarantees
that a function created in this way is well-defined.

Theorem 2.4. Let c ∈ C(N) and g ∈ G. Then c(g) = 0 or c(g) ∈ Ag.

Proof. Let g ∈ G. Define f : G → G by f(x) =

{
x if x ∈ Ag
0 if x 6∈ Ag . Let

ϕ ∈ A. Consider x ∈ Ag. Then ϕ(x) ∈ Ag as well. So ϕf(x) = ϕ(x) =
fϕ(x). Now let x 6∈ Ag. Then ϕ(x) 6∈ Ag and ϕf(x) = ϕ(0) = 0 =
fϕ(x). It follows that f ∈ N .

Thus, fc(g) = cf(g) = c(g) and c(g) is fixed by f . Thus c(g) = 0 or
c(g) ∈ Ag. �

Lemma 2.5. Let c ∈ C(N) and 0 6= g ∈ G. Let f ∈ N with f(g) =
h 6= 0. Then c(h) = fc(g), and c(h) is completely determined by c(g).
In particular, if c(g) = g, then c(h) = h. Also, c(g) = 0 if and only if
c(h) = 0.

Proof. For c ∈ C(N), g ∈ G, and f(g) = h 6= 0, we get c(h) = cf(g) =
fc(g). Thus, c(h) is completely determined by c(g). If c(g) = g, then
c(h) = fc(g) = f(g) = h.

For the last statement, assume c(g) = 0. Then c(h) = fc(g) =
f(0) = 0. Now assume c(h) = 0. Then 0 = c(h) = fc(g). Assume
c(g) 6= 0. By Theorem 2.4, c(g) and g are in the same orbit. Since
fc(g) = 0, it follows from Lemma 2.3 that h = f(g) = 0, a contradic-
tion. Hence c(g) = 0, and the proof is complete. �

Definition 2.6. A subset A = {a1, a2, . . . , ak} of a set of orbit repre-
sentatives V is a set of atoms if: (i) for each ai, aj ∈ A with ai 6= aj,
there is no f ∈ N such that f(ai) = aj; and (ii) for each vi ∈ V\A,
there exists fi ∈ N and ai ∈ A such that fi(ai) = vi.

Let A = {a1, a2, . . . , ak} be a set of atoms in a group G. Note that
every nonzero element of G is either an atom or the image of an atom
under a function in A or N . By Lemmas 2.3 and 2.5, every function
c ∈ C(N) is completely determined by the values c(ai) where ai ∈ A.

To show an arbitrary function α ∈ N is in the center, we use the
following lemma.
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Lemma 2.7. Let α ∈ N . Assume αf(a) = fα(a) for all f ∈ N and
all atoms a ∈ A. Then α ∈ C(N).

Proof. Let V be a set of orbit representatives and A ⊆ V , a set of
atoms. For each gi ∈ V\A, there exists fi ∈ N and aj ∈ A such that
fi(aj) = gi. So αf(gi) = αf(fi(aj)) = α((ffi)(aj)) = (ffi)(α(aj)) =
f(fiα)(aj) = f(αfi)(aj) = fα(fi(aj)) = fα(gi).

Since α and f are zero-preserving, we conclude that αf(0) = fα(0).
Now let 0 6= h ∈ G. Then there exist gi ∈ V and ϕ ∈ A such that
ϕ(gi) = h. From above, we get αf(h) = (αf)(ϕ(gi)) = ϕ(αf)(gi) =
ϕ(fα)(gi) = (fα)(ϕ(gi)) = fα(h). Since h ∈ G is arbitrary, we have
α ∈ C(N). �

3. Functions in MI(Sn)

Now we consider MI(G) where I is the set of all inner automorphisms
of an arbitrary finite group G. The next theorem is Betsch’s Lemma
applied to I.

Theorem 3.1. [2] For g1, g2 ∈ G, the following are equivalent:
(i) There exists f ∈MI(G) such that f(g1) = g2;
(ii) Z(g1) ⊆ Z(g2);
(iii) g2 ∈ Z(Z(g1)).

Next, we focus our attention on the group (Sn,+), where addition
represents the usual composition of permutations in Sn. Throughout
the remainder of the paper, we mix the standard juxtaposition of el-
ements in Sn and the new addition symbolism. We use the former
when representing elements in Sn and the latter when combining such
elements.

In light of the above theorem, to identify elements in MI(Sn) we first
need to determine Z(Z(g)) for all g ∈ Sn.

Definition 3.2. For g ∈ Sn, letMove g = {i ∈ {1, 2, . . . , n} | g(i) 6= i}.

Definition 3.3. Let g1, g2, . . . , gr ∈ Sn. We say this collection of ele-
ments is pairwise disjoint if for every distinct pair gi and gk, Move gi∩
Move gk = ∅. We call a sum of pairwise disjoint elements a pairwise
disjoint sum.

Lemma 3.4. [2] Let g = g1 + g2 + · · ·+ gr be a pairwise disjoint sum
in Sn where each gi is a pairwise disjoint sum of ki cycles and ki 6= kj
for all i 6= j.
(i) If |Move g| 6= n− 2, then Z(Z(g)) = 〈g1〉+ 〈g2〉+ · · ·+ 〈gr〉.
(ii) If |Move g| = n−2, then Z(Z(g)) = 〈g1〉+〈g2〉+· · ·+〈gr〉+〈(a b)〉,
where a and b are the two distinct elements not in Move g.
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Example 3.5. Consider the group S10. Then
(i) Z(Z(1 2 3 4)) = 〈(1 2 3 4)〉;
(ii) Z(Z((1 2)(3 4)(5 6 7)(8 9 10))) = 〈(1 2)(3 4)〉+ 〈(5 6 7)(8 9 10)〉;
(iii) Z(Z((1 2 3)(4 5 6)(7 8))) = 〈(1 2 3)(4 5 6)〉+ 〈(7 8)〉+ 〈(9 10)〉.

Note that in describing centers of centralizer subgroups, we cannot
separate cycles of the same length. For example, g = (1 2 3 4 5 6),
(1 3 5), and (2 4 6) commute with g2 = (1 3 5)(2 4 6). Therefore
g, (1 3 5), (2 4 6) ∈ Z(g2). However neither (1 3 5) nor (2 4 6) commute
with g. Thus (1 3 5), (2 4 6) 6∈ Z(Z(g2)).

In Sn, an orbit determined by all inner automorphisms consists of all
permutations having the same cycle structure. So to define a function
f ∈MI(G), we choose one element gi of each cycle structure, define f
on these elements so that f(gi) ∈ Z(Z(gi)), then extend to all other
elements of G via Lemma 2.3.

Theorem 3.6. [2] The nearring MI(S3) is a commutative ring. In
particular, MI(S3) = 〈id〉 ∼= Z6.

Proof. Let f ∈MI(S3). Then f(1 2) ∈ 〈(1 2)〉 and f(1 2 3) ∈ 〈(1 2 3)〉.
Since f is completely determined by the values f(1 2) and f(1 2 3), we
conclude that there are at most six functions in MI(S3). Also, with id ∈
MI(S3), we see that 〈id〉 ⊆MI(S3), and there are at least six functions
inMI(S3). It follows thatMI(S3) = 〈id〉 ∼= Z6, a commutative ring. �

Defining functions in the manner described above, we identify the
functions in MI(Sn) for n = 4, 5, 6 in the table below. For each cycle
structure representative x ∈ Sn, the function f ∈MI(Sn), maps x into
the sets listed in the adjacent columns. For example, in S5, f(1 2 3) ∈
〈(1 2 3)〉+ 〈(4 5)〉.

Table 1. All functions f ∈MI(Sn) for n = 4, 5, 6

x ∈ Sn f ∈MI(S4) f ∈MI(S5) f ∈MI(S6)
(1 2) 〈(1 2)〉+ 〈(3 4)〉 〈(1 2)〉 〈(1 2)〉

(1 2 3) 〈(1 2 3)〉 〈(1 2 3)〉+ 〈(4 5)〉 〈(1 2 3)〉
(1 2)(3 4) 〈(1 2)(3 4)〉 〈(1 2)(3 4)〉 〈(1 2)(3 4)〉+ 〈(5 6)〉
(1 2 3 4) 〈(1 2 3 4)〉 〈(1 2 3 4)〉 〈(1 2 3 4)〉+ 〈(5 6)〉

(1 2 3)(4 5) 〈(1 2 3)〉+ 〈(4 5)〉 〈(1 2 3)〉+ 〈(4 5)〉
(1 2 3 4 5) 〈(1 2 3 4 5)〉 〈(1 2 3 4 5)〉

(1 2)(3 4)(5 6) 〈(1 2)(3 4)(5 6)〉
(1 2 3)(4 5 6) 〈(1 2 3)(4 5 6)〉
(1 2 3 4)(5 6) 〈(1 2 3 4)〉+ 〈(5 6)〉
(1 2 3 4 5 6) 〈(1 2 3 4 5 6)〉
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Corollary 3.7. The orders of MI(Sn) for n = 4, 5, 6 are:
(i) |MI(S4)| = 96;
(ii) |MI(S5)| = 2880;
(iii) |MI(S6)| = 1, 658, 880.

Proof. Since functions in MI(Sn) are completely determined by their
values on cycle structure representatives, we need only count the num-
ber of possibilities of function values on these representatives. For
f ∈ MI(S4), there are four possible values for f(1 2), three possible
values for f(1 2 3), two possible values for f((1 2)(3 4)), and four pos-
sible values for f(1 2 3 4). Thus |MI(S4)| = 4 · 3 · 2 · 4 = 96. A similar
method of counting gives the results for MI(S5) and MI(S6). �

4. Functions in C(MI(Sn))

In general C(N) is not a subnearring of N (see [3]). It may be
that C(N) is not even additively closed. Thus the question of when
C(N) is a subnearring of N is of particular interest. The first theorem
determines when C(MI(SN)) is a subnearring of MI(Sn) for n ≥ 3.

Theorem 4.1. The following are equivalent for n ≥ 3:
(i) MI(Sn) is a commutative ring;
(ii) C(MI(Sn)) is a subnearring of MI(Sn);
(iii) n = 3.

Proof. If MI(Sn) is a ring, it follows that C(MI(Sn)) is a subnearring
of MI(Sn). So (i) implies (ii). Assume n ≥ 4. We know that id ∈
C(MI(Sn)). Consider the function id + id ∈ MI(Sn). Then (id +
id)(1 2 3 4) = (1 2 3 4) + (1 2 3 4) = (1 3)(2 4). Thus the function
id + id does not preserve cycle structure and id + id 6∈ C(MI(Sn)) by
Theorem 2.4. Hence if n ≥ 4, then C(MS(Sn)) is not a subnearring of
MI(Sn), and (ii) implies (iii). We have (iii) implies (i) by Theorem
3.6, and the proof is complete. �

The next lemma gives information about function values of elements
in the same orbit of Sn under the action of I.

Lemma 4.2. Let g = g1 +g2 + · · ·+gr be a pairwise disjoint sum in Sn
where each gw is a pairwise disjoint sum of kw cycles and kw 6= ky for
all w 6= y. Let f ∈MI(Sn), and assume f(g) = i1g1+i2g2+· · ·+irgr for
some integers i1, i2, . . . , ir. Let h ∈ Ig, say ϕ(g) = h = j1g1+j2g2+· · ·+
jrgr for some integers j1, j2, . . . , jr where jw is relatively prime to |gw|
for all w = 1, 2, . . . , r. Then f(h) = (i1j1)g1 + (i2j2)g2 + · · ·+ (irjr)gr.

Proof. First note that since ϕ(g) = ϕ(g1 + g2 + · · · + gr) = ϕ(g1) +
· · · + ϕ(gr) = h = j1g1 + j2g2 + · · · + jrgr with kw 6= ky for all w 6= y
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and the cycle structure of g is the same as the cycle structure of h, it
follows that ϕ(gw) = jwgw for all w. Thus, f(h) = fϕ(g) = ϕf(g) =
ϕ(i1g1+i2g2+ · · ·+irgr) = i1ϕ(g1)+ · · ·+irϕ(gr) = i1j1g1+ · · ·+irjrgr,
and the result follows. �

Now we consider functions c ∈ C(MI(Sn)) and their function values
on elements in different orbits.

Lemma 4.3. Let g = g1 + g2 + · · · + gr be a pairwise disjoint sum in
Sn where each gw is a pairwise disjoint sum of kw cycles and kw 6= ky
for all w 6= y. Let c ∈ C(MI(Sn)) and assume c(g) ∈ Ig, say c(g) =
ϕ(g) = i1g1 + i2g2 + · · · + irgr for some integers i1, i2, . . . , ir where iw
is relatively prime to |gw| for all w = 1, 2, . . . , r. Let f ∈ MI(Sn) and
assume h = f(g) = j1g1+j2g2+· · ·+jrgr for some integers j1, j2, . . . , jr.
Then c(h) = (i1j1)g1 + (i2j2)g2 + · · ·+ (irjr)gr.

Proof. As described in the proof of Lemma 4.2, ϕ(gw) = iwgw for all
w. Therefore c(h) = cf(g) = fc(g) = fϕ(g) = ϕf(g) = ϕ(j1g1 + j2g2 +
· · · + jrgr) = j1ϕ(g1) + · · · + jrϕ(gr) = j1i1g1 + · · · + jrirgr, and the
result follows. �

Lemma 4.4. Let g = g1 + g2 + · · · + gr be a pairwise disjoint sum in
Sn where each gi is a pairwise disjoint sum of kw cycles and kw 6= ky
for all w 6= y. Let f, α ∈ MI(Sn) such that f(g), α(g) ∈ Ig. Then
αf(g) = fα(g).

Proof. We consider two cases. First assume |Move g| 6= n − 2. By
Lemma 3.4, Z(Z(g)) = 〈g1〉 + 〈g2〉 + · · · + 〈gr〉. Since f(g), α(g) ∈ Ig,
it follows that f(g) = i1g1 + i2g2 + · · ·+ irgr and α(g) = j1g1 + j2g2 +
· · · + jrgr, for integers i1, i2, . . . , ir, j1, j2, . . . , jr where iw and jw are
relatively prime to |gw| for all w = 1, 2, . . . , r. We also observe that
there exist ϕ1, ϕ2 ∈ I such that ϕ1(g) = f(g) and ϕ2(g) = α(g).

As in the previous two lemmas, we get that ϕ1(gw) = iwgw and
ϕ2(gw) = jwgw for all w. Thus αf(g) = αϕ1(g) = ϕ1α(g) = ϕ1(j1g1 +
j2g2 + · · · + jrgr) = j1ϕ1(g1) + j2ϕ1(g2) + · · · + jrϕ1(gr) = j1(i1g1) +
j2(i2g2)+ · · ·+ jr(irgr) = i1(j1g1)+ i2(j2g2)+ · · ·+ ir(jrgr) = i1ϕ2(g1)+
i2ϕ2(g2) + · · · + irϕ2(gr) = ϕ2(i1g1 + i2g2 + · · · + irgr) = ϕ2f(g) =
fϕ2(g) = fα(g). So αf(g) = fα(g).

For the second case, assume |Move g| = n − 2. By Lemma 3.4,
Z(Z(g)) = 〈g1〉+ 〈g2〉+ · · ·+ 〈gr〉+ 〈(c d)〉, where c and d are the two
distinct elements not in Move g. If f(g), α(g) ∈ 〈g1〉+ 〈g2〉+ · · ·+ 〈gr〉,
then αf(g) = fα(g) from the previous case. So we assume at least one
of f(g) or α(g) includes the element (c d) as a summand.

Assume both f(g) and α(g) include (c d) as a summand. Since
f(g), α(g) ∈ Ig, without a loss of generality it follows that gr = (a b)
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with a, b ∈ Move g, no other gw consists solely of two-cycles, and
a, b 6∈Move (g1 +g2 + · · ·+gr−1). Thus, g = g1 +g2 + · · ·+gr−1 +(a b),
f(g) = i1g1 + i2g2 + · · ·+ ir−1gr−1 + (c d) and α(g) = j1g1 + j2g2 + · · ·+
jr−1gr−1 + (c d), for integers i1, i2, . . . , ir−1, j1, j2, . . . , jr−1 where iw and
jw are relatively prime to |gw| for all w = 1, 2, . . . , r − 1.

Since g1+g2+· · ·+gr−1, i1g1+i2g2+· · ·+ir−1gr−1, and j1g1+j2g2+· · ·+
jr−1gr−1 are in the same orbit, there exist τ1, τ2 ∈ Sn with Move τ1 ∪
Move τ2 ⊆Move (g1+g2+· · ·+gr−1) such that ϕτ1(g1+g2+· · ·+gr−1) =
i1g1+i2g2+· · ·+ir−1gr−1 and ϕτ2(g1+g2+· · ·+gr−1) = j1g1+j2g2+· · ·+
jr−1gr−1. Thus ϕτ1+(a c b d)(g) = f(g) and ϕτ2+(a c b d)(g) = α(g). Note
that ϕτ1+(a c b d)(c d) = (a b) = ϕτ2+(a c b d)(c d). Also, as in the case
where |Move g| 6= n−2, ϕτ1+(a c b d)(gw) = iwgw and ϕτ2+(a c b d)(gw) =
jwgw for all w = 1, 2, . . . , r − 1.

Therefore,

αf(g) = αϕτ1+(a c b d)(g)

= ϕτ1+(a c b d)α(g)

= ϕτ1+(a c b d)(j1g1 + · · ·+ jr−1gr−1 + (c d))

= j1ϕτ1+(a c b d)(g1) + · · ·+ jr−1ϕτ1+(a c b d)(gr−1)

+ ϕτ1+(a c b d)(c d)

= j1(i1g1) + · · ·+ jr−1(ir−1gr−1) + (a b)

= i1(j1g1) + · · ·+ ir−1(jr−1gr−1) + (a b)

= i1ϕτ2+(a c b d)(g1) + · · ·+ ir−1ϕτ2+(a c b d)(gr−1)

+ ϕτ2+(a c b d)(c d)

= ϕτ2+(a c b d)(i1g1 + · · ·+ ir−1gr−1 + (c d))

= ϕτ2+(a c b d)f(g)

= fϕτ2+(a c b d)(g)

= fα(g).

Finally, assume g = g1 + g2 + · · ·+ gr−1 + (a b), f(g) = i1g1 + i2g2 +
· · · + ir−1gr−1 + (c d) and α(g) = j1g1 + j2g2 + · · · + jr−1gr−1 + (a b),
for integers i1, i2, . . . , ir−1, j1, j2, . . . , jr−1 where iw and jw are relatively
prime to |gw| for all w = 1, 2, . . . , r − 1. As in the previous situation,
we find τ1 and τ2 which give ϕτ1+(a c b d)(g) = f(g) and ϕτ2(g) = α(g).
Computations as above yield αf(g) = fα(g). This completes the proof.

�

Theorem 4.5. Let α ∈ MI(Sn). Then α ∈ C(MI(Sn)) if and only if
the following three conditions are satisfied:

(i) For every atom a, α(a) = (1) or α(a) ∈ Ia.
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(ii) For every atom a, α(a) = (1) if and only if αf(a) = (1) for all
f ∈MI(Sn) with f(a) 6= (1).

(iii) For every atom a with α(a) 6= (1), αf(a) = fα(a) for every
f ∈MI(Sn) such that f(a) 6∈ Ia and f(a) 6= (1).

Proof. Assume α ∈ C(MI(Sn)). Condition (i) follows from Theorem
2.4, and condition (ii) follows from Lemma 2.5. Condition (iii) follows
from the definition of center.

For the converse, let a be an atom and f ∈ MI(Sn). We consider
various cases.

Assume f(a) = (1). Then either α(a) = (1) or α(a) ∈ Ia by con-
dition (i). If α(a) = (1), then αf(a) = α(1) = (1) = f(1) = fα(a).
If α(a) ∈ Ia, then fα(a) = (1) by Lemma 2.3. Thus αf(a) = α(1) =
(1) = fα(a).

Assume f(a) ∈ Ia. Again, either α(a) = (1) or α(a) ∈ Ia. If
α(a) = (1), then fα(a) = f(1) = (1) = αf(a) by Lemma 2.3. If
α(a) ∈ Ia, then fα(a) = αf(a) by the previous lemma.

Now assume f(a) 6∈ Ia and f(a) 6= (1). If α(a) = (1), then αf(a) =
(1) by condition (ii). Thus, αf(a) = (1) = f(1) = fα(a). If α(a) 6= (1),
by condition (iii), αf(a) = fα(a). Thus α ∈ C(MI(Sn)) by Lemma
2.7. �

5. Centers of MI(S4), MI(S5), and MI(S6)

In this section, we completely determine the functions in C(MI(Sn))
for n = 4, 5, and 6. We begin by finding functions in C(MI(S4)).

Let c ∈ C(MI(S4)). By Table 1 and Theorem 2.4, c(1 2 3) ∈ 〈(1 2 3)〉,
c(1 2 3 4) ∈ {(1), (1 2 3 4), (1 4 3 2)}, c(1 3) ∈ {(1), (1 3), (2 4)}, and
c((1 3)(2 4)) ∈ 〈(1 3)(2 4)〉.

We note that {(1 2 3 4), (1 2 3), (1 3)} is a set of atoms for S4 since by
Table 1, there exist functions f1, f2 ∈ MI(S4) such that f1(1 2 3 4) =
(1 3)(2 4) = f2(1 3). Assume c(1 2 3 4) = (1). By Lemma 2.5,
c((1 3)(2 4)) = (1) = c(1 3) as well. Now assume c(1 2 3 4) 6= (1).
By Lemma 2.5, c(1 3) 6= (1) and c((1 3)(2 4)) 6= (1). Thus c(1 3) ∈
{(1 3), (2 4)} and c((1 3)(2 4)) = (1 3)(2 4).

By considering all combinations described above, we get the following
lemma describing necessary conditions for functions c ∈ C(MI(S4)).

Lemma 5.1. Let c ∈ C(MI(S4)). Then c is one of the functions f or
g whose images are given in the columns of the following table. The
remaining values for c are obtained by extending to the other elements
in each orbit via Lemma 2.3.
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x ∈ S4 f(x) g(x)
(1 2 3) 〈(1 2 3)〉 〈(1 2 3)〉

(1 2 3 4) (1) (1 2 3 4) or (1 4 3 2)
(1 3) (1) (1 3) or (2 4)

(1 3)(2 4) (1) (1 3)(2 4)

For example, the function g ∈ C(MI(S4)) given by g(1 2 3) = (1 2 3),
g(1 2 3 4) = (1 4 3 2), g(1 3) = (2 4), and g((1 3)(2 4)) = (1 3)(2 4) is
described by the second column of the table.

Theorem 5.2. The set C(MI(S4)) consists of all functions described
by the table above. Thus |(C(MI(S4))| = 15.

Proof. Let α be a function represented by one of the columns given in
the table above. Then α ∈ MI(S4) by Table 1. For a set of atoms for
S4 we use {(1 2 3 4), (1 2 3), (1 3)}. From the table we see that for every
atom a, α(a) = (1) or α(a) ∈ Ia.

Note that α(1 2 3 4) = (1) if and only if α((1 3)(2 4)) = (1) if and
only if α(1 3) = (1). Thus, for every atom a, α(a) = (1) if and only if
αf(a) = (1) for all (1) 6= f(a) with f ∈MI(S4).

Now we consider atoms a with α(a) 6= (1) and functions f ∈MI(S4)
such that f(a) 6∈ Ia and f(a) 6= (1). Since f(1 2 3) ∈ 〈(1 2 3)〉, the
atom (1 2 3) does not satisfy the condition. Thus there are only two
cases to consider.

For the first case, let f ∈ MI(S4) with f(1 2 3 4) = 2(1 2 3 4) =
(1 3)(2 4). By Lemma 2.3, f(1 4 3 2) = 2(1 4 3 2) = (1 3)(2 4).

Assume α(1 2 3 4) ∈ {(1 2 3 4), (1 4 3 2)}. Then α((1 3)(2 4)) =
(1 3)(2 4). So αf(1 2 3 4) = α((1 3)(2 4)) = (1 3)(2 4) = fα(1 2 3 4).

For the second case, let f ∈ MI(S4) with f(1 3) = (1 3)(2 4).
Note that ϕ(1 2 3 4)(1 3) = (1 4 3 2) + (1 3) + (1 2 3 4) = (2 4).
So f(2 4) = fϕ(1 2 3 4)(1 3) = ϕ(1 2 3 4)f(1 3) = ϕ(1 2 3 4)((1 3)(2 4)) =
(1 4 3 2) + (1 3)(2 4) + (1 2 3 4) = (1 3)(2 4).

Assume α(1 3) ∈ {(1 3), (2 4)}. Then α((1 3)(2 4)) = (1 3)(2 4). So
αf(1 3) = α((1 3)(2 4)) = (1 3)(2 4) = fα(1 3).

Thus, for all atoms a with α(a) 6= (1) and all functions f ∈ MI(S4)
such that f(a) 6∈ Ia and f(a) 6= (1), we have αf(a) = fα(a). Hence,
by Theorem 4.5, α ∈ C(MI(S4)).

The first column of the table accounts for 3 different functions. The
second column of the table yields 3 · 2 · 2 · 1 = 12 different functions.
Hence |(C(MI(S4))| = 15. �

Next, we determine the functions in C(MI(S5)). Let c ∈ C(MI(S5)).
By Table 1 and Theorem 2.4, c(1 2 3 4 5) ∈ 〈(1 2 3 4 5)〉, c((1 2 3)(4 5)) ∈
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{(1), (1 2 3)(4 5), (1 3 2)(4 5)}, c(1 2 3 4) ∈ {(1), (1 2 3 4), (1 4 3 2)},
c((1 3)(2 4)) ∈ 〈(1 3)(2 4)〉, c(1 2 3) ∈ 〈(1 2 3)〉, and c(4 5) ∈ 〈(4 5)〉.

Note that {(1 2 3 4 5), (1 2 3)(4 5), (1 2 3 4)} is a set of atoms for S5

since by Table 1, there exist functions f1, f2, f3 ∈ MI(S5) such that
f1((1 2 3)(4 5)) = (1 2 3), f2((1 2 3)(4 5)) = (4 5), and f3(1 2 3 4) =
(1 3)(2 4). Assume c((1 2 3)(4 5)) = (1). Then c(1 2 3) = (1) = c(4 5)
by Lemma 2.5. If c((1 2 3)(4 5)) 6= (1), then c(4 5) = (4 5).

Likewise, if c(1 2 3 4) = (1), then c((1 3)(2 4)) = (1). If c(1 2 3 4) 6=
(1), then c((1 3)(2 4)) = (1 3)(2 4). Also, if c((1 2 3)(4 5)) =
(1 2 3)(4 5), then c(1 2 3) = (1 2 3) by Lemma 2.5.

Now assume c((1 2 3)(4 5)) = 2(1 2 3) + 1(4 5) = (1 3 2)(4 5).
Since f1((1 2 3)(4 5)) = 1(1 2 3) + 0(4 5) = (1 2 3), by Lemma 4.3,
c(1 2 3) = 2(1 2 3) + 0(4 5) = (1 3 2).

By considering all combinations described above, we get the following
lemma describing necessary conditions for functions c ∈ C(MI(S5)).
In the table, note that superscripts designate corresponding function
values that must be used in tandem. For example, if c((1 2 3)(4 5)) =
(1 3 2)(4 5), then c(1 2 3) = (1 3 2).

Lemma 5.3. Let c ∈ C(MI(S5)). Then c is one of the functions
f , g, h, or k whose images are given in the columns of the following
table. The remaining values for c are obtained by extending to the other
elements in each orbit via Lemma 2.3.

x ∈ S5 f(x) g(x) h(x) k(x)
(1 2 3 4 5) 〈(12345)〉 〈(12345)〉 〈(1 2 3 4 5)〉 〈(1 2 3 4 5)〉

(1 2 3)(4 5) (1) (1)
(1 2 3)(4 5)a

or
(1 3 2)(4 5)b

(1 2 3)(4 5)c

or
(1 3 2)(4 5)d

(1 2 3 4) (1)
(1 2 3 4)

or
(1 4 3 2)

(1)
(1 2 3 4)

or
(1 4 3 2)

(1 3)(2 4) (1) (1 3)(2 4) (1) (1 3)(2 4)

(1 2 3) (1) (1)
(1 2 3)a

or
(1 3 2)b

(1 2 3)c

or
(1 3 2)d

(4 5) (1) (1) (4 5) (4 5)

Theorem 5.4. The set C(MI(S5)) consists of all functions described
by the table above. Thus |(C(MI(S5))| = 45.

Proof. Let α be a function represented by one of the columns given in
the table above. Then α ∈ MI(S5) by Table 1. For a set of atoms for
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S5 we use {(1 2 3 4 5), (1 2 3)(4 5), (1 2 3 4)}. From the table we see that
for every atom a, α(a) = (1) or α(a) ∈ Ia.

Note that α((1 2 3)(4 5)) = (1) if and only if α(1 2 3) = (1) if and only
if α(4 5) = (1). Also, α(1 2 3 4) = (1) if and only if α((1 3)(2 4)) = (1).
Thus, for every atom a, α(a) = (1) if and only if αf(a) = (1) for all
(1) 6= f(a) with f ∈MI(S5).

Now we consider atoms a with α(a) 6= (1) and functions f ∈MI(S5)
such that f(a) 6∈ Ia and f(a) 6= (1). Since f(1 2 3 4 5) ∈ 〈(1 2 3 4 5)〉,
the atom (1 2 3 4 5) does not satisfy the condition. Thus there are four
cases to consider.

For the first case, let f ∈ MI(S5) with f((1 2 3)(4 5)) = 1(1 2 3) +
0(4 5) = (1 2 3). Note that there exists ϕ ∈ I with ϕ((1 2 3)(4 5)) =
2(1 2 3) + 1(4 5) = (1 3 2)(4 5). By Lemma 4.2, f((1 3 2)(4 5)) =
2(1 2 3) + 0(4 5) = (1 3 2). Assume α((1 2 3)(4 5)) = (1 2 3)(4 5).
Then αf((1 2 3)(4 5)) = α(1 2 3) = (1 2 3) = f((1 2 3)(4 5)) =
fα((1 2 3)(4 5)). Next we assume α((1 2 3)(4 5)) = (1 3 2)(4 5).
Then αf((1 2 3)(4 5)) = α(1 2 3) = (1 3 2) = f((1 3 2)(4 5)) =
fα((1 2 3)(4 5)).

For the second case, let f ∈MI(S5) with f((1 2 3)(4 5)) = 2(1 2 3)+
0(4 5) = (1 3 2). The remainder of the proof is similar to the first case.

For the third case, let f ∈MI(S5) with f((1 2 3)(4 5)) = 0(1 2 3) +
1(4 5) = (4 5). Using ϕ((1 2 3)(4 5)) = 2(1 2 3)+1(4 5) = (1 3 2)(4 5),
by Lemma 4.2 we get f((1 3 2)(4 5)) = 0(1 2 3) + 1(4 5) = (4 5).
Assume α((1 2 3)(4 5)) = (1 2 3)(4 5). Then αf((1 2 3)(4 5)) =
α(4 5) = (4 5) = f((1 2 3)(4 5)) = fα((1 2 3)(4 5)). Now assume
α((1 2 3)(4 5)) = (1 3 2)(4 5). Then αf((1 2 3)(4 5)) = α(4 5) =
(4 5) = f((1 3 2)(4 5)) = fα((1 2 3)(4 5)).

Finally, for the fourth case, let f ∈ MI(S5) with f(1 2 3 4) =
(1 3)(2 4). Then αf(1 2 3 4) = fα(1 2 3 4) from the first case in
the corresponding proof for MI(S4).

Thus, for all atoms a and all functions f ∈MI(S5) such that f(a) 6∈
Ia and f(a) 6= (1), we have αf(a) = fα(a). Hence, by Theorem 4.5,
α ∈ C(MI(S5)).

The first column of the table accounts for 5 different functions. The
second and third columns of the table each yield 5 · 2 = 10 different
functions. The fourth column gives 5 · 2 · 2 = 20 different functions.
Hence |(C(MI(S5))| = 5 + 10 + 10 + 20 = 45 total functions. �

To determine functions in C(MI(S6)), let c ∈ C(MI(S6)). Us-
ing Table 1 and Theorem 2.4, we conclude that c(1 2 5 3 4 6) ∈
{(1), (1 2 5 3 4 6), (1 6 4 3 5 2)}, c((1 5 4)(2 3 6)) ∈ 〈(1 5 4)(2 3 6)〉,
c((1 3)(2 4)(5 6)) ∈ 〈(1 3)(2 4)(5 6)〉, c(1 2 3 4 5) ∈ 〈(1 2 3 4 5)〉,
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c((1 2 3 4)(5 6)) ∈ {(1), (1 2 3 4)(5 6), (1 4 3 2)(5 6)}, c((1 2 3)(5 6)) ∈
{(1), (1 2 3)(5 6), (1 3 2)(5 6)}, c(1 2 3 4) ∈ {(1), (1 2 3 4), (1 4 3 2)},
c((1 3)(2 4)) ∈ 〈(1 3)(2 4)〉, c(1 2 3) ∈ 〈(1 2 3)〉, and c(5 6) ∈ 〈(5 6)〉.

Note that by Table 1, we can create functions in MI(S6) mapping
(1 2 5 3 4 6) to (1 5 4)(2 3 6) or (1 3)(2 4)(5 6). We can also create
functions in MI(S6) mapping (1 2 3 4)(5 6) to (1 3)(2 4)(5 6), (1 2 3 4),
(1 3)(2 4), or (5 6). Finally, we can create functions in MI(S6) map-
ping (1 2 3)(5 6) to (1 2 3) or (5 6). From this, we can see that
{(1 2 5 3 4 6), (1 2 3 4)(5 6), (1 2 3 4 5), (1 2 3)(5 6)} is a set of atoms
for S6.

By Lemma 2.5, c(1 2 5 3 4 6) = (1) if and only if c(x) = (1) for all
(1) 6= x ∈ S6 such that x is not a five cycle. Thus if c(1 2 5 3 4 6) 6= (1),
then for all g ∈ {(1 3)(2 4)(5 6), (1 3)(2 4), (5 6)}, c(g) 6= (1); so
c(g) = g for every element g of order two.

If c(1 2 5 3 4 6) = (1 2 5 3 4 6), then c((1 5 4)(2 3 6)) = (1 5 4)(2 3 6)
by Lemma 2.5. If c(1 2 5 3 4 6) = 5(1 2 5 3 4 6) = (1 6 4 3 5 2),
then consider f1 ∈ MI(S6) with f1(1 2 5 3 4 6) = 2(1 2 5 3 4 6) =
(1 5 4)(2 3 6). Then c((1 5 4)(2 3 6)) = 10(1 2 5 3 4 6) = (1 4 5)(2 6 3)
by Lemma 4.3.

If c((1 2 3 4)(5 6)) = (1 2 3 4)(5 6), then c(1 2 3 4) = (1 2 3 4) by
Lemma 2.5. If c((1 2 3 4)(5 6)) = 3(1 2 3 4) + 1(5 6) = (1 4 3 2)(5 6),
then consider f1 ∈MI(S6) with f1((1 2 3 4)(5 6)) = 1(1 2 3 4)+0(5 6).
We conclude that c(1 2 3 4) = 3(1 2 3 4)+0(5 6) = (1 4 3 2) by Lemma
4.3.

If c((1 2 3)(5 6)) = (1 2 3)(5 6), then c(1 2 3) = (1 2 3) by Lemma
2.5. If c((1 2 3)(5 6)) = 2(1 2 3) + 1(5 6) = (1 3 2)(5 6), then consider
f2 ∈MI(S6) with f2((1 2 3)(5 6)) = 1(1 2 3) + 0(5 6) = (1 2 3). Then
c(1 2 3) = 2(1 2 3) + 0(5 6) = (1 3 2) by Lemma 4.3.

By considering all combinations described above, we get the following
lemma describing necessary conditions for functions c ∈ C(MI(S6)).
As with the table for C(MI(S5)), superscripts designate correspond-
ing function values that must be used in tandem. For example, if
c((1 2 3 4)(5 6)) = (1 4 3 2)(5 6), then c(1 2 3 4) = (1 4 3 2).

Lemma 5.5. Let c ∈ C(MI(S6)). Then c is one of the functions f or
g whose images are given in the columns of the following table. The
remaining values for c are obtained by extending to the other elements
in each orbit via Lemma 2.3.
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x ∈ S6 f(x) g(x)
(1 2 5 3 4 6) (1) (1 2 5 3 4 6)a or (1 6 4 3 5 2)b

(1 5 4)(2 3 6) (1) (1 5 4)(2 3 6)a or (1 4 5)(2 6 3)b

(1 3)(2 4)(5 6) (1) (1 3)(2 4)(5 6)
(1 2 3 4)(5 6) (1) (1 2 3 4)(5 6)c or (1 4 3 2)(5 6)d

(1 2 3 4 5) 〈(1 2 3 4 5)〉 〈(1 2 3 4 5)〉
(1 2 3)(5 6) (1) (1 2 3)(5 6)e or (1 3 2)(5 6)f

(1 2 3 4) (1) (1 2 3 4)c or (1 4 3 2)d

(1 3)(2 4) (1) (1 3)(2 4)
(1 2 3) (1) (1 2 3)e or (1 3 2)f

(5 6) (1) (5 6)

Theorem 5.6. The set C(MI(S6)) consists of all functions described
by the table above. Thus |(C(MI(S6))| = 45.

The proof follows the same conventions as those for C(MI(S4)) and
C(MI(S5)) and is left to the reader.

The techniques developed in this paper can be used to describe all
functions in C(MI(Sn)) for n ≥ 7. Further research may be done to
describe the structure of these sets.
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