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RESOLVABILITY IN COMPLEMENT OF THE
INTERSECTION GRAPH OF ANNIHILATOR

SUBMODULES OF A MODULE

S. B. PEJMAN, SH. PAYROVI∗ AND S. BABAEI

Abstract. Let R be a commutative ring and M be an R-module.
The intersection graph of annihilator submodules ofM , denoted by
GA(M), is a simple undirected graph whose vertices are the classes
of elements of Z(M) \ AnnR(M) and two distinct classes [a] and
[b] are adjacent if and only if AnnM (a) ∩ AnnM (b) 6= 0. In this

paper, we study the diameter and girth of GA(M). Furthermore,
we calculate the domination number, metric dimension, adjacency
metric dimension and local metric dimension of GA(M).

1. Introduction

The intersection graph of ideals of a commutative ring was studied in
[5] and rings classified with some specific properties of their intersection
graphs in [2, 9, 11]. The intersection graph of submodules of a module
defined and studied in [1]. As noted in [1] the intersection graph of
submodules of a module, denoted by G(M), is a graph whose vertices
are in one to one correspondence with all non-trivial submodules of M
and two distinct vertices are adjacent if and only if the corresponding
submodules of M have non-zero intersection. The complement of the
intersection graph of submodules of a module is considered in [3]. For
more work on the intersection graph of modules see [14].

Let R be a commutative ring and M be an R-module. For a, b ∈ R,
we say that a ∼ b whenever AnnM(a) = AnnM(b). It is easy to see that
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∼ is an equivalence relation on R. If [a] denotes the class of a, then
[a] = AnnR(M) and [a] = R \ Z(M) whenever a ∈ AnnR(M) and a ∈
R\Z(M) respectively; the other equivalence classes form a partition of
Z(M)\AnnR(M). The intersection graph of annihilator submodules of
M studied in [10] and denoted by GA(M), is a simple undirected graph
whose vertices are the classes of elements of Z(M)\AnnR(M) and two
distinct classes [a] and [b] are adjacent whenever AnnM(a)∩AnnM(b) 6=
0. In this paper, we study the complement of the intersection graph of
annihilator submodules of M which is denoted by GA(M). In Section

2, we study the diameter and girth of GA(M) and in Section 3 we
calculate the domination number, metric dimension, adjacency metric
dimension and local metric dimension of GA(M). More precisely; let

M be a Noetherian R-module, GA(M), GA(M) be connected graphs
of order m and |m−AssR(M)| = ω(GA(M)) = n(n ≥ 2) we prove that

(i) γ(GA(M)) = n

(ii) If GA(M) has k end-vertices, then

dim(GA(M)) = dimA(GA(M)) = m− 2n+ k − 1.

(iii) If GA(M) has no end-vertex, then

dim(GA(M)) = dimA(GA(M)) = m− 2n.

(iv) dim`(GA(M)) = n− 1.

Let G be a graph with the vertex set V (G) and the edge set E(G). A
graph with no edge is called null graph. For every u, v ∈ V (G), the
distance between u and v is defined as the length of a shortest path
from u to v and is denoted by d(u, v). We write u−v if d(u, v) = 1 and
u 6 −v otherwise. For H ⊆ V (G), the induced subgraph on H, consists
of H and all edges whose endpoints are contained in H. Assume that
u is a vertex of G. The open neighborhood of u is defined as N(u) =
{v ∈ V (G) : d(u, v) = 1} and the closed neighborhood of u is
N [u] = N(u)∪{u}. For distinct vertices u, v ∈ V (G), if N(u) = N(v),
then u and v are non-adjacent twins. The degree of a vertex u, denoted
by deg(u), is the number of edges incident to u. Also, u is called end-
vertex if deg(u) = 1. The diameter of G is diam(G) = sup{d(u, v)|
u and v are vertices of G}. The girth of G, denoted by gr(G), is the
length of a shortest cycle in G (gr(G) =∞ if G contains no cycles). A
cycle with n vertices will be denoted by Cn. The complete graph with n
vertices will be denoted by Kn. A complete bipartite graph is a graph
G whose vertex set may be partitioned into two disjoint non-empty
vertex sets A and B such that two distinct vertices are adjacent if and
only if they are in distinct vertex sets which is denoted by K|A|,|B|. A
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clique of G is a complete subgraph of G and the number of vertices in
the largest clique of G, denoted by ω(G), is called the clique number
of G.

A dominating set of G is a subset D of V (G) such that every ver-
tex in V (G) \ D is adjacent to some vertex in D. The domination
number γ(G) of G is the minimum cardinality of a dominating set.
Let G be a connected graph. Assume that W = {w1, w2, . . . , wk} is
an ordered subset of V (G). The metric representation (local metric
representation) of a vertex u ∈ V (G) with respect to W is the vec-
tor r(u | W ) = (d(u,w1), d(u,w2), . . . , d(u,wk)). The set W called
a resolving (local resolving) set for G if different vertices (adjacent
vertices) of G have different representation with respect to W . The
minimum cardinality of any resolving (local resolving) set of G is the
metric dimension (local metric dimension) of G and is denoted by
dim(G) (dim`(G)). The adjacency representation of a vertex u ∈ V (G)
with respect to an ordered set WA = {w1, w2, . . . , wk} is the vector
r(u | W ) = (aG(u,w1), . . . , aG(u,wk)), where

aG(u, v) =


0 u = v

1 u− v
2 u 6 −v

for all v ∈ V (G). The set WA is an adjacency resolving set for G if
the vectors r(u | WA) are distinct for every u ∈ V (G). The minimum
cardinality of an adjacency resolving set is the adjacency dimension of
G, denoted by dimA(G), see [7].

Throughout this paper, R is a commutative ring with non-zero iden-
tity and M is an R-module. The set of zero-divisors of M , denoted by
Z(M) is defined to be the set {r ∈ R : rm = 0 for some 0 6= m ∈M

}
.

For a ∈ R, AnnM(a) = {m ∈ M : am = 0}. A proper submodule
P of M is said to be prime whenever for r ∈ R and m ∈ M , rm ∈ P
implies that m ∈ P or r ∈ AnnR(M/P ). Let SpecR(M) denote the set
of prime submodules of M and m−AssR(M) = {P ∈ SpecR(M) : P =
AnnM(a) for some 0 6= a ∈ R}. For notations and terminologies not
given in this article, the reader is referred to [12, 13].

Theorem 1.1. [4, Theorem 5(i)] For all a ∈ R, aM + AnnM(a) is an
essential submodule of M .

Theorem 1.2. [10, Theorem 2.6] Let M be a Noetherian R-module.
Then GA(M) is a disconnected graph if and only if m − AssR(M) =
{P1, P2} and P1 ∩ P2 = 0.
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Theorem 1.3. [6, Corollary 2.4] Suppose that u, v are twins in a con-
nected graph G and S resolves G. Then either u or v is in S. Moreover,
if u ∈ S and v 6∈ S, then (S \ {u}) ∪ {v} also resolves G.

2. Diameter and Girth of GA(M)

In this section, we study diameter and girth of GA(M). Note that
if M is a Noetherian R-module and m−AssR(M) = {AnnM(a)}, then

[a] is a universal vertex in GA(M) so GA(M) is a disconnected graph.

Hence, |m−AssR(M)| ≥ 2 whenever we assume GA(M) is a connected
graph.

Lemma 2.1. Let M be a Noetherian R-module and GA(M) be a non-
empty connected graph. If AnnM(a),AnnM(b) ∈ m − AssR(M), then

[a] and [b] have no common neighbors in GA(M).

Proof. Assume that a, b ∈ Z(M) \AnnR(M) and P1 = AnnM(a), P2 =
AnnM(b) are two distinct elements of m − AssR(M). Assume in the

contrary that [a] and [b] have a common neighbor in GA(M) such as
[x]. Thus P1 ∩ AnnM(x) = 0 = P2 ∩ AnnM(x). So AnnM(x) 6⊆ P2.
Suppose that P1 6⊆ P2. Hence, there exist m1 ∈ AnnM(x) \ P2 and
m2 ∈ P1 \ P2 such that xm1 = am2 = 0 ∈ P2. So it follows that
a, x ∈ AnnR(M/AnnM(b)) = AnnR(bM). Therefore, bM ⊆ AnnM(a)∩
AnnM(x) = P1 ∩AnnM(x). Thus bM = 0 and b ∈ AnnR(M), contrary
to the assumption. Hence, P1 ⊆ P2. By a similar argument one can
show that P2 ⊆ P1 so P1 = P2 that is a contradiction. �

Lemma 2.2. Let M be a Noetherian R-module and GA(M), GA(M)
be non-empty connected graphs. If P1 = AnnM(a), P2 = AnnM(b) ∈
m− AssR(M), then d([a], [b]) = 3.

Proof. Let P1 = AnnM(a) and P2 = AnnM(b) be two distinct elements
of m− AssR(M). By the assumption GA(M) is a connected graph so
by Theorem 1.2, P1∩P2 6= 0. Thus d([a], [b]) 6= 1 also Lemma 2.1 shows

that d([a], [b]) 6= 2. Let [x], [y] be two arbitrary vertices of GA(M) such
that [x] − [a] and [y] − [b]. Then AnnM(a) ∩ AnnM(x) = 0 ⊆ P2 so
either AnnM(a) ⊆ P2 or AnnM(x) ⊆ P2. If AnnM(a) ⊆ AnnM(b), then
[a] − [y] − [b] contrary to the Lemma 2.1. Thus AnnM(x) ⊆ AnnM(b)
and so [x]− [y] which completed the proof. �

Lemma 2.3. Let M be a Noetherian R-module and GA(M) be a non-
empty connected graph. If P = AnnM(a) ∈ m − AssR(M), then the
induced subgraph on the vertices which are adjacent to [a] is empty.
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Proof. Let P = AnnM(a) ∈ m−AssR(M) and let [x], [y] ∈ V (GA(M))
be such that [x] − [a] − [y]. Suppose on the contrary that [x] − [y].
Thus AnnM(x) ∩ AnnM(y) = 0 ⊆ P . Hence, either AnnM(x) ⊆ P or
AnnM(y) ⊆ P which contradicts to the assumption [x]− [a]− [y]. �

Theorem 2.4. Let M be a Noetherian R-module and GA(M) be a

non-empty connected graph. Then diam(GA(M)) ≤ 3.

Proof. Let [a] and [b] be two distinct vertices of GA(M). If AnnM(a)∩
AnnM(b) = 0, then d([a], [b]) = 1. Thus assume that AnnM(a) ∩
AnnM(b) 6= 0. If ab 6∈ AnnR(M), then [ab] ∈ V (GA(M)) and by con-

nectivity of GA(M), it follows that there exists [x] ∈ V (GA(M)) such
that AnnM(x) ∩ AnnM(ab) = 0. Hence, AnnM(x) ∩ AnnM(a) = 0 and

AnnM(x)∩AnnM(b) = 0. So GA(M) has the path [a]−[x]−[b] as a sub-
graph. Therefore, d([a], [b]) ≤ 2. Now, assume that ab ∈ AnnR(M). If
there exists AnnM(x) ∈ m−AssR(M) such that AnnM(a) ⊆ AnnM(x)
and AnnM(b) ⊆ AnnM(x), then aM ⊆ AnnM(b) ⊆ AnnM(x) so aM +
AnnM(a) ⊆ AnnM(x). By Theorem 1.1, [x] is a universal vertex of

GA(M). Hence, [x] is an isolated vertex of GA(M) that is a con-
tradiction. Hence, AnnM(a) ⊆ AnnM(x) and AnnM(b) ⊆ AnnM(y)
for some AnnM(x),AnnM(y) ∈ m − AssR(M). By Lemma 2.2, there

exist [e], [f ] ∈ V (GA(M)) such that AnnM(x) ∩ AnnM(e) = 0 and

AnnM(y) ∩ AnnM(f) = 0 so [x] − [e] − [f ] − [y] is a path in GA(M).

Hence, [a]− [e]− [f ]− [b] is a subgraph of GA(M) which implies that

diam(GA(M)) ≤ 3. �

Corollary 2.5. LetM be a Noetherian R-module and GA(M) be a dis-

connected graph. Then GA(M) is a connected graph and diam(GA(M))
≤ 2.

Theorem 2.6. Let M be a Noetherian R-module and GA(M) be a

connected graph. Then either gr(GA(M)) ≤ 4 or gr(GA(M)) =∞.

Proof. Assume that n ∈ N and C = ([a1], . . . , [an]) is a cycle in GA(M).
Suppose that AnnM(x) = P ∈ m − AssR(M) and [y] is a vertex of

V (GA(M)) that is adjacent to [x]. Since AnnM(a1)∩AnnM(a2) = 0 ⊆
P , either AnnM(a1) ⊆ P or AnnM(a2) ⊆ P . If AnnM(a1) ⊆ P and

AnnM(a2) ⊆ P , then GA(M) has the cycle [a1]− [y]− [a2]− [a1] as a
subgraph. Now, assume that AnnM(a1) ⊆ P and AnnM(a2) * P . The
fact AnnM(a1) ⊆ P implies that [a1] is adjacent to [y]. On the other
hand, since AnnM(a2) ∩ AnnM(a3) = 0 ⊆ P , AnnM(a3) ⊆ P and so
[a3] is adjacent to [y]. Thus, [a1] − [a2] − [a3] − [y] − [a1] is a cycle of

length 4 in GA(M). Therefore, gr(GA(M)) ≤ 4.
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Assume that [y] ∈ V (C). Without loss of generality, we may assume
that [y] = [a1]. Thus AnnM(a1)∩P = 0. Since AnnM(a1)∩AnnM(a2) =

0 and AnnM(a1) 6⊆ P , AnnM(a2) ⊆ P . If AnnM(a3) ⊆ P , then GA(M)
has the cycle [a1]− [a2]− [a3]− [a1] as a subgraph. If AnnM(a3) 6⊆ P as
before one can show that [a1]− [a2]− [a3]− [a4]− [a1] is a subgraph of

GA(M). In the sequel, let P = AnnM(a1). Then AnnM(a2) 6⊆ P . So
AnnM(a3) ⊆ P which implies that AnnM(a3) ∩ AnnM(an) = 0, hence

GA(M) has the cycle [a1] − [a2] − [a3] − [an] − [a1] as a subgraph.

Therefore, either gr(GA(M)) ≤ 4 or gr(GA(M)) =∞. �

Theorem 2.7. Let M be a Noetherian R-module and GA(M) be a

disconnected graph. Then GA(M) is a complete bipartite graph and

gr(GA(M)) ∈ {4,∞}.

Proof. It is obvious that GA(M) is a connected graph. By Theorem
1.2, m−AssR(M) = {AnnM(a) = P1,AnnM(b) = P2} and P1 ∩ P2 = 0

so [a] and [b] are adjacent in GA(M). Furthermore, for every vertex
[x] ∈ V (GA(M)) we have either AnnM(x) ⊆ P1 or AnnM(x) ⊆ P2, see
[8, Proposition 3.2].

Let V1 = {[x] : AnnM(x) ⊆ P1} and V2 = {[y] : AnnM(y) ⊆ P2}. By
the previous paragraph it is obvious that V1∩V2 = N([b])∩N([a]) = ∅
also any vertex in V1 is adjacent to all vertices in V2 and conversely
any vertex in V2 is adjacent to all vertices in V1. On the other hand,
Lemma 2.2 shows that the induced subgraph on N([a]) and N([b]) is
empty. Thus two distinct vertices in V1 are not adjacent and the same
is true for vertices in V2. Hence, GA(M) is a complete bipartite graph

K|N([a])|,|N([b])|. Therefore, gr(GA(M)) = 4 or gr(GA(M)) =∞. �

3. Metric Dimension, Local Metric Dimension and
Adjacency Metric Dimension of GA(M)

In this section, we study domination number, metric dimension, ad-
jacency metric dimension and local metric dimension of GA(M).

Theorem 3.1. Let M be a Noetherian R-module and GA(M) be a
non-empty connected graph. If |m−AssR(M)| = ω(GA(M)) = n, then

γ(GA(M)) = n.

Proof. Let m − AssR(M) = {AnnM(a1), · · · ,AnnM(an)} and let D =

{[a1], . . . , [an]} we show that D is a dominating set for GA(M). By [10,
Corollary 2.7], two arbitrary elements of m − AssR(M) have non-zero
intersection. Thus D is a clique for GA(M). Let [x] be an arbitrary

vertex of GA(M). If [x] is adjacent to any vertices of D in GA(M),
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then ω(GA(M)) ≥ n+1 which contradicts the assumption. Thus there
is at least one element AnnM(ai) in m−AssR(M) with 1 ≤ i ≤ n such

that AnnM(ai)∩AnnM(x) = 0. Hence, [x] is adjacent to [ai] in GA(M).

Therefore, all vertices out of D are adjacent in GA(M) to at least one

vertex in D. So D is a dominating set for GA(M) which implies that

γ(GA(M)) ≤ n.

Assume that GA(M) has a dominating set with less than n elements
such as D′ = {[b1], . . . , [bt]}(t < n). Thus there are two elements in D
with a common neighbor in D′ this contradict with Lemma 2.1. Hence,
γ(GA(M)) = n. �

Theorem 3.2. Let M be a Noetherian R-module and let GA(M) and

GA(M) be non-empty connected graphs of order m. Let |m−AssR(M)|
= ω(GA(M)) = n(n ≥ 2). Then the following statements are true:

(i) If GA(M) has k end-vertices, then dim(GA(M)) = m − 2n +
k − 1.

(ii) If GA(M) has no end-vertex, then dim(GA(M)) = m− 2n.

Proof. Let m − AssR(M) = {AnnM(a1), · · · ,AnnM(an)} and D =

{[a1], . . . , [an]}. Assume that [b] is a vertex of GA(M) such that is

not adjacent to any [ai] in GA(M). Thus [b] is adjacent to [ai], for all
1 ≤ i ≤ n, in GA(M) and so ω(GA(M)) ≥ n + 1 which is a contra-
diction. Now, assume that [b] 6= [ai], for all 1 ≤ i ≤ n, is a vertex

of GA(M) we may assume that [b] − [a1]. Since GA(M) is connected

and diam(GA(M)) ≤ 3, there is a path such as [a2] − [c] − [e] − [b]
that [c] 6= [a1] and [e] 6= [a1], see Lemma 2.3. Hence, it follows that

the end-vertices of GA(M) must belong to D. Without loss of gener-

ality, suppose that {[a1], · · · , [ak]} is the set of end-vertices of GA(M),
where 1 ≤ k ≤ n. Suppose that NGA(M)([ai]) = {[ui1], . . . , [uiti ]}, where
ti ∈ N for all 1 ≤ i ≤ n.

(i) Consider the ordered set

W = {[u11], . . . , [u(k−1)1]} ∪ (
⋃

k+1≤i≤n

(N([ai]) \ {[ui1]}))

of vertices of GA(M). Let k+1 ≤ i ≤ n. Then r([ui1] | W ) have values
2 and 1 in its components corresponding to [ui2] and [uj2] respectively,
where k + 1 ≤ j ≤ n, i 6= j; and r([uk1] | W ) have value 1 in all
components. Thus [ui1], for all k ≤ i ≤ n, have distinct representations
with respect to W . Furthermore, for all 1 ≤ i ≤ k− 1, r([ai] | W ) have
values 1 and 2 in its components corresponding to [ui1] and [uj1], where
1 ≤ j ≤ k−1, j 6= i, and r([ai] | W ), for all k+1 ≤ i ≤ n, have values 1
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and 2 in its components corresponding to [ui2] and [uj2], where k+ 1 ≤
j ≤ n, j 6= i; and r([ak] | W ) have value 2 in all components. Hence,

all vertices of GA(M) have different representation with respect to W

and therefore it is a resolving set for GA(M). Thus dim(GA(M)) ≤
m− 2n+ k − 1.

On the other hand, assume that W0 is a resolving set for GA(M).
Since all vertices contained in N([ai]) are twins so Theorem 1.3 implies
that |N([ai]) ∩W0| = |N([ai])| − 1, for all i with k + 1 ≤ i ≤ n. Thus
|W0| ≥ m − 2n. We may assume that [a1], [u11] 6∈ W0 since they have
distinct representations with respect to W0 by using |N([ai]) ∩W0| =
|N([ai])| − 1. For 2 ≤ i ≤ k, if [ui1], [ai] /∈ W0, then r([u11] | W0) =
r([ui1] | W0) which contradicts the fact that W0 is a resolving set for

GA(M). Hence, either [ui1] ∈ W0 or [ai] ∈ W0 for all i with 2 ≤ i ≤ k.

Thus |W0| ≥ m−2n+k−1 and therefore dim(GA(M)) = m−2n+k−1.
The proof is completed.

(ii) Consider the ordered set

W =
⋃

1≤i≤n

(
N([ai]) \ {[u1i]}

)
of vertices of GA(M). Let 1 ≤ i ≤ n. Then r([ui1] | W ) has values 2
and 1 in its components corresponding to [ui2] and [uj2] respectively,
where 1 ≤ j ≤ n and i 6= j. Thus [ui1] have distinct representations
with respect to W , for all 1 ≤ i ≤ n. Also r([ai] | W ), for all 1 ≤ i ≤ n,
has values 1 and 2 in its components corresponding to [ui2] and [uj2]
respectively, where 1 ≤ j ≤ n and j 6= i. Hence, every vertex out of
W has an unique representation with respect to W . Therefore, W is a
resolving set for GA(M). Thus, dim(GA(M)) ≤ m− 2n.

On the other hand, assume that W0 is a resolving set for GA(M).
Since all vertices contained in N([ai]) are twins so Theorem 1.3 implies
that |N([ai])∩W0| = |N([ai])|−1, where 1 ≤ i ≤ n. So |W0| ≥ m−2n.

Hence, W is a resolving set for GA(M) and dim(GA(M)) = m−2n. �

From the definitions of the metric and adjacency metric dimensions,
it follows that dim(G) ≤ dimA(G). This inequality and Theorem 3.2

give a lower bound for the adjacency metric dimension of GA(M).

Corollary 3.3. Let M be a Noetherian R-module and let GA(M)
be a non-empty connected graph of order m. Let |m − AssR(M)| =
ω(GA(M)) = n. Then the following statements are true:

(i) If GA(M) has k end-vertices, then dimA(GA(M)) = m− 2n+
k − 1.

(ii) If GA(M) has no end-vertex, then dimA(GA(M)) = m− 2n.
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Proof. (i) By Theorem 3.2 and the inequality dim(G) ≤ dimA(G), it

follows that dimA(GA(M)) ≥ m− 2n+ k− 1. On the other hand, it is
easy to see that the ordered set

WA = {[u11], . . . , [u(k−1)1]} ∪ (
⋃

k+1≤i≤n

(N([ai]) \ {[ui1]}))

is an adjacency resolving set for GA(M). Thus dimA(GA(M)) ≤ m−
2n+ k − 1 will complete the proof.

(ii) By a similar argument to that of (i) one can show that

WA =
⋃

1≤i≤n

(
N([ai]) \ {ui1}

)
is an adjacency resolving set for GA(M). Thus dimA(GA(M)) = m−
2n will complete the proof. �

Theorem 3.4. Let M be a Noetherian R-module and let GA(M) and

GA(M) be non-empty connected graphs. If |m−AssR(M)| = ω(GA(M))

= n, then dim`(GA(M)) = n− 1.

Proof. Let m − AssR(M) = {P1 = AnnM(a1), . . . , Pn = AnnM(an)}
and let N([ai]) = {[ui1], . . . , [uiti ]}, where ti ∈ N for all 1 ≤ i ≤
n. Set W` = {[u11], [u21], . . . , [u(n−1)1]}. Let [u] ∈ N([ar]) and [v] ∈
N([as]), where 1 ≤ r, s ≤ n. If r = s, then the vertices [u] and [v]

are not adjacent in GA(M) by Lemma 2.3 and so there is nothing
to prove. Next if r 6= s, then Lemma 2.2 implies that [u] − [v]. In
this case, r([u] | W`) has values 2 in its components corresponding
to [ur1] and 1 in other components, while r([v] | W`) has values 2
in its components corresponding to [us1] and 1 in other components.
Thus r([u] | W`) 6= r([v] | W`). Also, r([ai] | W`) has values 1 in its
components corresponding to [ui1] and 2 in other components, for all
i with 1 ≤ i ≤ n − 1. Hence, r([ai] | W`) 6= r([uij] | W`), where
1 ≤ j ≤ ti. Finally, r([an] | W`) 6= r([unj] | W`) since all components
in the representation of r([an] | W`) are 2 and all components in the
representation of r([unj] | W`) are 1, for all j with 1 ≤ j ≤ tn. By
the previous arguments, every two adjacent vertices out of W` have a
unique representation with respect to W` and so W` is a local resolving
set for GA(M). Therefore, dim`

(
GA(M)

)
≤ n− 1.

Suppose that W ′
` is a local resolving set for GA(M) with |W ′

`| < n−1.
Without loss of generality we may assume that |W ′

`| = n − 2. Let
D = {[a1], . . . , [an]}. Then the following three cases will be considered:

Case 1. D ∩W ′
` = ∅.

In this case, there exist at least two indices i 6= j with 1 ≤ i, j ≤ n
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such that N([ai]) ∩ W ′
` = N([aj]) ∩ W ′

` = ∅. Let [u] ∈ N([ai]) and
[v] ∈ N([aj]). Then Lemma 2.3 shows that [u] and [v] are adjacent and
r([u] | W ′

`) = r([v] | W ′
`) = (1, . . . , 1), which contradicts the fact that

W ′
` is a local resolving set for GA(M).
Case 2. |D ∩W ′

`| = n− 2.
Without loss of generality, we may assume that W ′

` = {[a1], . . . , [an−2]}.
Let [u] ∈ N([an−1]) and [v] ∈ N([an]). Then Lemma 2.3 shows that [u]
and [v] are adjacent and r([u] | W ′

`) = r([v] | W ′
`) = (2, . . . , 2), which

contradicts the fact that W ′
` is a local resolving set for GA(M).

Case 3. Suppose |D ∩W ′
`| = t ≤ n− 2.

Assume that {[a1], . . . , [at]} ⊂ W ′
` and N([ai])∩W ′

` 6= ∅, where t+ 1 ≤
i ≤ n− 2. Let [u] ∈ N([an−1]) and [v] ∈ N([an]). Then [u] and [v] are
adjacent and r([u] | W ′

`) = r([v] | W ′
`) since the first t components of

them are 2 and the other components are 1 and this is a contradiction.
Thus dim`(GA(M)) ≥ n−1, which implies that dim`

(
GA(M)

)
= n−1

and the proof will be completed. �
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