تعداد نشریات | 31 |
تعداد شمارهها | 734 |
تعداد مقالات | 6,910 |
تعداد مشاهده مقاله | 9,768,378 |
تعداد دریافت فایل اصل مقاله | 6,658,130 |
اثر نانو ذرات نقره بر عملکرد تولیدمثلی بلدرچین نر ژاپنی | ||
تحقیقات تولیدات دامی | ||
مقاله 6، دوره 9، شماره 2، مرداد 1399، صفحه 45-54 اصل مقاله (618.32 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/ar.2020.14161.1438 | ||
نویسندگان | ||
مهدی رنجبری1؛ امجد فرزین پور* 2؛ اسعد وزیری3 | ||
1دانش آموخته گروه علوم دامی، دانشکده کشاورزی، دانشگاه کردستان | ||
2دانشیار گروه علوم دامی، دانشکده کشاورزی، دانشگاه کردستان | ||
3استادیار گروه علوم دامی، دانشکده کشاورزی، دانشگاه کردستان | ||
چکیده | ||
نانو ذرات نقـره به دلیل خصوصیات ضد باکتریایـی جهت ضدعفونی محیط، تجهیزات و نیز گندزدائی آب در مزارع مختلف طیور مورد استفاده قرار میگیرد. یکی از مشکلات مزارع مرغ مادر، افت باروری خروس در اواسط دوره تولید است. لذا هدف این مطالعه بررسی آثار نانو ذرات نقره بر سیستم تولیدمثلی بلدرچین ژاپنی نر به عنوان یک مدل آزمایشگاهی بود. در این آزمایش، تعداد 24 قطعه بلدرچین نر در قالب طرح کاملاً تصادفی با چهار تیمار و شش تکرار استفاده شد. تیمارهای آزمایشی شامل صفر، 12، 36 و 108 قسمت در میلیون (ppm) نانو ذرات نقره بود که در آب آشامیدنی مورد استفاده قرار گرفتند. در پایان دوره 42 روزه آزمایش، وزن بدن تمامی پرندگان، وزن بیضهها، شاخص گنادی و تولید اسپرم روزانه مورد ارزیابی قرار گرفتند. جهت بررسی غلظت سرمی تستوسترون، قبل از کشتار از ورید زیر بال نمونه خون اخذ و سرم آن جداسازی شد. وزن بیضهها در دو گروهppm 36 و 108 نانو ذرات نقره (به ترتیب 3/6 و 5/6 گرم) نسبت به گروه شاهد (8/8 گرم) کاهش یافت. شاخص گنادی در گروهppm 36 نانو ذرات (46/0±92/2) کاهش معنیداری نسبت به گروه شاهد (47/0±74/3) نشان داد (05/0p <). نانو ذرات نقره در سطحppm 108 سبب افت تولید اسپرم روزانه (1/28± 6/110 میلیون) در مقایسه با گروه شاهد (4/94± 7/327 میلیون) شد (05/0p <). کاهش تراکم سلولی در لولههای منیساز، مجاری آوران دور و آوران نزدیک اپیدیدیمی و مجاری اپیدیدیم در تیمار دریافتکننده ppm 108 نانو ذرات نقره نسبت به گروه شاهد معنیدار بود (05/0p <). نتایج حاضر نشان داد که نانو ذرات نقره عملکرد تولیدمثلی بلدرچین نر را کاهش میدهد. | ||
کلیدواژهها | ||
بلدرچین ژاپنی؛ تستوسترون؛ تولید اسپرم روزانه؛ نانو ذرات نقره؛ هیستوپاتولوژی | ||
مراجع | ||
Arora S., Jain J., Rajwade J. M. and Paknikar K. M. 2008. Cellular responses induced by silver nanoparticles: In vitro studies. Toxicology Letters, 179: 93-100.
AshaRani P.V., Mun G. L. K., Hande M. P. and Valiyaveettil S. 2009. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 3: 279-290.
Braydich-Stolle L., Hussain S. M., Schlager J. J. and Hofmann M. C. 2005. In Vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Journal of Toxicology Science, 88: 412-419.
Carlson C., Hussain S. M., Schrand A. M., Braydich-Stolle L. K., Hess K. L., Jones R. L. and Schlager J. J. 2008. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. The Journal of Physical Chemistry B, 112: 13608-13619.
Colvin V. 2003. The potential environmental impact of engineered nanomaterials. Nature Nanotechnology, 21: 1166-1170.
Ehn K. C., Tsunekawa N., Kanai Y. and Kurohmaru M. 2008. A new preparation protocol for measurement of testicular sperm production. Journal of Reproduction and Development, 54: 90-93.
Farzinpour A. and Dadras H. 2013. Incidence and effects of epididymal stones on gonad indices in roosters. Online Journal of Veterinary Research, 17: 540-554.
Faust R. A. 1992. Toxicity summary for silver. Chemical Hazard Evaluation and Communication Group, Biomedical and Environmental Information Analysis Section, Health and Safety Research Division, Oak Ridge National Laboratory, 62: 47-51.
Ghotaslou R., Bahari Z., Aliloo A., Gholizadeh P. and Salahi Eshlaghi B. 2017. The in vitro effects of silver nanoparticles on bacterial biofilms. Journal of Microbiology, Biotechnology and Food Sciences, 6: 1077-1080.
Hsin Y. H., Chen C. F., Huang S., Shih T. S., Lai P. S. and Chueh P. J. 2008. The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicology Letters, 179: 130-139.
Humberto H., Lara V., Ayala-Nunez N. V., Carmen L. D., Ixtepan T. and Cristina R. P. 2010. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World Journal of Microbiology and Biotechnology, 26: 615–621
Lansodown A. B. G. 2007. Critical observations on neurotoxicity of silver. Critical Reviews in Toxicology, 37: 237-250.
Lansdown A. B. 2010. A pharmacological and toxicological profile of silver as an antimicrobial agent in medical devices. Advances in Pharmacological Sciences, 10: 1155-1171.
Mirshokraei P., Hassanpour H., AkhavanTaheri M., Riyahi M. and Shams-Esfandabadi N. 2011. The in vitro effects of nanosilver colloid on kinematic parameters of ram spermatozoa. Iranian Journal of Veterinary Research, 12: 317-323.
Nanda A. and Saravanan M. 2009. Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine, 5: 452-456.
Noori A., Parivar K., Modaresi M., Messripour M., Yousefi M. H. and Amiri G. R. 2011. Effect of magnetic iron oxide nanoparticle on pregnancy and testicular development of mice. African Journal of Biotechnology, 10: 1221-1227.
Noshadi M. and Ghanbarizadeh P. 2016. Investigation of drinking water disinfection performance using silver nanoparticles. Journal of Civil and Environmental Engineering, 46: 93-107.
Rezaei Zarchi S., Taghavi Foumani M. H. and Negahdary M. 2012. Effect of silver nanoparticles on the LH, FSH and testosterone hormones in male rat. Journal of Babol University of Medical Sciences, 15: 25-29.
Rosas-Hernández H., Jiménez-Badillo S., Martínez-Cuevas P. P., Gracia-Espino E., Terrones H., Terrones M., Hussain S. M., Ali S. F. and González C. 2009. Effects of 45-nm silver nanoparticles on coronary endothelial cells andisolatedrat aortic rings. Toxicology Letters, 191: 305-313.
Teodoro J. S., Simões A. M., Duarte F. V., Rolo A. P., Murdoch R. C., Hussain S. M. and Palmeir C. M. 2011. Assessment of the toxicity of silver nanoparticles in vitro: A mitochondrial perspective. Toxicology in Vitro, 25: 664-670.
Yang H., Liu C., Yang D., Zhang H. and Xia Z. 2009. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. Journal of Applied Toxicology, 29: 69-78.
Yoshida S., Sagai M., Oshio S., Umeda T., Ihara T., Sugamata M., Sugawara I. and Takeda K. 1999. Exposure to diesel exhaust affects the male reproductive system of mice. International Journal of Andrology, 23: 307-315.
Zdenka O. K., Boisen A. M. Z., Jackson P., Wallin H., Vogel U. and Hougaard K. S. 2013. Daily sperm production: Application in studies of prenatal exposure to nanoparticles in mice. Reproductive Toxicology, 36: 88-97. | ||
آمار تعداد مشاهده مقاله: 726 تعداد دریافت فایل اصل مقاله: 633 |