Journal of Algebra and Related Topics Vol. 8, No 1, (2020), pp 51-65

CENTERS OF CENTRALIZER NEARRINGS DETERMINED BY INNER AUTOMORPHISMS OF SYMMETRIC GROUPS

M. G. BOUDREAUX, G. ALAN CANNON, KENT M. NEUERBURG*, T. R. PALMER, AND T. C. TROXCLAIR

ABSTRACT. The question of identifying the elements of the center of a nearring and of determining when that center is a subnearring is an area of continued research. We consider the centers of centralizer nearrings, $M_I(S_n)$, determined by the symmetric groups S_n with $n \ge 3$ and the inner automorphisms $I = Inn S_n$. General tools for determining elements of the center of $M_I(S_n)$ are developed, and we use these to list the specific elements in the centers of $M_I(S_4)$, $M_I(S_5)$, and $M_I(S_6)$.

1. INTRODUCTION

Let N be a right nearring. The center of N is $C(N) = \{c \in N \mid cn = nc \text{ for all } n \in N\}$. For a ring R, C(R) is always a subring of R. In the nearring case, however, C(N) is not always a subnearring of N. Several papers have investigated when C(N) is a subnearring of N. Foundational papers on the subject are [1], [3], and [8]. More recent papers include [4], [5], [6], and [9]. Here, we continue the study of centers of nearrings on a classical structure in nearring theory, the centralizer nearring. For more information on nearrings see [7], [10], and [11].

Let (G, +) be a group, written additively, but not necessarily abelian, with identity 0. Let S be a semigroup of endomorphisms of G and define

Received: 17 October 2019, Accepted: 26 July 2020.

MSC(2010): Primary: 16Y30

Keywords: centralizer nearring, center, inner automorphisms, symmetric groups.

^{*}Corresponding author .

 $M_S(G) = \{f : G \to G \mid f(0) = 0 \text{ and } f \circ \varphi = \varphi \circ f \text{ for all } \varphi \in S\}$. Under function addition and composition, $(M_S(G), +, \circ)$ is a right nearring, called the centralizer nearring determined by G and S. Centralizer nearrings are fundamental in nearring theory since every nearring with identity is isomorphic to a centralizer nearring for some G and S ([7], Theorem 14.3). Therefore, restrictions are often placed on G and S to develop theory for certain subclasses of centralizer nearrings.

We consider the problem of determining centers of centralizer nearrings determined by the symmetric groups S_n with $n \ge 3$ and the set of all inner automorphisms $I = Inn S_n$. We first develop theory for functions in $M_A(G)$ and $C(M_A(G))$ for arbitrary finite groups G and automorphism groups A. Then we determine a method for constructing all functions in $M_I(S_n)$. General properties of centers of $M_I(S_n)$ are investigated and then the centers of $M_I(S_n)$ are completely determined for n = 4, 5, and 6.

Throughout the paper we adopt the following notation. We let Ag denote the orbit of $g \in G$ determined by A. For a subset M of G, we let $Z(M) = \{c \in G \mid c+m=m+c \text{ for all } m \in M\}$ be the centralizer of M in G. For $g \in G$, we denote the inner automorphism determined by g by $\varphi_g(x) = -g + x + g$. The identity function is denoted by id. We often use juxtaposition to denote multiplication (composition) of functions in $M_A(G)$.

2. Properties of Functions in $M_A(G)$

Throughout this section, we let G be a finite group, A be a group of automorphisms of G, and $N = M_A(G)$.

Definition 2.1. Let A be a group of automorphisms of G, and let $g \in G$. The stabilizer of g in A is $Stab_A(g) = \{\varphi \in A \mid \varphi(g) = g\}$.

Lemma 2.2. ([10], Lemma 3.30) (Betsch's Lemma) Let $0 \neq g_1 \in G$ and $g_2 \in G$. Then there exists $f \in N$ such that $f(g_1) = g_2$ if and only if $Stab_A(g_1) \subseteq Stab_A(g_2)$.

Lemma 2.3. Let $f \in N$ and $g \in G$. Let $h \in G$ such that $\varphi(g) = h$ for some $\varphi \in A$. Then $f(h) = \varphi f(g)$, and f(h) is completely determined by f(g). Also, if f(g) = kg for some integer k, then f(h) = kh. In addition, f(g) = 0 if and only if f(h) = 0.

Proof. For $f \in N$, $g \in G$, and $\varphi(g) = h$, we get $f(h) = f\varphi(g) = \varphi f(g)$, and f(h) is completely determined by f(g). If f(g) = kg, then $f(h) = \varphi f(g) = \varphi(kg) = k\varphi(g) = kh$. For the last statement, assume f(g) = 0. Then f(h) = 0 by the previous sentence. If f(h) = 0, then $0 = f(h) = \varphi f(g)$. Thus f(g) is in the kernel of φ . Since φ

is an automorphism, we conclude that f(g) = 0. This completes the proof.

For $f \in N$, once a single value f(g) is known, the values of the function for elements in the orbit determined by g are known as well. Hence, defining function values on a set of orbit representatives and then extending the function to values in orbits creates a function in N. The stabilizer containment condition in Betsch's Lemma guarantees that a function created in this way is well-defined.

Theorem 2.4. Let $c \in C(N)$ and $g \in G$. Then c(g) = 0 or $c(g) \in Ag$.

Proof. Let $g \in G$. Define $f: G \to G$ by $f(x) = \begin{cases} x & \text{if } x \in Ag \\ 0 & \text{if } x \notin Ag \end{cases}$. Let $\varphi \in A$. Consider $x \in Ag$. Then $\varphi(x) \in Ag$ as well. So $\varphi f(x) = \varphi(x) = f\varphi(x)$. Now let $x \notin Ag$. Then $\varphi(x) \notin Ag$ and $\varphi f(x) = \varphi(0) = 0 = f\varphi(x)$. It follows that $f \in N$.

Thus, fc(g) = cf(g) = c(g) and c(g) is fixed by f. Thus c(g) = 0 or $c(g) \in Ag$.

Lemma 2.5. Let $c \in C(N)$ and $0 \neq g \in G$. Let $f \in N$ with $f(g) = h \neq 0$. Then c(h) = fc(g), and c(h) is completely determined by c(g). In particular, if c(g) = g, then c(h) = h. Also, c(g) = 0 if and only if c(h) = 0.

Proof. For $c \in C(N)$, $g \in G$, and $f(g) = h \neq 0$, we get c(h) = cf(g) = fc(g). Thus, c(h) is completely determined by c(g). If c(g) = g, then c(h) = fc(g) = f(g) = h.

For the last statement, assume c(g) = 0. Then c(h) = fc(g) = f(0) = 0. Now assume c(h) = 0. Then 0 = c(h) = fc(g). Assume $c(g) \neq 0$. By Theorem 2.4, c(g) and g are in the same orbit. Since fc(g) = 0, it follows from Lemma 2.3 that h = f(g) = 0, a contradiction. Hence c(g) = 0, and the proof is complete.

Definition 2.6. A subset $\mathcal{A} = \{a_1, a_2, \ldots, a_k\}$ of a set of orbit representatives \mathcal{V} is a set of atoms if: (i) for each $a_i, a_j \in \mathcal{A}$ with $a_i \neq a_j$, there is no $f \in N$ such that $f(a_i) = a_j$; and (ii) for each $v_i \in \mathcal{V} \setminus \mathcal{A}$, there exists $f_i \in N$ and $a_i \in \mathcal{A}$ such that $f_i(a_i) = v_i$.

Let $\mathcal{A} = \{a_1, a_2, \ldots, a_k\}$ be a set of atoms in a group G. Note that every nonzero element of G is either an atom or the image of an atom under a function in A or N. By Lemmas 2.3 and 2.5, every function $c \in C(N)$ is completely determined by the values $c(a_i)$ where $a_i \in \mathcal{A}$.

To show an arbitrary function $\alpha \in N$ is in the center, we use the following lemma.

Lemma 2.7. Let $\alpha \in N$. Assume $\alpha f(a) = f\alpha(a)$ for all $f \in N$ and all atoms $a \in A$. Then $\alpha \in C(N)$.

Proof. Let \mathcal{V} be a set of orbit representatives and $\mathcal{A} \subseteq \mathcal{V}$, a set of atoms. For each $g_i \in \mathcal{V} \setminus \mathcal{A}$, there exists $f_i \in N$ and $a_j \in \mathcal{A}$ such that $f_i(a_j) = g_i$. So $\alpha f(g_i) = \alpha f(f_i(a_j)) = \alpha((ff_i)(a_j)) = (ff_i)(\alpha(a_j)) = f(f_i\alpha)(a_j) = f(\alpha f_i)(a_j) = f\alpha(f_i(a_j)) = f\alpha(g_i)$.

Since α and f are zero-preserving, we conclude that $\alpha f(0) = f\alpha(0)$. Now let $0 \neq h \in G$. Then there exist $g_i \in \mathcal{V}$ and $\varphi \in A$ such that $\varphi(g_i) = h$. From above, we get $\alpha f(h) = (\alpha f)(\varphi(g_i)) = \varphi(\alpha f)(g_i) = \varphi(f\alpha)(g_i) = (f\alpha)(\varphi(g_i)) = f\alpha(h)$. Since $h \in G$ is arbitrary, we have $\alpha \in C(N)$.

3. Functions in $M_I(S_n)$

Now we consider $M_I(G)$ where I is the set of all inner automorphisms of an arbitrary finite group G. The next theorem is Betsch's Lemma applied to I.

Theorem 3.1. [2] For $g_1, g_2 \in G$, the following are equivalent: (i) There exists $f \in M_I(G)$ such that $f(g_1) = g_2$; (ii) $Z(g_1) \subseteq Z(g_2)$; (iii) $g_2 \in Z(Z(g_1))$.

Next, we focus our attention on the group $(S_n, +)$, where addition represents the usual composition of permutations in S_n . Throughout the remainder of the paper, we mix the standard juxtaposition of elements in S_n and the new addition symbolism. We use the former when representing elements in S_n and the latter when combining such elements.

In light of the above theorem, to identify elements in $M_I(S_n)$ we first need to determine Z(Z(g)) for all $g \in S_n$.

Definition 3.2. For $g \in S_n$, let *Move* $g = \{i \in \{1, 2, ..., n\} | g(i) \neq i\}$.

Definition 3.3. Let $g_1, g_2, \ldots, g_r \in S_n$. We say this collection of elements is pairwise disjoint if for every distinct pair g_i and g_k , Move $g_i \cap$ Move $g_k = \emptyset$. We call a sum of pairwise disjoint elements a pairwise disjoint sum.

Lemma 3.4. [2] Let $g = g_1 + g_2 + \cdots + g_r$ be a pairwise disjoint sum in S_n where each g_i is a pairwise disjoint sum of k_i cycles and $k_i \neq k_j$ for all $i \neq j$.

(i) If $|Move g| \neq n-2$, then $Z(Z(g)) = \langle g_1 \rangle + \langle g_2 \rangle + \dots + \langle g_r \rangle$. (ii) If |Move g| = n-2, then $Z(Z(g)) = \langle g_1 \rangle + \langle g_2 \rangle + \dots + \langle g_r \rangle + \langle (a b) \rangle$, where a and b are the two distinct elements not in Move g. **Example 3.5.** Consider the group S_{10} . Then (i) $Z(Z(1\ 2\ 3\ 4)) = \langle (1\ 2\ 3\ 4) \rangle;$ (ii) $Z(Z((1\ 2)(3\ 4)(5\ 6\ 7)(8\ 9\ 10))) = \langle (1\ 2)(3\ 4) \rangle + \langle (5\ 6\ 7)(8\ 9\ 10) \rangle;$ (iii) $Z(Z((1\ 2\ 3)(4\ 5\ 6)(7\ 8))) = \langle (1\ 2\ 3)(4\ 5\ 6) \rangle + \langle (7\ 8) \rangle + \langle (9\ 10) \rangle.$

Note that in describing centers of centralizer subgroups, we cannot separate cycles of the same length. For example, $g = (1 \ 2 \ 3 \ 4 \ 5 \ 6)$, $(1 \ 3 \ 5)$, and $(2 \ 4 \ 6)$ commute with $g^2 = (1 \ 3 \ 5)(2 \ 4 \ 6)$. Therefore $g, (1 \ 3 \ 5), (2 \ 4 \ 6) \in Z(g^2)$. However neither $(1 \ 3 \ 5)$ nor $(2 \ 4 \ 6)$ commute with g. Thus $(1 \ 3 \ 5), (2 \ 4 \ 6) \notin Z(Z(g^2))$.

In S_n , an orbit determined by all inner automorphisms consists of all permutations having the same cycle structure. So to define a function $f \in M_I(G)$, we choose one element g_i of each cycle structure, define f on these elements so that $f(g_i) \in Z(Z(g_i))$, then extend to all other elements of G via Lemma 2.3.

Theorem 3.6. [2] The nearring $M_I(S_3)$ is a commutative ring. In particular, $M_I(S_3) = \langle id \rangle \cong \mathbb{Z}_6$.

Proof. Let $f \in M_I(S_3)$. Then $f(1\ 2) \in \langle (1\ 2) \rangle$ and $f(1\ 2\ 3) \in \langle (1\ 2\ 3) \rangle$. Since f is completely determined by the values $f(1\ 2)$ and $f(1\ 2\ 3)$, we conclude that there are at most six functions in $M_I(S_3)$. Also, with $id \in M_I(S_3)$, we see that $\langle id \rangle \subseteq M_I(S_3)$, and there are at least six functions in $M_I(S_3)$. It follows that $M_I(S_3) = \langle id \rangle \cong \mathbb{Z}_6$, a commutative ring. \Box

Defining functions in the manner described above, we identify the functions in $M_I(S_n)$ for n = 4, 5, 6 in the table below. For each cycle structure representative $x \in S_n$, the function $f \in M_I(S_n)$, maps x into the sets listed in the adjacent columns. For example, in S_5 , $f(1 \ 2 \ 3) \in \langle (1 \ 2 \ 3) \rangle + \langle (4 \ 5) \rangle$.

$x \in S_n$	$f \in M_I(S_4)$	$f \in M_I(S_5)$	$f \in M_I(S_6)$
(12)	$\langle (12)\rangle + \langle (34)\rangle$	$\langle (12) \rangle$	$\langle (12) \rangle$
(123)	$\langle (123) angle$	$\langle (123) \rangle + \langle (45) \rangle$	$\langle (123) \rangle$
(12)(34)	$\langle (12)(34) \rangle$	$\langle (12)(34) \rangle$	$\langle (12)(34)\rangle + \langle (56)\rangle$
(1234)	$\langle (1234) \rangle$	$\langle (1234) \rangle$	$\langle (1234) \rangle + \langle (56) \rangle$
(123)(45)		$\langle (123) \rangle + \langle (45) \rangle$	$\langle (123)\rangle + \langle (45)\rangle$
(12345)		$\langle (12345) \rangle$	$\langle (12345) \rangle$
(12)(34)(56)			$\langle (12)(34)(56)\rangle$
(123)(456)			$\langle (123)(456) \rangle$
(1234)(56)			$\langle (1234) \rangle + \langle (56) \rangle$
(123456)			$\langle (123456) \rangle$

TABLE 1. All functions $f \in M_I(S_n)$ for n = 4, 5, 6

Corollary 3.7. The orders of $M_I(S_n)$ for n = 4, 5, 6 are: (i) $|M_I(S_4)| = 96;$ (ii) $|M_I(S_5)| = 2880;$ (iii) $|M_I(S_6)| = 1,658,880.$

Proof. Since functions in $M_I(S_n)$ are completely determined by their values on cycle structure representatives, we need only count the number of possibilities of function values on these representatives. For $f \in M_I(S_4)$, there are four possible values for $f(1 \ 2)$, three possible values for $f(1 \ 2 \ 3)$, two possible values for $f((1 \ 2)(3 \ 4))$, and four possible values for $f(1 \ 2 \ 3 \ 4)$. Thus $|M_I(S_4)| = 4 \cdot 3 \cdot 2 \cdot 4 = 96$. A similar method of counting gives the results for $M_I(S_5)$ and $M_I(S_6)$.

4. Functions in $C(M_I(S_n))$

In general C(N) is not a subnearing of N (see [3]). It may be that C(N) is not even additively closed. Thus the question of when C(N) is a subnearing of N is of particular interest. The first theorem determines when $C(M_I(S_N))$ is a subnearing of $M_I(S_n)$ for $n \ge 3$.

Theorem 4.1. The following are equivalent for $n \ge 3$: (i) $M_I(S_n)$ is a commutative ring; (ii) $C(M_I(S_n))$ is a subnearring of $M_I(S_n)$; (iii) n = 3.

Proof. If $M_I(S_n)$ is a ring, it follows that $C(M_I(S_n))$ is a subnearring of $M_I(S_n)$. So (i) implies (ii). Assume $n \ge 4$. We know that $id \in C(M_I(S_n))$. Consider the function $id + id \in M_I(S_n)$. Then $(id + id)(1 \ 2 \ 3 \ 4) = (1 \ 2 \ 3 \ 4) + (1 \ 2 \ 3 \ 4) = (1 \ 3)(2 \ 4)$. Thus the function id + id does not preserve cycle structure and $id + id \notin C(M_I(S_n))$ by Theorem 2.4. Hence if $n \ge 4$, then $C(M_S(S_n))$ is not a subnearring of $M_I(S_n)$, and (ii) implies (iii). We have (iii) implies (i) by Theorem 3.6, and the proof is complete. \Box

The next lemma gives information about function values of elements in the same orbit of S_n under the action of I.

Lemma 4.2. Let $g = g_1 + g_2 + \cdots + g_r$ be a pairwise disjoint sum in S_n where each g_w is a pairwise disjoint sum of k_w cycles and $k_w \neq k_y$ for all $w \neq y$. Let $f \in M_I(S_n)$, and assume $f(g) = i_1g_1 + i_2g_2 + \cdots + i_rg_r$ for some integers i_1, i_2, \ldots, i_r . Let $h \in Ig$, say $\varphi(g) = h = j_1g_1 + j_2g_2 + \cdots + j_rg_r$ for some integers j_1, j_2, \ldots, j_r where j_w is relatively prime to $|g_w|$ for all $w = 1, 2, \ldots, r$. Then $f(h) = (i_1j_1)g_1 + (i_2j_2)g_2 + \cdots + (i_rj_r)g_r$.

Proof. First note that since $\varphi(g) = \varphi(g_1 + g_2 + \dots + g_r) = \varphi(g_1) + \dots + \varphi(g_r) = h = j_1 g_1 + j_2 g_2 + \dots + j_r g_r$ with $k_w \neq k_y$ for all $w \neq y$

and the cycle structure of g is the same as the cycle structure of h, it follows that $\varphi(g_w) = j_w g_w$ for all w. Thus, $f(h) = f\varphi(g) = \varphi f(g) = \varphi(i_1g_1 + i_2g_2 + \cdots + i_rg_r) = i_1\varphi(g_1) + \cdots + i_r\varphi(g_r) = i_1j_1g_1 + \cdots + i_rj_rg_r$, and the result follows. \Box

Now we consider functions $c \in C(M_I(S_n))$ and their function values on elements in different orbits.

Lemma 4.3. Let $g = g_1 + g_2 + \dots + g_r$ be a pairwise disjoint sum in S_n where each g_w is a pairwise disjoint sum of k_w cycles and $k_w \neq k_y$ for all $w \neq y$. Let $c \in C(M_I(S_n))$ and assume $c(g) \in Ig$, say $c(g) = \varphi(g) = i_1g_1 + i_2g_2 + \dots + i_rg_r$ for some integers i_1, i_2, \dots, i_r where i_w is relatively prime to $|g_w|$ for all $w = 1, 2, \dots, r$. Let $f \in M_I(S_n)$ and assume $h = f(g) = j_1g_1 + j_2g_2 + \dots + j_rg_r$ for some integers j_1, j_2, \dots, j_r . Then $c(h) = (i_1j_1)g_1 + (i_2j_2)g_2 + \dots + (i_rj_r)g_r$.

Proof. As described in the proof of Lemma 4.2, $\varphi(g_w) = i_w g_w$ for all w. Therefore $c(h) = cf(g) = fc(g) = f\varphi(g) = \varphi f(g) = \varphi(j_1g_1 + j_2g_2 + \cdots + j_rg_r) = j_1\varphi(g_1) + \cdots + j_r\varphi(g_r) = j_1i_1g_1 + \cdots + j_ri_rg_r$, and the result follows.

Lemma 4.4. Let $g = g_1 + g_2 + \cdots + g_r$ be a pairwise disjoint sum in S_n where each g_i is a pairwise disjoint sum of k_w cycles and $k_w \neq k_y$ for all $w \neq y$. Let $f, \alpha \in M_I(S_n)$ such that $f(g), \alpha(g) \in Ig$. Then $\alpha f(g) = f\alpha(g)$.

Proof. We consider two cases. First assume $|Move g| \neq n-2$. By Lemma 3.4, $Z(Z(g)) = \langle g_1 \rangle + \langle g_2 \rangle + \cdots + \langle g_r \rangle$. Since $f(g), \alpha(g) \in Ig$, it follows that $f(g) = i_1g_1 + i_2g_2 + \cdots + i_rg_r$ and $\alpha(g) = j_1g_1 + j_2g_2 + \cdots + j_rg_r$, for integers $i_1, i_2, \ldots, i_r, j_1, j_2, \ldots, j_r$ where i_w and j_w are relatively prime to $|g_w|$ for all $w = 1, 2, \ldots, r$. We also observe that there exist $\varphi_1, \varphi_2 \in I$ such that $\varphi_1(g) = f(g)$ and $\varphi_2(g) = \alpha(g)$.

As in the previous two lemmas, we get that $\varphi_1(g_w) = i_w g_w$ and $\varphi_2(g_w) = j_w g_w$ for all w. Thus $\alpha f(g) = \alpha \varphi_1(g) = \varphi_1 \alpha(g) = \varphi_1(j_1 g_1 + j_2 g_2 + \dots + j_r g_r) = j_1 \varphi_1(g_1) + j_2 \varphi_1(g_2) + \dots + j_r \varphi_1(g_r) = j_1(i_1 g_1) + j_2(i_2 g_2) + \dots + j_r(i_r g_r) = i_1(j_1 g_1) + i_2(j_2 g_2) + \dots + i_r(j_r g_r) = i_1 \varphi_2(g_1) + i_2 \varphi_2(g_2) + \dots + i_r \varphi_2(g_r) = \varphi_2(i_1 g_1 + i_2 g_2 + \dots + i_r g_r) = \varphi_2 f(g) = f \varphi_2(g) = f \alpha(g)$. So $\alpha f(g) = f \alpha(g)$.

For the second case, assume |Move g| = n - 2. By Lemma 3.4, $Z(Z(g)) = \langle g_1 \rangle + \langle g_2 \rangle + \cdots + \langle g_r \rangle + \langle (c d) \rangle$, where c and d are the two distinct elements not in Move g. If $f(g), \alpha(g) \in \langle g_1 \rangle + \langle g_2 \rangle + \cdots + \langle g_r \rangle$, then $\alpha f(g) = f\alpha(g)$ from the previous case. So we assume at least one of f(g) or $\alpha(g)$ includes the element (c d) as a summand.

Assume both f(g) and $\alpha(g)$ include $(c \ d)$ as a summand. Since $f(g), \alpha(g) \in Ig$, without a loss of generality it follows that $g_r = (a \ b)$

with $a, b \in Move \ g$, no other g_w consists solely of two-cycles, and $a, b \notin Move \ (g_1 + g_2 + \dots + g_{r-1})$. Thus, $g = g_1 + g_2 + \dots + g_{r-1} + (a \ b)$, $f(g) = i_1g_1 + i_2g_2 + \dots + i_{r-1}g_{r-1} + (c \ d)$ and $\alpha(g) = j_1g_1 + j_2g_2 + \dots + j_{r-1}g_{r-1} + (c \ d)$, for integers $i_1, i_2, \dots, i_{r-1}, j_1, j_2, \dots, j_{r-1}$ where i_w and j_w are relatively prime to $|g_w|$ for all $w = 1, 2, \dots, r-1$.

Since $g_1+g_2+\cdots+g_{r-1}$, $i_1g_1+i_2g_2+\cdots+i_{r-1}g_{r-1}$, and $j_1g_1+j_2g_2+\cdots+j_{r-1}g_{r-1}$ are in the same orbit, there exist $\tau_1, \tau_2 \in S_n$ with $Move \ \tau_1 \cup Move \ \tau_2 \subseteq Move \ (g_1+g_2+\cdots+g_{r-1})$ such that $\varphi_{\tau_1}(g_1+g_2+\cdots+g_{r-1}) = i_1g_1+i_2g_2+\cdots+i_{r-1}g_{r-1}$ and $\varphi_{\tau_2}(g_1+g_2+\cdots+g_{r-1}) = j_1g_1+j_2g_2+\cdots+j_{r-1}g_{r-1}$. Thus $\varphi_{\tau_1+(a\ c\ b\ d)}(g) = f(g)$ and $\varphi_{\tau_2+(a\ c\ b\ d)}(g) = \alpha(g)$. Note that $\varphi_{\tau_1+(a\ c\ b\ d)}(c\ d) = (a\ b) = \varphi_{\tau_2+(a\ c\ b\ d)}(c\ d)$. Also, as in the case where $|Move\ g| \neq n-2$, $\varphi_{\tau_1+(a\ c\ b\ d)}(g_w) = i_wg_w$ and $\varphi_{\tau_2+(a\ c\ b\ d)}(g_w) = j_wg_w$ for all $w = 1, 2, \ldots, r-1$.

Therefore,

$$\begin{split} \alpha f(g) &= \alpha \varphi_{\tau_1 + (a \ c \ b \ d)}(g) \\ &= \varphi_{\tau_1 + (a \ c \ b \ d)} \alpha(g) \\ &= \varphi_{\tau_1 + (a \ c \ b \ d)}(j_1 g_1 + \dots + j_{r-1} g_{r-1} + (c \ d)) \\ &= j_1 \varphi_{\tau_1 + (a \ c \ b \ d)}(g_1) + \dots + j_{r-1} \varphi_{\tau_1 + (a \ c \ b \ d)}(g_{r-1}) \\ &+ \varphi_{\tau_1 + (a \ c \ b \ d)}(c \ d) \\ &= j_1(i_1 g_1) + \dots + j_{r-1}(i_{r-1} g_{r-1}) + (a \ b) \\ &= i_1(j_1 g_1) + \dots + i_{r-1}(j_{r-1} g_{r-1}) + (a \ b) \\ &= i_1 \varphi_{\tau_2 + (a \ c \ b \ d)}(g_1) + \dots + i_{r-1} \varphi_{\tau_2 + (a \ c \ b \ d)}(g_{r-1}) \\ &+ \varphi_{\tau_2 + (a \ c \ b \ d)}(c \ d) \\ &= \varphi_{\tau_2 + (a \ c \ b \ d)}(c \ d) \\ &= \varphi_{\tau_2 + (a \ c \ b \ d)}(f(g) \\ &= f \varphi_{\tau_2 + (a \ c \ b \ d)}(g) \\ &= f \alpha(g). \end{split}$$

Finally, assume $g = g_1 + g_2 + \dots + g_{r-1} + (a \ b)$, $f(g) = i_1g_1 + i_2g_2 + \dots + i_{r-1}g_{r-1} + (c \ d)$ and $\alpha(g) = j_1g_1 + j_2g_2 + \dots + j_{r-1}g_{r-1} + (a \ b)$, for integers $i_1, i_2, \dots, i_{r-1}, j_1, j_2, \dots, j_{r-1}$ where i_w and j_w are relatively prime to $|g_w|$ for all $w = 1, 2, \dots, r-1$. As in the previous situation, we find τ_1 and τ_2 which give $\varphi_{\tau_1+(a \ c \ b \ d)}(g) = f(g)$ and $\varphi_{\tau_2}(g) = \alpha(g)$. Computations as above yield $\alpha f(g) = f\alpha(g)$. This completes the proof.

Theorem 4.5. Let $\alpha \in M_I(S_n)$. Then $\alpha \in C(M_I(S_n))$ if and only if the following three conditions are satisfied:

(i) For every atom $a, \alpha(a) = (1)$ or $\alpha(a) \in Ia$.

(ii) For every atom a, $\alpha(a) = (1)$ if and only if $\alpha f(a) = (1)$ for all $f \in M_I(S_n)$ with $f(a) \neq (1)$.

(iii) For every atom a with $\alpha(a) \neq (1)$, $\alpha f(a) = f\alpha(a)$ for every $f \in M_I(S_n)$ such that $f(a) \notin Ia$ and $f(a) \neq (1)$.

Proof. Assume $\alpha \in C(M_I(S_n))$. Condition (i) follows from Theorem 2.4, and condition (ii) follows from Lemma 2.5. Condition (iii) follows from the definition of center.

For the converse, let a be an atom and $f \in M_I(S_n)$. We consider various cases.

Assume f(a) = (1). Then either $\alpha(a) = (1)$ or $\alpha(a) \in Ia$ by condition (i). If $\alpha(a) = (1)$, then $\alpha f(a) = \alpha(1) = (1) = f(1) = f\alpha(a)$. If $\alpha(a) \in Ia$, then $f\alpha(a) = (1)$ by Lemma 2.3. Thus $\alpha f(a) = \alpha(1) = (1) = f\alpha(a)$.

Assume $f(a) \in Ia$. Again, either $\alpha(a) = (1)$ or $\alpha(a) \in Ia$. If $\alpha(a) = (1)$, then $f\alpha(a) = f(1) = (1) = \alpha f(a)$ by Lemma 2.3. If $\alpha(a) \in Ia$, then $f\alpha(a) = \alpha f(a)$ by the previous lemma.

Now assume $f(a) \notin Ia$ and $f(a) \neq (1)$. If $\alpha(a) = (1)$, then $\alpha f(a) = (1)$ by condition (*ii*). Thus, $\alpha f(a) = (1) = f(1) = f\alpha(a)$. If $\alpha(a) \neq (1)$, by condition (*iii*), $\alpha f(a) = f\alpha(a)$. Thus $\alpha \in C(M_I(S_n))$ by Lemma 2.7.

5. Centers of $M_I(S_4)$, $M_I(S_5)$, and $M_I(S_6)$

In this section, we completely determine the functions in $C(M_I(S_n))$ for n = 4, 5, and 6. We begin by finding functions in $C(M_I(S_4))$.

Let $c \in C(M_I(S_4))$. By Table 1 and Theorem 2.4, $c(1 \ 2 \ 3) \in \langle (1 \ 2 \ 3) \rangle$, $c(1 \ 2 \ 3 \ 4) \in \{(1), (1 \ 2 \ 3 \ 4), (1 \ 4 \ 3 \ 2)\}, c(1 \ 3) \in \{(1), (1 \ 3), (2 \ 4)\}, \text{ and} c((1 \ 3)(2 \ 4)) \in \langle (1 \ 3)(2 \ 4) \rangle$.

We note that $\{(1\,2\,3\,4), (1\,2\,3), (1\,3)\}$ is a set of atoms for S_4 since by Table 1, there exist functions $f_1, f_2 \in M_I(S_4)$ such that $f_1(1\,2\,3\,4) =$ $(1\,3)(2\,4) = f_2(1\,3)$. Assume $c(1\,2\,3\,4) = (1)$. By Lemma 2.5, $c((1\,3)(2\,4)) = (1) = c(1\,3)$ as well. Now assume $c(1\,2\,3\,4) \neq (1)$. By Lemma 2.5, $c(1\,3) \neq (1)$ and $c((1\,3)(2\,4)) \neq (1)$. Thus $c(1\,3) \in$ $\{(1\,3), (2\,4)\}$ and $c((1\,3)(2\,4)) = (1\,3)(2\,4)$.

By considering all combinations described above, we get the following lemma describing necessary conditions for functions $c \in C(M_I(S_4))$.

Lemma 5.1. Let $c \in C(M_I(S_4))$. Then c is one of the functions f or g whose images are given in the columns of the following table. The remaining values for c are obtained by extending to the other elements in each orbit via Lemma 2.3.

$x \in S_4$	f(x)	g(x)
$(1\ 2\ 3)$	$\langle (1\ 2\ 3) \rangle$	$\langle (1 \ 2 \ 3) \rangle$
$(1\ 2\ 3\ 4)$	(1)	$(1\ 2\ 3\ 4)$ or $(1\ 4\ 3\ 2)$
$(1 \ 3)$	(1)	$(1\ 3)$ or $(2\ 4)$
$(1\ 3)(2\ 4)$	(1)	$(1\ 3)(2\ 4)$

For example, the function $g \in C(M_I(S_4))$ given by $g(1\ 2\ 3) = (1\ 2\ 3)$, $g(1\ 2\ 3\ 4) = (1\ 4\ 3\ 2)$, $g(1\ 3) = (2\ 4)$, and $g((1\ 3)(2\ 4)) = (1\ 3)(2\ 4)$ is described by the second column of the table.

Theorem 5.2. The set $C(M_I(S_4))$ consists of all functions described by the table above. Thus $|(C(M_I(S_4)))| = 15$.

Proof. Let α be a function represented by one of the columns given in the table above. Then $\alpha \in M_I(S_4)$ by Table 1. For a set of atoms for S_4 we use $\{(1234), (123), (13)\}$. From the table we see that for every atom $a, \alpha(a) = (1)$ or $\alpha(a) \in Ia$.

Note that $\alpha(1 \ 2 \ 3 \ 4) = (1)$ if and only if $\alpha((1 \ 3)(2 \ 4)) = (1)$ if and only if $\alpha(1 \ 3) = (1)$. Thus, for every atom $a, \alpha(a) = (1)$ if and only if $\alpha f(a) = (1)$ for all $(1) \neq f(a)$ with $f \in M_I(S_4)$.

Now we consider atoms a with $\alpha(a) \neq (1)$ and functions $f \in M_I(S_4)$ such that $f(a) \notin Ia$ and $f(a) \neq (1)$. Since $f(1 \ 2 \ 3) \in \langle (1 \ 2 \ 3) \rangle$, the atom $(1 \ 2 \ 3)$ does not satisfy the condition. Thus there are only two cases to consider.

For the first case, let $f \in M_I(S_4)$ with $f(1\ 2\ 3\ 4) = 2(1\ 2\ 3\ 4) = (1\ 3)(2\ 4)$. By Lemma 2.3, $f(1\ 4\ 3\ 2) = 2(1\ 4\ 3\ 2) = (1\ 3)(2\ 4)$.

Assume $\alpha(1 \ 2 \ 3 \ 4) \in \{(1 \ 2 \ 3 \ 4), (1 \ 4 \ 3 \ 2)\}$. Then $\alpha((1 \ 3)(2 \ 4)) = (1 \ 3)(2 \ 4)$. So $\alpha f(1 \ 2 \ 3 \ 4) = \alpha((1 \ 3)(2 \ 4)) = (1 \ 3)(2 \ 4) = f\alpha(1 \ 2 \ 3 \ 4)$.

For the second case, let $f \in M_I(S_4)$ with $f(1\ 3) = (1\ 3)(2\ 4)$. Note that $\varphi_{(1\ 2\ 3\ 4)}(1\ 3) = (1\ 4\ 3\ 2) + (1\ 3) + (1\ 2\ 3\ 4) = (2\ 4)$. So $f(2\ 4) = f\varphi_{(1\ 2\ 3\ 4)}(1\ 3) = \varphi_{(1\ 2\ 3\ 4)}f(1\ 3) = \varphi_{(1\ 2\ 3\ 4)}((1\ 3)(2\ 4)) = (1\ 4\ 3\ 2) + (1\ 3)(2\ 4) + (1\ 2\ 3\ 4) = (1\ 3)(2\ 4).$

Assume $\alpha(1 \ 3) \in \{(1 \ 3), (2 \ 4)\}$. Then $\alpha((1 \ 3)(2 \ 4)) = (1 \ 3)(2 \ 4)$. So $\alpha f(1 \ 3) = \alpha((1 \ 3)(2 \ 4)) = (1 \ 3)(2 \ 4) = f\alpha(1 \ 3)$.

Thus, for all atoms a with $\alpha(a) \neq (1)$ and all functions $f \in M_I(S_4)$ such that $f(a) \notin Ia$ and $f(a) \neq (1)$, we have $\alpha f(a) = f\alpha(a)$. Hence, by Theorem 4.5, $\alpha \in C(M_I(S_4))$.

The first column of the table accounts for 3 different functions. The second column of the table yields $3 \cdot 2 \cdot 2 \cdot 1 = 12$ different functions. Hence $|(C(M_I(S_4)))| = 15$.

Next, we determine the functions in $C(M_I(S_5))$. Let $c \in C(M_I(S_5))$. By Table 1 and Theorem 2.4, $c(1 \ 2 \ 3 \ 4 \ 5) \in \langle (1 \ 2 \ 3 \ 4 \ 5) \rangle, c((1 \ 2 \ 3)(4 \ 5)) \in$ $\{(1), (1\ 2\ 3)(4\ 5), (1\ 3\ 2)(4\ 5)\}, c(1\ 2\ 3\ 4) \in \{(1), (1\ 2\ 3\ 4), (1\ 4\ 3\ 2)\}, c(1\ 3)(2\ 4)) \in \langle(1\ 3)(2\ 4)\rangle, c(1\ 2\ 3) \in \langle(1\ 2\ 3)\rangle, and c(4\ 5) \in \langle(4\ 5)\rangle.$

Note that $\{(12345), (123)(45), (1234)\}$ is a set of atoms for S_5 since by Table 1, there exist functions $f_1, f_2, f_3 \in M_I(S_5)$ such that $f_1((1\ 2\ 3)(4\ 5)) = (1\ 2\ 3), f_2((1\ 2\ 3)(4\ 5)) = (4\ 5), \text{ and } f_3(1\ 2\ 3\ 4) = (1\ 3)(2\ 4).$ Assume $c((1\ 2\ 3)(4\ 5)) = (1)$. Then $c(1\ 2\ 3) = (1) = c(4\ 5)$ by Lemma 2.5. If $c((1\ 2\ 3)(4\ 5)) \neq (1)$, then $c(4\ 5) = (4\ 5)$.

Likewise, if $c(1 \ 2 \ 3 \ 4) = (1)$, then $c((1 \ 3)(2 \ 4)) = (1)$. If $c(1 \ 2 \ 3 \ 4) \neq (1)$, then $c((1 \ 3)(2 \ 4)) = (1 \ 3)(2 \ 4)$. Also, if $c((1 \ 2 \ 3)(4 \ 5)) = (1 \ 2 \ 3)(4 \ 5)$, then $c(1 \ 2 \ 3) = (1 \ 2 \ 3)$ by Lemma 2.5.

Now assume $c((1\ 2\ 3)(4\ 5)) = 2(1\ 2\ 3) + 1(4\ 5) = (1\ 3\ 2)(4\ 5)$. Since $f_1((1\ 2\ 3)(4\ 5)) = 1(1\ 2\ 3) + 0(4\ 5) = (1\ 2\ 3)$, by Lemma 4.3, $c(1\ 2\ 3) = 2(1\ 2\ 3) + 0(4\ 5) = (1\ 3\ 2)$.

By considering all combinations described above, we get the following lemma describing necessary conditions for functions $c \in C(M_I(S_5))$. In the table, note that superscripts designate corresponding function values that must be used in tandem. For example, if $c((1\ 2\ 3)(4\ 5)) =$ $(1\ 3\ 2)(4\ 5)$, then $c(1\ 2\ 3) = (1\ 3\ 2)$.

Lemma 5.3. Let $c \in C(M_I(S_5))$. Then c is one of the functions f, g, h, or k whose images are given in the columns of the following table. The remaining values for c are obtained by extending to the other elements in each orbit via Lemma 2.3.

$x \in S_5$	f(x)	g(x)	h(x)	k(x)
(12345)	$\langle (12345) \rangle$	$\langle (12345) \rangle$	$\langle (12345) \rangle$	$\langle (12345) \rangle$
			$(123)(45)^a$	$(123)(45)^c$
(123)(45)	(1)	(1)	or	or
			$(132)(45)^b$	$(132)(45)^d$
		(1234)		(1234)
(1234)	(1)	or	(1)	or
		(1432)		(1432)
(13)(24)	(1)	(13)(24)	(1)	(13)(24)
			$(123)^a$	$(123)^c$
(123)	(1)	(1)	or	or
			$(132)^b$	$(132)^d$
(45)	(1)	(1)	(45)	(45)

Theorem 5.4. The set $C(M_I(S_5))$ consists of all functions described by the table above. Thus $|(C(M_I(S_5)))| = 45$.

Proof. Let α be a function represented by one of the columns given in the table above. Then $\alpha \in M_I(S_5)$ by Table 1. For a set of atoms for

 S_5 we use $\{(12345), (123)(45), (1234)\}$. From the table we see that for every atom $a, \alpha(a) = (1)$ or $\alpha(a) \in Ia$.

Note that $\alpha((1\ 2\ 3)(4\ 5)) = (1)$ if and only if $\alpha(1\ 2\ 3) = (1)$ if and only if $\alpha(4\ 5) = (1)$. Also, $\alpha(1\ 2\ 3\ 4) = (1)$ if and only if $\alpha((1\ 3)(2\ 4)) = (1)$. Thus, for every atom $a, \alpha(a) = (1)$ if and only if $\alpha f(a) = (1)$ for all $(1) \neq f(a)$ with $f \in M_I(S_5)$.

Now we consider atoms a with $\alpha(a) \neq (1)$ and functions $f \in M_I(S_5)$ such that $f(a) \notin Ia$ and $f(a) \neq (1)$. Since $f(1 \ 2 \ 3 \ 4 \ 5) \in \langle (1 \ 2 \ 3 \ 4 \ 5) \rangle$, the atom $(1 \ 2 \ 3 \ 4 \ 5)$ does not satisfy the condition. Thus there are four cases to consider.

For the first case, let $f \in M_I(S_5)$ with $f((1\ 2\ 3)(4\ 5)) = 1(1\ 2\ 3) + 0(4\ 5) = (1\ 2\ 3)$. Note that there exists $\varphi \in I$ with $\varphi((1\ 2\ 3)(4\ 5)) = 2(1\ 2\ 3) + 1(4\ 5) = (1\ 3\ 2)(4\ 5)$. By Lemma 4.2, $f((1\ 3\ 2)(4\ 5)) = 2(1\ 2\ 3) + 0(4\ 5) = (1\ 3\ 2)(4\ 5)$. By Lemma 4.2, $f((1\ 3\ 2)(4\ 5)) = 2(1\ 2\ 3) + 0(4\ 5) = (1\ 3\ 2)(4\ 5) = (1\ 2\ 3)(4\ 5)) = (1\ 2\ 3)(4\ 5) = (1\ 2\ 3)(4\ 5)) = (1\ 2\ 3)(4\ 5) = f\alpha((1\ 2\ 3)(4\ 5)) = \alpha(1\ 2\ 3) = (1\ 3\ 2)(4\ 5)) = f\alpha((1\ 2\ 3)(4\ 5)) = \alpha(1\ 2\ 3) = (1\ 3\ 2)(4\ 5)) = f\alpha((1\ 2\ 3)(4\ 5)) = \alpha(1\ 2\ 3) = (1\ 3\ 2)(4\ 5)) = f\alpha((1\ 2\ 3)(4\ 5)) = \alpha(1\ 2\ 3) = f((1\ 3\ 2)(4\ 5)) = f\alpha((1\ 2\ 3)(4\ 5)) = f\alpha((1\ 2\ 3)(4\ 5)) = \alpha(1\ 2\ 3) = f((1\ 3\ 2)(4\ 5)) = f\alpha((1\ 2\ 3)(4\ 5)) = f\alpha((1\ 2\ 3)(4\ 5)) = \beta\alpha((1\ 2\ 3)(4\ 5)) = f\alpha((1\ 3\ 2)(4\ 5)) = f\alpha((1\ 2\ 3)(4\ 5)) = f\alpha((1\ 3\ 2)(4\ 5)) = f\alpha((1\ 2\ 3)(4\ 5))$

For the second case, let $f \in M_I(S_5)$ with $f((1\ 2\ 3)(4\ 5)) = 2(1\ 2\ 3) + 0(4\ 5) = (1\ 3\ 2)$. The remainder of the proof is similar to the first case.

For the third case, let $f \in M_I(S_5)$ with $f((1\ 2\ 3)(4\ 5)) = 0(1\ 2\ 3) + 1(4\ 5) = (4\ 5)$. Using $\varphi((1\ 2\ 3)(4\ 5)) = 2(1\ 2\ 3) + 1(4\ 5) = (1\ 3\ 2)(4\ 5)$, by Lemma 4.2 we get $f((1\ 3\ 2)(4\ 5)) = 0(1\ 2\ 3) + 1(4\ 5) = (4\ 5)$. Assume $\alpha((1\ 2\ 3)(4\ 5)) = (1\ 2\ 3)(4\ 5)$. Then $\alpha f((1\ 2\ 3)(4\ 5)) = \alpha(4\ 5) = \alpha(4\ 5) = f((1\ 2\ 3)(4\ 5)) = f\alpha((1\ 2\ 3)(4\ 5)) = \alpha(4\ 5) = \alpha(4\ 5) = \alpha(4\ 5) = f((1\ 3\ 2)(4\ 5)) = f\alpha((1\ 2\ 3)(4\ 5)) = \alpha(4\ 5) = \alpha(4\ 5) = f((1\ 3\ 2)(4\ 5)) = f\alpha((1\ 2\ 3)(4\ 5)) = \alpha(4\ 5) = \alpha(4\ 5) = f((1\ 3\ 2)(4\ 5)) = f\alpha((1\ 2\ 3)(4\ 5)) = \alpha(4\ 5) = \alpha(4\ 5) = f\alpha((1\ 2\ 3)(4\ 5)) = \alpha(4\ 5) = \alpha(4\ 5) = \alpha(4\ 5) = f\alpha((1\ 2\ 3)(4\ 5)) = \alpha(4\ 5) = f\alpha((1\ 2\ 3)(4\ 5)) = \alpha(4\ 5) = \alpha(4\ 5) = \alpha(4\ 5) = \alpha(4\ 5) = f\alpha((1\ 2\ 3)(4\ 5)) = \alpha(4\ 5) = \alpha(4\ 5)$

Finally, for the fourth case, let $f \in M_I(S_5)$ with $f(1 \ 2 \ 3 \ 4) = (1 \ 3)(2 \ 4)$. Then $\alpha f(1 \ 2 \ 3 \ 4) = f\alpha(1 \ 2 \ 3 \ 4)$ from the first case in the corresponding proof for $M_I(S_4)$.

Thus, for all atoms a and all functions $f \in M_I(S_5)$ such that $f(a) \notin Ia$ and $f(a) \neq (1)$, we have $\alpha f(a) = f\alpha(a)$. Hence, by Theorem 4.5, $\alpha \in C(M_I(S_5))$.

The first column of the table accounts for 5 different functions. The second and third columns of the table each yield $5 \cdot 2 = 10$ different functions. The fourth column gives $5 \cdot 2 \cdot 2 = 20$ different functions. Hence $|(C(M_I(S_5)))| = 5 + 10 + 10 + 20 = 45$ total functions.

To determine functions in $C(M_I(S_6))$, let $c \in C(M_I(S_6))$. Using Table 1 and Theorem 2.4, we conclude that $c(1\ 2\ 5\ 3\ 4\ 6) \in \{(1), (1\ 2\ 5\ 3\ 4\ 6), (1\ 6\ 4\ 3\ 5\ 2)\}, c((1\ 5\ 4)(2\ 3\ 6)) \in \langle(1\ 5\ 4)(2\ 3\ 6)\rangle, c((1\ 3)(2\ 4)(5\ 6)) \in \langle(1\ 2\ 3\ 4\ 5)\rangle, c(1\ 2\ 3\ 4\ 5) \in \langle(1\ 2\ 3\ 4\ 5)\rangle, c(1\ 2\ 3\ 4\ 5)\rangle$

 $c((1\ 2\ 3\ 4)(5\ 6)) \in \{(1), (1\ 2\ 3\ 4)(5\ 6), (1\ 4\ 3\ 2)(5\ 6)\}, c((1\ 2\ 3)(5\ 6)) \in \{(1), (1\ 2\ 3)(5\ 6), (1\ 3\ 2)(5\ 6)\}, c(1\ 2\ 3\ 4) \in \{(1), (1\ 2\ 3\ 4), (1\ 4\ 3\ 2)\}, c((1\ 3)(2\ 4)) \in \langle(1\ 3)(2\ 4)\rangle, c(1\ 2\ 3) \in \langle(1\ 2\ 3)\rangle, \text{and}\ c(5\ 6) \in \langle(5\ 6)\rangle.$

Note that by Table 1, we can create functions in $M_I(S_6)$ mapping (1 2 5 3 4 6) to (1 5 4)(2 3 6) or (1 3)(2 4)(5 6). We can also create functions in $M_I(S_6)$ mapping (1 2 3 4)(5 6) to (1 3)(2 4)(5 6), (1 2 3 4), (1 3)(2 4), or (5 6). Finally, we can create functions in $M_I(S_6)$ mapping (1 2 3)(5 6) to (1 2 3) or (5 6). From this, we can see that $\{(1 2 5 3 4 6), (1 2 3 4)(5 6), (1 2 3 4 5), (1 2 3)(5 6)\}$ is a set of atoms for S_6 .

By Lemma 2.5, $c(1 \ 2 \ 5 \ 3 \ 4 \ 6) = (1)$ if and only if c(x) = (1) for all $(1) \neq x \in S_6$ such that x is not a five cycle. Thus if $c(1 \ 2 \ 5 \ 3 \ 4 \ 6) \neq (1)$, then for all $g \in \{(1 \ 3)(2 \ 4)(5 \ 6), (1 \ 3)(2 \ 4), (5 \ 6)\}, c(g) \neq (1)$; so c(g) = g for every element g of order two.

If $c(1\ 2\ 5\ 3\ 4\ 6) = (1\ 2\ 5\ 3\ 4\ 6)$, then $c((1\ 5\ 4)(2\ 3\ 6)) = (1\ 5\ 4)(2\ 3\ 6)$ by Lemma 2.5. If $c(1\ 2\ 5\ 3\ 4\ 6) = 5(1\ 2\ 5\ 3\ 4\ 6) = (1\ 6\ 4\ 3\ 5\ 2)$, then consider $f_1 \in M_I(S_6)$ with $f_1(1\ 2\ 5\ 3\ 4\ 6) = 2(1\ 2\ 5\ 3\ 4\ 6) = (1\ 4\ 5)(2\ 6\ 3)$ $(1\ 5\ 4)(2\ 3\ 6)$. Then $c((1\ 5\ 4)(2\ 3\ 6)) = 10(1\ 2\ 5\ 3\ 4\ 6) = (1\ 4\ 5)(2\ 6\ 3)$ by Lemma 4.3.

If $c((1\ 2\ 3\ 4)(5\ 6)) = (1\ 2\ 3\ 4)(5\ 6)$, then $c(1\ 2\ 3\ 4) = (1\ 2\ 3\ 4)$ by Lemma 2.5. If $c((1\ 2\ 3\ 4)(5\ 6)) = 3(1\ 2\ 3\ 4) + 1(5\ 6) = (1\ 4\ 3\ 2)(5\ 6)$, then consider $f_1 \in M_I(S_6)$ with $f_1((1\ 2\ 3\ 4)(5\ 6)) = 1(1\ 2\ 3\ 4) + 0(5\ 6)$. We conclude that $c(1\ 2\ 3\ 4) = 3(1\ 2\ 3\ 4) + 0(5\ 6) = (1\ 4\ 3\ 2)$ by Lemma 4.3.

If $c((1\ 2\ 3)(5\ 6)) = (1\ 2\ 3)(5\ 6)$, then $c(1\ 2\ 3) = (1\ 2\ 3)$ by Lemma 2.5. If $c((1\ 2\ 3)(5\ 6)) = 2(1\ 2\ 3) + 1(5\ 6) = (1\ 3\ 2)(5\ 6)$, then consider $f_2 \in M_I(S_6)$ with $f_2((1\ 2\ 3)(5\ 6)) = 1(1\ 2\ 3) + 0(5\ 6) = (1\ 2\ 3)$. Then $c(1\ 2\ 3) = 2(1\ 2\ 3) + 0(5\ 6) = (1\ 3\ 2)$ by Lemma 4.3.

By considering all combinations described above, we get the following lemma describing necessary conditions for functions $c \in C(M_I(S_6))$. As with the table for $C(M_I(S_5))$, superscripts designate corresponding function values that must be used in tandem. For example, if $c((1\ 2\ 3\ 4)(5\ 6)) = (1\ 4\ 3\ 2)(5\ 6)$, then $c(1\ 2\ 3\ 4) = (1\ 4\ 3\ 2)$.

Lemma 5.5. Let $c \in C(M_I(S_6))$. Then c is one of the functions f or g whose images are given in the columns of the following table. The remaining values for c are obtained by extending to the other elements in each orbit via Lemma 2.3.

$x \in S_6$	f(x)	g(x)
$(1\ 2\ 5\ 3\ 4\ 6)$	(1)	$(1\ 2\ 5\ 3\ 4\ 6)^a$ or $(1\ 6\ 4\ 3\ 5\ 2)^b$
$(1\ 5\ 4)(2\ 3\ 6)$	(1)	$(1\ 5\ 4)(2\ 3\ 6)^a$ or $(1\ 4\ 5)(2\ 6\ 3)^b$
$(1\ 3)(2\ 4)(5\ 6)$	(1)	$(1\ 3)(2\ 4)(5\ 6)$
$(1\ 2\ 3\ 4)(5\ 6)$	(1)	$(1\ 2\ 3\ 4)(5\ 6)^c$ or $(1\ 4\ 3\ 2)(5\ 6)^d$
$(1\ 2\ 3\ 4\ 5)$	$\langle (1\ 2\ 3\ 4\ 5) \rangle$	$\langle (1 \ 2 \ 3 \ 4 \ 5) \rangle$
$(1\ 2\ 3)(5\ 6)$	(1)	$(1\ 2\ 3)(5\ 6)^e$ or $(1\ 3\ 2)(5\ 6)^f$
$(1\ 2\ 3\ 4)$	(1)	$(1\ 2\ 3\ 4)^c$ or $(1\ 4\ 3\ 2)^d$
$(1\ 3)(2\ 4)$	(1)	$(1\ 3)(2\ 4)$
$(1\ 2\ 3)$	(1)	$(1\ 2\ 3)^e$ or $(1\ 3\ 2)^f$
(5 6)	(1)	(5 6)

64 BOUDREAUX, CANNON, NEUERBURG, PALMER, AND TROXCLAIR

Theorem 5.6. The set $C(M_I(S_6))$ consists of all functions described by the table above. Thus $|(C(M_I(S_6)))| = 45$.

The proof follows the same conventions as those for $C(M_I(S_4))$ and $C(M_I(S_5))$ and is left to the reader.

The techniques developed in this paper can be used to describe all functions in $C(M_I(S_n))$ for $n \geq 7$. Further research may be done to describe the structure of these sets.

Acknowledgments

The authors would like to thank the referee for suggestions that improved the presentation of the paper.

References

- 1. E. Aichinger and M. Farag, On when the multiplicative center of a near-ring is a subnear-ring, Aequationes Math. 68 (2004), 46 59.
- G. A. Cannon, Centralizer near-rings determined by End G, in Near-Rings and Near-Fields (Fredericton, NB, 1993), Math. Appl., 336, Kluwer Acad. Publ., Dordrecht, 1995, 89 - 111.
- G. A. Cannon, M. Farag, and L. Kabza, Centers and generalized centers of near-rings, Comm. Algebra 35 (2007), 443 – 453.
- G. A. Cannon, M. Farag, L. Kabza, and K. Neuerburg, Centers and generalized centers of near-rings without identity defined via Malone-like multiplications, Math. Pannon. (2) 25 (2014/15), 3 – 23.
- 5. G. A. Cannon, V. Glorioso, B. B. Hall, and T. Triche, *Centers and generalized centers of nearrings without identity*, Missouri J. Math. Sci. (1) **29** (2017), 2–11.
- G. A. Cannon and G. Secmen, Ideals, centers, and generalized centers of nearrings of functions determined by a single invariant subgroup, Southeast Asian Bull. Math. (2) 44 (2020), 195 - 200.

- J. R. Clay, Nearrings: Geneses and Applications, Oxford University Press, Oxford, 1992.
- 8. M. Farag, A new generalization of the center of a near-ring with applications to polynomial near-rings, Comm. Algebra (6) **29** (2001), 2377 2387.
- M. Farag and K. Neuerburg, Centers and generalized centers of near-rings, in Nearrings, Nearfields and Related Topics, World Sci. Publ., Hackensack, NJ, 2017, 80 - 90.
- J. D. P. Meldrum, Near-Rings and Their Links with Groups, Research Notes in Math., No. 134, Pitman Publ. Co., London, 1985.
- 11. G. Pilz, Near-Rings, North-Holland/American Elsevier, Amsterdam, 1983.

M. G. Boudreaux

Department of Mathematics, Southeastern Louisiana University, Hammond, LA, 70402, USA.

Email: mattgboudreaux@gmail.com

G. Alan Cannon

Department of Mathematics, Southeastern Louisiana University, Hammond, LA, 70402, USA.

Email: acannon@southeastern.edu

K. M. Neuerburg

Department of Mathematics, Southeastern Louisiana University, Hammond, LA, 70402, USA.

Email: kneuerburg@southeastern.edu

T. R. Palmer

Department of Mathematics, Southeastern Louisiana University, Hammond, LA, 70402, USA.

Email: Taylor.Palmer-2@southeastern.edu

T. C. Troxclair

Department of Mathematics, Southeastern Louisiana University, Hammond, LA, 70402, USA.

Email: tyler.troxclair@gmail.com