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Abstract. We extend the method presented by Xu and Zheng (Int. J. Theor. Appl. Finance
17 (2014) 21–36) for the general case. We develop a numerical-analytic formula for pricing
nonlinear basket options with jump-diffusion model. We derive an easily computed method by
using the asymptotic expansion to find the approximate value of the lower bound of nonlinear
European basket call prices since a nonlinear basket option is generally not closed-form. We use
Split Step Backward Euler and Compensated Split Step Backward Euler methods with Monte
Carlo simulation to check the validity of the presented method.
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1 Introduction

In general, there is no closed-form for stochastic differential equations with Jump (SDEwJ),
and no explicit formula can be found to solve a differential equation, although attempts have
been made to calculate this explicit form, which can be seen in [2]. As stated in [5–7], most of
the time, there is no solution to a nonlinear differential equation, and it is evident, there is no
closed-form solution to a nonlinear basket option. In the following, we introduce an analytical-
approximate method for solving a non-linear equation basket and then examine the strengths
and weaknesses of the method.

The price of a portfolio at maturity T , for each Si(T ) ∈ R, is

S(T ) =

n∑
i=1

wiSi(T ), (1)
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where wi are weights (generally positive). Also, the portfolio payoff at time T for the exercise
price K is given by

E(S(T )−K)+. (2)

One of the important uses of formula (2) is the spread option, where the payoff involves the
difference of two or more underlying assets [2, 3]. Moreover, if the average underlying price
determines the payoff over some predicted period time, then the basket option is an Asian
claim.

By using of a conditioning variable and conditional moment matching, Curran [4] proposed
a method based on conditioning on the geometric mean. Assume that Λ is a random variable
correlated with S(T ), where S(T ) ≥ K, and Λ ≥ dΛ, for some constant dΛ. The option price is
decomposed into two parts:

E[(S(T )−K)+] = E[(S(T )−K)1Λ≥dΛ] + E[(S(T )−K)1Λ<dΛ]. (3)

The first part of the formula is calculated accurately by selecting the geometric average, but
the second part cannot be calculated explicitly, and we use the conditional moment matching
method to calculate the second part approximately. Of course, similar conditional arguments
are used in [10], which derive the lower and upper bounds of an Asian option. Thompson [14]
and Beisser [1] developed the idea of [10] into basket options and investigated the bound of the
approximation in (3) that can be computed in closed-form in the lognormal framework.

Some authors using moment matching method attempted for approximating the basket. The
main idea is to approximate S(T ) via SA(T ), where SA(T ) is a random variable with a suitable
distribution. Ju [8] considered a Taylor expansion of the ratio of the arithmetic average and
lognormal random variable. Zhou and Wang [18] by a log-extended-skew-normal distribution
approximated the basket distribution. Similar to [10, 13], Xu and Zheng [15, 17, 18] showed a
lower bound approximation. They also calculated the lower bound in a special jump-diffusion
model with some constant volatility and several types of Poisson jumps. Also, they calculated
an asymptotic expansion with a variance approximation to achieve the lower bound of basket
option for the local volatility jump-diffusion models; see [16]. Studies have been done on the
lower bound of basket option approximation methods have some weaknesses, such as follows:

1. Many methods cannot deal with the basket spread option case, because they require the
positivity of the basket options weights.

2. Most studies have been done on the lognormal case rather than the general pricing meth-
ods.

3. In practice, solving problems in n-dimensional spaces is needed, however analytical formu-
las are available in the non-Gaussian case, which is of little help for applications involving
a large number of assets.

4. Our method can compute very large classes of stochastic dynamics, such as mean reverting
and nonlinear models. Therefore our procedure can particularly solve higher dimensional
problems.

We must use a simple Matlab code for the general method when the basket dimension is
large. Hence in general, all existing methods face unaffordable computational costs. We test



Lower bound approximation of nonlinear basket option with jump-diffusion 33

the lower bounds approximation on different models, including linear and nonlinear examples.
Numerical examples were discussed and benchmarked by the Split Step Backward Euler (SSBE)
and Compensated Split Step Backward Euler (CSSBE) methods [12].

The article is outlined as follows. Section 2 formulates the nonlinear basket option with a
jump-diffusion model in asymptotic expansion. In Section 3, we introduce the SSBE and CSSBE
methods from [7] to check the lower bound approximation. Finally, Section 4 presents numerical
experiments.

2 Lower Bound Approximation (LBA)

2.1 Assumption and the Model

In this section, we present the nonlinear European basket options in a general jump-diffusion
model. For ε ∈ [0, 1], we define

dSεi (t) = εfi(t, S
ε
i (t
−))dt+ εgi(t, S

ε
i (t
−))dWi(t) + εhi(t, S

ε
i (t
−))dN(t), (4)

with initial condition Sεi (0) = Si(0) and S1
i (T ) = Si(T ), where i = 1, 2, . . . , n. We use the

asymptotic expansion to parameterize asset price processes and apply the conditional expecta-
tion results of multiple Wiener–Ito integrals directly from [10] to approximate a lower bound for
the nonlinear basket call option values in a jump-diffusion model (4). In what follows, we need
some useful assumption to define the LBA.

Assumption 2.1. We need the following notations to define the LBA method:

1. Jump intensity λ > 0, and t > 0.

2. S
(k)
i (t) :=

∂kSεi (t)

∂εk
|ε=0, i = 1, 2, . . . , n.

3. f
(k)
i (t) :=

∂kfi(t, S
ε(t))

∂(Sεi )
k

∣∣∣∣
ε=0

, g
(k)
i (t) :=

∂kgi(t, S
ε(t))

∂(Sεi )
k

∣∣∣∣
ε=0

,

h
(k)
i (t) :=

∂khi(t, S
ε(t))

∂(Sεi )
k

∣∣∣∣
ε=0

for k = 1, 2, . . . .

4. S
(0)
i (t) = S0

i (t) = Si(0).

5. f
(0)
i (t) = fi(0, Si(0)), g

(0)
i (t) = gi(0, Si(0)), h

(0)
i (t) = hi(0, Si(0)) for i = 1, 2, . . . , n.

6. f
(k)
i (t) =

n∑
j=1

wjf
(k)
i (t)f

(0)
j (t)ρij , g

(k)
i (t) =

n∑
j=1

wjg
(k)
i (t)g

(0)
j (t)ρij ,

and h
(k)
i (t) =

n∑
j=1

wjh
(k)
i (t)h

(0)
j (t)ρij for k = 0, 1, 2, . . . .



34 Y. Taherinasab, A.R. Soheili, M. Amini

7. Maclauren expansion:

Sεi (T ) ≈
n∑
j=0

S
(j)
i (T )

j!
εj , f εi (T ) ≈

n∑
j=0

f
(j)
i (T )

j!
εj ,

gεi (T ) ≈
n∑
j=0

g
(j)
i (T )

j!
εj , hεi(T ) ≈

n∑
j=0

h
(j)
i (T )

j!
εj .

8. f̂
(k)
i (t) :=

∂kfi(t, S
ε
i (t))

∂εk

∣∣∣∣
ε=0

, ĝ
(k)
i (t) :=

∂kgi(t, S
ε
i (t))

∂εk

∣∣∣∣
ε=0

,

ĥ
(k)
i (t) :=

∂khi(t, S
ε
i (t))

∂εk

∣∣∣∣
ε=0

for k = 1, 2, . . ..

9. g̃
(k)
i (t) =

∑n
j=1wjg

(k)
i (t)g

(0)
i (t)ρij for k = 0, 1: see [17].

The asymptotic expansion of Sεi (T ) around ε = 0 is

Sεi (T ) = S
(0)
i (T ) + S

(1)
i (T )ε+

S
(2)
i (T )

2!
ε2 + · · · .

Eq. (4) implies

dS
(0)
i (t) + dS

(1)
i (t)ε+

dS
(2)
i (t)

2!
ε2 + . . . = ε(f̂

(0)
i (t) + f̂

(1)
i (t)ε+

f̂
(2)
i (t)

2!
ε2 + · · · )dt

+ε(ĝ
(0)
i (t) + ĝ

(1)
i (t)ε+

ĝ
(2)
i (t)

2!
ε2 + · · · )dWi(t)

+ε(ĥ
(0)
i (t) + ĥ

(1)
i (t)ε+

ĥ
(2)
i (t)

2!
ε2 + · · · )dN(t). (5)

Equalizing the powers of ε from both sides of (5), we obtain

dS
(0)
i (t) = 0,

dS
(1)
i (t) = f̂

(0)
i (t)dt+ ĝ

(0)
i (t)dWi(t) + ĥ

(0)
i (t)dN(t),

dS
(2)
i (t)

2
= f̂

(1)
i (t)dt+ ĝ

(1)
i (t)dWi(t) + ĥ

(1)
i (t)dN(t),

...

dS
(n+1)
i (t)

n+ 1
= f̂

(n)
i (t)dt+ ĝ

(n)
i (t)dWi(t) + ĥ

(n)
i (t)dN(t).

(6)

From Parts 2, 3 and 8 of Assumption 2.1, it follows that

f̂
(1)
i (t) =

∂fi(t, S
ε
i (t))

∂ε
=
∂fi(t, S

ε
i (t))

∂Sεi (t)

∂Sεi (t)

∂ε
= f

(1)
i (t)S

(1)
i (t).
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By a similar manner for f̂
(2)
i (t), we have

f̂
(2)
i (t) =

∂2fi(t, S
ε
i (t))

∂2ε
=

∂

∂ε

(
∂fi(t, S

ε
i (t))

∂ε

)
=

∂

∂Sεi (t)

(
∂fi(t, S

ε
i (t))

∂Sεi (t)

∂Sεi (t)

∂ε

)
∂Sεi (t)

∂ε

=

(
∂2fi(t, S

ε
i (t))

∂2Sεi (t)

∂Sεi (t)

∂ε
+

∂2Sεi (t)

∂Sεi (t)∂ε

∂fi(t, S
ε
i (t))

∂Sεi (t)

)
∂Sεi (t)

∂ε
.

Since

∂2Sεi (t)

∂Sεi (t)∂ε
= 0,

we can write

f̂
(2)
i (t) =

∂2fi(t, S
ε
i (t))

∂2Sεi (t)

(
∂Sεi (t)

∂ε

)2

= f
(2)
i (t)

(
S

(1)
i (t)

)2

.

In the gereral form, for nth derivative, we obtain

f̂
(n)
i (t) =

∂nfi(t, S
ε
i (t))

∂nε
=

∂

∂ε

(
∂n−1fi(t, S

ε
i (t))

∂n−1ε

)
=

∂

∂Sεi (t)

(
∂n−1fi(t, S

ε
i (t))

∂n−1Sεi (t)

∂n−1Sεi (t)

∂n−1ε

)
∂Sεi (t)

∂ε

=

(
∂nfi(t, S

ε
i (t))

∂nSεi (t)

∂n−1Sεi (t)

∂n−1ε
+

∂nSεi (t)

∂Sεi (t)∂
n−1ε

∂n−1fi(t, S
ε
i (t))

∂n−1Sεi (t)

)
∂Sεi (t)

∂ε
,

Since

∂nSεi (t)

∂Sεi (t)∂
n−1ε

= 0,

so

f̂
(n)
i (t) =

∂nfi(t, S
ε(t))

∂nSεi (t)

(
∂n−1Sεi (t)

∂n−1ε

)
∂Sεi (t)

∂ε
= f

(n)
i (t)S

(n−1)
i (t)S

(1)
i (t).

Substituting the above equations in (6) implies that

dS
(1)
i (t) = f

(0)
i (t)dt+ g

(0)
i (t)dWi(t) + h

(0)
i (t)dN(t),

dS
(2)
i

2
(t) = f

(1)
i (t)S

(1)
i (t)dt+ g

(1)
i (t)S

(1)
i (t)dWi(t) + h

(1)
i (t)S

(1)
i (t)dN(t),

...

dS
(n+1)
i (t)

n+ 1
= f

(n)
i (t)S

(n−1)
i (t)S

(1)
i t)dt+ g

(n)
i (t)S

(n−1)
i (t)S

(1)
i t)dWi(t)

+ h
(n)
i S

(n−1)
i (t)S

(1)
i (t)dN(t).

Using integral and recursive formulas, for n = 1, 2, 3, . . . , one can obtain the following explicit
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formula of S
(n+1)
i (t).

S
(1)
i (t)− S(1)

i (0) =

∫ t

0
f

(0)
i (s)ds+

∫ t

0
g

(0)
i (s)dWi(s) +

∫ t

0
h

(0)
i (s)dN(s),

S
(2)
i (t)− S(2)

i (0) = 2

(∫ t

0
f

(1)
i (s)S

(1)
i (s)ds+

∫ t

0
g

(1)
i (s)S

(1)
i (s)dWi(s)

+

∫ t

0
h

(1)
i (s)S

(1)
i (s)dN(s)

)
,

...

S
(n+1)
i (t)− S(n+1)

i (0) = (n+ 1)

(∫ t

0
f

(n)
i (s)S

(n−1)
i (s)S

(1)
i (s)ds

+

∫ t

0
g

(n)
i (s)S

(n−1)
i (s)S

(1)
i (s)dWi(s)

+

∫ t

0
h

(n)
i (s)S

(n−1)
i (s)S

(1)
i (s)dN(s)

)
,

(7)

for all 0 ≤ t ≤ T . Indeed, it is very difficult to calculate formulas (7) for n ≥ 3. Therefore, the
approximation of the basket option of value S(T ), for maturity T and ε = 1, is

S(T ) ≈ SA(T ) := S(0) + S(1)(T ) +
S(2)(T )

2!
+
S(3)(T )

3!
, (8)

such that S(j)(T ) :=
∑n

i=1wiS
(j)
i (T ) for j = 1, 2, 3. We can compute the conditional expectation

E[SA(T )|Λ] for some conditioning variable Λ, and the LBA is

LB ≈ LBA := E[(E[SA(T )|Λ]−K)+]. (9)

In the next step, we must determine the conditional variable Λ for the LBA, where this method
can be used for the general nonlinear basket call option with jump-diffusion models.

From [15], we choose Λ = (N(T ),∆(T )), where

∆(T ) =
n∑
i=1

wi

∫ T

0
g

(0)
i (t)dWi(t),

is a normal variable with mean 0 and variance

ν2 =

n∑
i=1

wi

∫ T

0
g̃

(0)
i (t)dt,

and N(T ) is a Poisson variable with parameter λT . According to (8) and (9) with k ∈ R+ and
ν ∈ R+, we can write

LBA =

∞∑
k=0

pk

∫ ∞
−∞

[(
S(0) + E[S(1)(T )|Λ = (κ, νx)]

+ E[
S(2)(T )

2!
|Λ = (κ, νx)] + E[

S(3)(T )

3!
|Λ = (κ, νx)]−K

)+]
dΦ(x),

(10)
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where

pk = exp(−λT )
(λT )k

k!
, and S(j)(T ) :=

n∑
i=1

wiS
(j)
i (T ).

Moreover Φ(x) is the cumulative distribution function of a standard normal variable. We need

to calculate the value E[S
(j)
i (T )|Λ = (k, νx)] for j = 1, 2, 3 and i = 1, 2, . . . , n.

From (10), let

E[S
(1)
i (T )|Λ = (k, νx)] = A1 +A2 +A3,

where

A1 = E

[ ∫ T

0
f

(0)
i (s)ds|Λ = (k, νx)

]
=

∫ T

0
f

(0)
i (s)ds,

A2 = E

[ ∫ T

0
g

(0)
i (s)dWi(s)|Λ = (k, νx)

]
=
x

ν

∫ T

0
g

(0)
i (t)dt,

A3 = E

[ ∫ T

0
h

(0)
i (s)dN(s)|Λ = (k, νx)

]
=
k

T

∫ T

0
h

(0)
i (t)dt.

For the second part of (10), let

E[S
(2)
i (t)|Λ = (k, νx)] = B1 +B2 +B3. (11)

For more details, see Appendix A.

Similarly, we can write for the third part of (10)

E(S
(3)
i (t)) = C1 + C2 + C3, (12)

where

C1 = 6E

[ ∫ T

0
f

(2)
i (s)(S

(1)
i (s))2ds|Λ = (k, νx)

]
, (13)

C2 = 6E

[ ∫ T

0
g

(2)
i (s)(S

(1)
i (s))2dWi(s)|Λ = (k, νx)

]
, (14)

C3 = 6E

[ ∫ T

0
h

(2)
i (s)(S

(1)
i (s))2dN(s)|Λ = (k, νx)

]
. (15)

We know that

S
(1)
i (t) =

∫ t

0
f

(0)
i (t)dt+

∫ t

0
g

(0)
i (t)dWi(t) +

∫ t

0
h

(0)
i (t)dN(t). (16)

Substituting (16) in (13), (14) and (15), we can achieve E(S
(3)
i (t)) and in it is obtained in the

general form with substituting the equations into equation (10) and sorting them in terms of
powers x; see appendix B for each equations.
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We can now write the following equation by using the formulas calculated above and inserting
them into (10) and get the lower bound approximation formula as follows:

LBA =
∞∑
k=0

pk

∫ ∞
−∞

(
a3(k)x3 + a2(k)x2 + a1(k)x+ a0(k)

)+

dΦ(x). (17)

There is no need to do numerical integration for computing the lower bound approximation (17).
The integrand is the positive part of a cubic equation, for every fixed k. Then we have only four
cases: three roots, two roots, one root, and no root. Hence we can compute the LBA with a
simple Matlab code.

3 SSBE and CSSBE methods

In this section, we investigate the validity of the method presented in this article by using the
methods presented in [7]. For this purpose, we define the following SDEwJs equation:

dSi(t) = fi(Si(t
−))dt+ gi(Si(t

−))dWi(t) + hi(Si(t
−))dN(t), i = 1, . . . , n. (18)

The SSBE method for (18) by Y0 = Si(0
−) can be defined with the constant step size h = ∆t,

such that
P∆t = {tk = k∆t, k = 0, 1, 2, . . .},

on [0,∞) and jump time, Jt = {ti : i = 1, 2, 3, . . . , l} ⊆ [0, T ]. For P = P∆t ∪ Jt, we have

y∗n = yn + f(y∗)∆t,

yn+1 = y∗n + g(y∗n)∆wn + h(y∗n)∆Nn.
(19)

From [7], for compensated form of SDEwJs equation, we have

dSi(t) = fiλ(Si(t
−))dt+ gi(Si(t

−))dWi(t) + hi(Si(t
−))dN̂(t), i = 1, . . . , n, (20)

where N̂(t) is a compensated Poisson process as follows:

N̂(t) = N(t)− λt,

where N̂(t) is a martingale and

fiλ(x) = fi(x) + λhi(x).

The CSSBE method for (20) by Y0 = Si(0
−) can be defined as follows:

y∗n = yn + fλ(y∗)∆t,

yn+1 = y∗n + g(y∗n)∆wn + h(y∗n)∆N̂n,
(21)

where N̂n = N̂(tn+1)− N̂(tn). According to (19) and (21), the following formula can be deduced

y∗n − f(y∗)∆t = yn.
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From [9], there exists F : R→ R such that F (x) = x− f(x)∆t and let

F (y∗n) = yn.

Since the inverse function cannot be found explicitly, the inverse function F can be identified by
using root-finding algorithms, such as Newton’s method or any function that satisfies the fixed
point theorem and substituting it into (19) or (21) part 2, to solve the two numerical methods.

4 Numerical experiments

In this section, we present two examples to check the accuracy of the lower bound approximation
method. In the first example, we express the linear basket option which has an exact solution
and calculates the LBA and compares it with the SSBE, CSSBE methods and also with the
exact solution of the equation. The second example is a nonlinear basket option that does
not have an exact closed-form solution. We calculate the LBA value and check its accuracy
with SSBE and CSSBE methods. In practice, calculations are complicated for their higher
accuracy. So we do the calculation up to the third order. Using the Monte Carlo method and
calculating 100 sample paths in Matlab software and calculating the expectation value, we give
the approximate solution as follows:

E(Xn) =
1

100

100∑
i=1

Xn(wi).

The following data are used in all numerical tests: Two number of assets in the basket, the
portfolio weights of each asset wi = 0.5 for i = 1, 2, the correlation coefficients of Brownian
motions ρij = 0.5 for i, j = 1, 2, the initial asset prices X(0) = 1 and Y (0) = 1 Dollars,
the exercise price K = 1, and the jump intensity with two values λ = 5, 10. One hundred
simulations for each test case and maturity at T = 1, T = 1

2 , T = 1
4 , and T = 1

12 years. The
Poisson summation is approximated by truncating the infinite series after the first 10 terms and
finally the step size is 2−8. Table 1, shows the performance of the LBA, which is the lower
bound for the results proposed with SSBE, CSSBE. In Table 2, it shows the LBA values for the
nonlinear basket option, because, we do not have an exact solution, so we compare the LBA
results with the SSBE and CSSBE methods.

Example 1. Suppose that the linear basket option of two assets X(t) and Y(t) also satisfies
the following SDEwJ:

dX(t) = X(t−)dt+X(t−)dW1(t) +X(t−)dN(t),

dY (t) = Y (t−)dt+ Y (t−)dW2(t)− 3

2
Y (t−)dN(t).

We run the Matlab program 100 times and list the numerical experiments in Table 1.

Remark 1. As in Table 1, according to the data in Example 1, the LBA column values are
lower than the CSSBE and SSBE column values, in fact, this is a lower column for the columns
related to the methods presented in Section 3. The exact solution of Example 1 gives us the
assurance that the LBA value for the linear problem is less than the exact solution.
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Table 1: LBA for linear basket option.

Time(Year) λ LBA CSSBE SSBE ES Elapsed Time

(1)One year
5 -0.0477 2.2894 1.0338 2.24165 22.652555
10 -3.2114e-04 10.01515 7.7975 8.80805 22.522510

(1/2) 6 Month
5 -0.0127 0.7415 0.99783 0.9304 22.583417
10 -8.5648e-05 0.65515 1.0446 0.82155 22.594633

(1/4) 3 Month 5 -4.2319e-06 0.89815 1.2854 1.30265 22.445786

(1/12) One Month
5 0.1755 0.1795 0.2123 0.9945 22.435280
10 0.0012 0.49415 0.8975 0.79485 22.334668

Example 2. Consider a nonlinear basket call option of two assets that satisfies the following
SDEwJ:

dX(t) = 2X(t)dt+ (X2(t) + 1)dW (t)−X(t)dN(t),

dY (t) =
Y (t)

5
dt+ (

Y 2(t) + 1

2
)dW (t)− Y (t)

3
dN(t).

Then we run the Matlab program 100 times and list the numerical results in Table 2.

Table 2: LBA for nonlinear basket option.

Time(Year) λ wi LBA CSSBE SSBE Elapsed Time(s)

(1) One year
5 1/2 0.0337 0.1735 0.0342 16.808443
10 1/2 2.2713e-04 0.18285 0.0078 16.886436

(1/2) 6 Month
5 1/2 0.0524 0.060125 0.5068 16.775061
10 1/2 3.5297e-04 0.0222 0.0490 16.818628

(1/4) 3 Month 5 1/2 0.0623 0.2312 0.0985 16.710625

(1/12) One Month
5 1/2 0.0656 0.2072 0.1127 16.764730
10 1/2 4.4221e-04 0.07475 0.0835 16.755422

Remark 2. In Example 2, we have a nonlinear basket option, without the exact closed-form
solution, but in Example 1, we examined the accuracy of the method on a linear example. The
results obtained in column LBA are less than the values of the columns CSSBE and SSBE.
It should be noted that the LBA is only an approximation to the exact lower bound and is,
therefore, possible to have values greater than the exact solution of the basket option.

5 Conclusion

The main aim of this work was to use asymptotic expansions to achieve the LBA for nonlinear
basket options with the Poisson jump-diffusion model. It is important to note that, since
nonlinear problems do not have a closed-form solution, we used SSBE, CSSBE, and Monte
Carlo methods to test the accuracy of the solution. In Tables 1 and Table 2, we examined the
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accuracy of the method presented in the article for a linear and nonlinear basket option with
100 random trajectories, and as you can see, the values in column LBA are less than CSSBE,
SSBE and exact solution(ES), using by Matlab code. The important subject is that the above
calculation formulas are for quantities up to the third-order accuracy and computations for the
higher-order are very complicated.
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A Further details to compute Bi’s

The various parts of (11) can be explained as follows:

B1 = 2E

[ ∫ T

0

f
(1)
i (s)S

(1)
i (s)ds|Λ = (k, νx)

]
= 2E

[ ∫ T

0

f
(1)
i (s)

∫ s

0

f
(0)
i (v)dvds
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∫ s
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(22)

B2 = 2E

[ ∫ T
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and

B3 = 2E
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Now substitute the above equations into (11).
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B Further detail for computing Ci

In a similar manner, the various parts of (13), (14), and (15) can be explained as follows. Form (13), we
have

E(S
(3)
i (t)) = C1 + C2 + C3, (25)

and
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Also from (11), let
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and

C23 = 6

(
κx

Tν

∫ T

0

g
(2)
i (s)

∫ s

0

h
(1)
i (v)

∫ v

0

f
(0)
i (u)dudvds+

κx2

Tν2

∫ T

0

g
(2)
i (s)

∫ s

0

h
(1)
i (v)

∫ v

0

g
(0)
i (u)dudvds

+
κ2x

T 2ν

∫ T

0

g
(2)
i (s)

∫ s

0

h
(1)
i (v)

∫ v

0

h
(0)
i (u)dudvds

)
.

(33)

Finally from (15), we have
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Now substitute the above equations into (12).
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