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PULLBACK OF LIE ALGEBRA AND LIE GROUP
BUNDLES, AND THEIR HOMOTOPY INVARIANCE

K. AJAYKUMAR∗, B. S. KIRANAGI AND R. RANGARAJAN

Abstract. We study the pullback Lie algebra (group) bundle of a
Lie algebra (group) bundle and show that the Lie algebra bundle of
the pullback of a Lie group bundle G is isomorphic to the pullback
of the Lie algebra bundle of G. Then, using the notion of Lie
connection on a Lie algebra bundle, we show that the pullbacks of
a Lie algebra bundle ξ over a smooth manifold M with respect to
two smooth homotopic functions f0, f1 : N → M are isomorphic
to Lie algebra bundles over N .

1. Introduction

Pullback of a Lie algebra bundle over a topological space was studied
in [9]. In this paper we extend the result to smooth Lie algebra bundles
with admissible norm.

We then show that for any Lie group bundle there exists a pullback
Lie group bundle unique upto isomorphism. We establish an isomor-
phism between the Lie algebra bundle of the pullback of a Lie group
bundle G, and the pullback of the Lie algebra bundle of Lie group
bundle G.

The importance of pullback bundles lies in promoting a bundle mor-
phism T between bundles over different base spaces to a bundle mor-
phism T̃ between bundles over a common base space. We shall show
the existence and uniqueness of such T̃ .
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Finally using the notion of connection on smooth Lie algebra bundles
[1] we show that the pullbacks of a Lie algebra bundle ξ over a smooth
manifold M with respect to two smooth homotopic functions f0, f1 :
N →M are isomorphic Lie algebra bundles over N .

Notations and Terminology: All base spaces are assumed to be
paracompact smooth manifolds. We denote the pullback of a bundle
ξ = (ξ, π,M) by f ∗ξ = (f ∗ξ, f ∗π,N) with respect to smooth map
f : N → M , where N and M are smooth manifolds. All underlying
fields are of characteristic zero.

2. Preliminary definitions

Definition 2.1 ( [11] ). LetG denote any topological group. A princi-
pal G−bundle is a fiber bundle π : P → X together with a continuous
right action P × G → P such that G preserves the fibers of P (i.e. if
y ∈ Px then yg ∈ Px for all g ∈ G) and acts freely and transitively on
them in such a way that for each x ∈ X and y ∈ Px, the map G→ Px
sending g to yg is a homeomorphism. In particular each fiber of the
bundle is homeomorphic to the group G itself. Frequently, one requires
the base space X to be Hausdorff and possibly paracompact.

Definition 2.2 ( [2] ). A real (complex) smooth vector bundle is
a locally trivial smooth family of vector spaces. That is a surjective
smooth map p : E →M of a smooth manifold E onto smooth manifold
M , such that:

(1) for each x ∈M , Ex = p−1(x) has a finite dimensional real(complex)
vector space structure.

(2) for each x ∈ M , there is a neighbourhood U of x in M , a
positive integer k and a diffeomorphism h : p−1(U) → U × Rk

such that h|Ex : Ex → x× Rk is a vectorspace isomorphism.

Definition 2.3. Let p : E → M and p′ : E ′ → N be smooth vector
bundles. A smooth map f̃ : E → E ′ is said to be a smooth vector
bundle homomorphism if f̃ induces a map f : M → N such that
the diagram,

E E ′

M N

f̃

p p′

f

commutes and the restriction f̃ : Ex → E ′f(x) is linear for all x ∈M .
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Definition 2.4. Let p : E → M and p′ : E ′ → M be smooth vector
bundles. A smooth vector-bundle homomorphism f̃ : E → E ′ is said
to be an isomorphism of smooth vector bundles if

(1) p′ ◦ f̃ = p

(2) f̃ is a diffeomorphism, such that its restriction to each fibre is
a vectorspace isomorphism.

If such an isomorphism exists then E and E ′ are said to be isomorphic
smooth vector bundles.

Definition 2.5 ( [2] ). A smooth weak (normed) Lie algebra
bundle (ξ, π,M) is a smooth vector bundle together with a smooth
morphism Θ : ξ ⊕ ξ → ξ inducing a (normed) Lie algebra structure on
each fibre ξx.

Definition 2.6 ( [2] ). A weak Lie algebra bundle, ξ = (ξ, π,M) is said
to have an admissible norm if there is a continuous map ‖ ‖ : ξ → R
such that it induces a norm on each fiber which satisfies

‖[x, y]‖ ≤ ‖x‖‖y‖

Definition 2.7 ( [7] ). A locally trivial smooth (normed) Lie algebra
bundle, for short a smooth Lie algebra bundle, is a smooth vector
bundle ξ = (ξ, π,M) whose standard fibre is a (normed) Lie algebra
say L, in which each fibre is a (normed) Lie algebra such that for each
x in M there is an open set U in M containing x and a diffeomorphism
ϕ : U ×L→ π−1(U) such that for each x in U, ϕx : {x}×L→ π−1(x)
is a (normed) Lie algebra isomorphism.

Remark 2.8. Every locally trivial smooth Lie algebra bundle is a weak
Lie algebra bundle. But the converse is not true in general [8].

Definition 2.9 ( [2] ). A Lie (topological) group bundle is a smooth
(topological) fibre bundle (G, π,M) in which each fibre Gm = π−1(m)
and the fibre type F , has a Lie (topological) group structure and for
which there is an atlas {φi : Ui × F → GUi

} such that each φi,m : F →
Gm, m ∈ Ui is an isomorphism of Lie (topological) groups.

Definition 2.10 ( [2] ). Let G = (G, π,M) be a Lie group bundle with
local trivialization {(U, φ)}. Then for the identity section ê : M → G,
defined by ê(m) = em, the identity element in the Lie group Gm, we
see that

L(G) =
⋃
m∈M

Tem(Gm)

forms a smooth fibre bundle over M , where Tem(Gm) is the tangent
space of Gm at em. Since each fibre Gm is a Lie group isomorphic to the
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standard fibre G, it is clear that Tem(Gm) is a Lie algebra isomorphic to
g = TeG. Therefore L(G) = ∪m∈MTem(Gm) forms a smooth Lie algebra
bundle over M with local trivialization (U, dφ) given by

dφ : U × TeG→ ∪m∈UTem(Gm).

such that

dφm : {m} × TeG→ Tem(Gm)

is a Lie algebra isomorphism induced by the differential of φm. We call
L(G) the Lie algebra bundle of the Lie group bundle G.

Definition 2.11. Let ξ, η be two (smooth) Lie algebra bundles over
the same base space M then a (smooth) vector bundle morphism f :
ξ → η is said to be a Lie algebra bundle morphism if for each x in
M, fx : ξx → ηx is Lie algebra homomorphism.

3. Pullback of Lie algebra and Lie group bundles

Theorem 3.1. Let f : N → M be a smooth map and G = (G, π,M),
a Lie group bundle. Then there exists a Lie group bundle f ∗G =
(f ∗G, f ∗π,N) and a unique Lie group bundle morphism f̃ : f ∗G → G
such that for each n in N the fibre (f ∗G)n of f ∗G is isomorphic to the

fibre Gf(n) of G under f̃ . Further such a Lie group bundle is unique
upto isomorphism.

Proof. The set f ∗G = {(n, g) ∈ N × G| f(n) = π(g)} is a smooth
submanifold of N ×G, by the implicit function theorem for maps, and
f ∗π : f ∗G → N , (f ∗π)(n, g) = n is a smooth surjective map. It is
then clear that each fibre (f ∗G)n of f ∗G carries Lie group structure
isomorphic to the fibre Gf(n) of G.

Suppose {(U, φ)} is a local trivialization of G = (G, π,M). For n in
N , let U be the neighbourhood of f(n) and φ : π−1(U) → U × G is
given by φ(g) = (φ1(g), φ2(g)). Define

f ∗φ : (f ∗π)−1(f−1(U))→ f−1(U)×G
by

f ∗φ(n, g) = (n, φ2(g)).

Then

(f ∗φ)n : (f ∗π)−1(n)→ n×G
is a Lie group isomorphism and {(f−1(U), f ∗φ)} forms a local trivial-
ization for (f ∗G, f ∗π,N). Thus f ∗G = (f ∗G, f ∗π,N) is a Lie group
bundle. We call f ∗G the pullback of Lie group bundle G with respect
to smooth map f : N →M .
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Now define f̃ : f ∗G → G, by f̃(n, g) = g. Then clearly f̃ is a Lie

group bundle morphism such that f̃((f ∗G)n) = Gf(n). �

Theorem 3.2. Given a smooth (normed) Lie algebra bundle ξ = (ξ, π,M)
and a smooth map f : N → M . Then there exists a smooth (normed)
pullback Lie algebra bundle f ∗ξ = (f ∗ξ, f ∗π,N) such that for each n in
N the fibre f ∗ξn of f ∗ξ is isomorphic to the fibre ξf(n) of ξ and such a
Lie algebra bundle is unique upto isomorphism.

Proof. From the methods of [9] and arguments in the proof of Theorem
3.1, it follows that there exists a unique (upto isomorphism) smooth
pullback Lie algebra bundle f ∗ξ = (f ∗ξ, f ∗π,N) such that for each n
in N the fibre f ∗ξn of f ∗ξ is isomorphic to the fibre ξf(n) of ξ.

Further let ‖.‖ : ξ → R be the map on ξ which induces norm on each
fiber. Let ‖.‖∗ be the map defined on f ∗ξ as

‖(n, g)‖ = ‖g‖

Then the diagram

f ∗ξ N × ξ

R ξ

‖.‖∗

i

π′

‖.‖

commutes, where i is the inclusion map and π′ is the projection map
onto the second component. Hence ‖.‖∗ is a continuous map from f ∗ξ
to R which induces norm on each fiber of the pullback of ξ. Thus f ∗(ξ)
is a Lie algebra bundle with admissible norm. Hence the theorem.

�

We now show in the succeeding theorems that the pullback of Lie
group bundles promote a bundle morphism T between Lie group bun-
dles over different base manifolds to bundle morphism T̃ between bun-
dles over a common base manifold.

Theorem 3.3. Let G = (G, π1, N) and H = (H, π2,M) be Lie group
bundles and T : G→ H be a Lie group bundle morphism descending to
a smooth map f : N → M . Then there is a unique Lie group bundle
morphism T̃ : G→ f ∗H such that f̃ ◦ T̃ = T where
f̃ : f ∗H→ H is the Lie group bundle morphism induced by f .

Proof. Uniqueness of such T̃ follows from the uniqueness of f̃ .
Define T̃ : G→ N × H by

T̃ (g) = (π1(g), T (g)), for all g ∈ G
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Then T̃ : G→ f ∗H is a Lie group bundle morphism as T : G→ H is
a Lie group bundle morphism and π2 ◦ T = f ◦ π1. Thus we have the
commutative diagram,

G f ∗H H

N M

T̃

π1

T

f ∗π2

f̃

f ∗π2

f

π2

where f̃ : f ∗H→ H , f̃(n, h) = h is a Lie group bundle morphism.

We see that f̃ ◦ T̃ = T as

(f̃ ◦ T̃ )(g) = f̃(T̃ (g)) = f̃(π1(g), T (g)) = T (g)

�

Theorem 3.4. Let G = (G, π1,M) and H = (H, π2,M) be Lie group
bundles and T : G→ H be a Lie group bundle morphism. If f : N →M
is a smooth map, then there is a unique Lie group bundle morphism
f ∗T : f ∗G→ f ∗H over N such that f ∗T |n = T |f(n) set theoretically.

Proof. Define f ∗T : f ∗G→ f ∗H by,

f ∗T ((n, g)) = (n, T (g)) for all (n, g) ∈ f ∗G

Then f ∗T is smooth since T : G → H is smooth. Also we see that
the following diagram commutes

f ∗G f ∗H

N

f∗π2

f∗T

f∗π1

as

(f ∗π1 ◦ f ∗T )((n, g)) = f ∗π1(f
∗T ((n, g)))

= f ∗π1((n, T (g)) = n

= f ∗π2((n, g)), for all (n, g) ∈ f ∗G.
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f ∗T is a Lie group bundle morphism , let (n, g1), (n, g2) ∈ (f ∗G)n,

f ∗T ((n, g1)(n, g2)) = f ∗T (n, g1 · g2)
= (n, T (g1 · g2))
= (n, T (g1)) · (n, T (g2))

= f ∗T (g1) · f ∗T (g2) = f ∗T ((n, g1)) · f ∗T ((n, g2))

Thus f ∗T : f ∗G→ f ∗H is a Lie group bundle morphism and obviously
f ∗T |n = T |f(n). �

Relation between L(f ∗G) and f ∗L(G) :

Theorem 3.5. Let G = (G, π,M) be a Lie group bundle with identity
section and L(G) be its Lie algebra bundle over M . Let f : N → M
be a smooth map. Let f ∗G be the pullback of the Lie group bundle G.
Then L(f ∗G), the Lie algebra bundle of f ∗G is isomorphic to f ∗L(G),
the pullback of L(G) over N

Proof. Let πL : L(G)→M and f ∗Lπ : L(f ∗G)→ N be the correspond-

ing smooth projections. Now, define f̃ : f ∗G → G by f̃((n, g)) = g.

Then f̃ is a smooth Lie group bundle morphism such that, f̃n =
f̃ |(f∗G)n : (f ∗G)n → (G)f(n) is a Lie group isomorphism.

Thus, the differential df̃n : Ten((f ∗G)n) → Tef(n)
((G)f(n)) is a Lie

algebra isomorphism, for every n ∈ N , where en is the identity element
in the fiber f ∗Gn and ef(n) is the identity in Gf(n). Now define a map
Θ : L(f ∗G)→ f ∗L(G) by

Θ(l) = (f ∗πL(l), df̃ |πL(l))

Then Θ is a smooth vector bundle morphism and preserves Lie
bracket fibre-wise as for each n ∈ N

Θ[ln, l
′
n] = (n, df̃n[ln, l

′
n])

= (n, [df̃n(ln), df̃n(l′n)])

= [(n, df̃n(ln), (n, df̃n(l′n)]

= [Θ(ln),Θ(l′n)]

Hence the theorem. �

Remark 3.6. Adjoint bundle associated to a principal bundle is a nat-
ural example of smooth Lie algebra bundle [5, 7]. One of the earliest
examples of adjoint bundles can be found in [6]. It is easy to see that
the following result holds good for adjoint bundles: Let f : N → M
be a smooth map. Let π : P → M be a principal G-bundle and let
f ∗π : f ∗P → N be the pullback of P . If ξ = adP is the adjoint bundle
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associated with P , then the pullback f ∗ξ is isomorphic to the adjoint
bundle associated with f ∗P .

4. Homotopy invariance of pullbacks

Here we show that the pullbacks of a Lie algebra bundle ξ over a
smooth manifold M with respect to two smooth homotopic functions
f0, f1 : N → M are isomorphic Lie algebra bundles over N using the
notion of Lie connection [1, 4] on ξ.

Definition 4.1 (Lie Connection). Let ξ = (ξ, π,M,Θ) be a smooth
Lie algebra bundle. A Lie connection [4] is a linear map

∇ : Γ(TM)→ End(Γ(ξ)), X 7→ ∇X

satisfying the following conditions:

(1) ∇X(aA) = (X.a)A+a∇XA for allX ∈ Γ(TM), a ∈ C∞(M,R),
A ∈ Γ(ξ)

(2) ∇(aX+bY )A = a∇XA+ b∇YA for all X, Y ∈ Γ(TM),
a, b ∈ C∞(M,R), A ∈ Γ(ξ)

(3) ∇X [A,B] = [∇XA,B] + [A,∇XB] for all X ∈ Γ(TM),
A,B ∈ Γ(ξ)

Remark 4.2. The notion of Lie Ehresmann connection is studied in [1].
It is shown that it is equivalent to the notion of Lie conncetion on
(normed) smooth Lie algebra bundles and that a smooth Lie algebra
bundle over a paracompact manifold admits Lie Ehresmann connection.

Throughout this section we fix a smooth Lie algebra bundle π : ξ →
M and a Lie connection ∇ on ξ.

Definition 4.3 (Parallel transport). Let f : R → M be a smooth
path. A Lie algebra isomorphism ϕt : ξm → ξf(t) is called the parallel
transport along the path f from f(0) = m to f(t). A section s ∈ Γ(ξ)
is called parallel along f if

ϕt(s(m)) = s(f(t))

Such a parallel transport can be obtained from an injective Lie alge-
bra homomorphism ξm → Γ(f ∗ξ). We have from [10, Lemma 1.32] that
the map v 7→ sv, where sv ∈ Γ(f ∗ξ) such that sv(0) = v and the covari-
ant derivatie ∇

dt
sv = 0 is an injective vector space homomorphism, as

the Lie connection ∇ on ξ is also a Linear connection on ξ, as a vector
bundle.
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Further for v1, v2 ∈ ξm, we have ∇
dt

[sv1 , sv2 ] = [∇
dt
sv1 , sv2 ]+[sv1 , ∇

dt
sv2 ] =

0 and [sv1 , sv2 ](0) = [sv1(0), sv2(0)] = [v1, v2]. Therefore [v1, v2] 7→
[sv1 , sv2 ] (by injectivity) and hence the map is an injective Lie algebra
homomorphism. Thus we have

Proposition 4.4 (Parallel transport). Let f : R → M be a smooth
path and let f(0) = m. Then there is a unique Lie bundle morphism

ϕ : R× ξm → ξ (4.1)

which induces f : R→ M and restricts to Lie algebra isomorphism in
the fibres such that f0 = f |{0}×ξm : {0} × ξm → ξm is the identity map.

4.1. Bundles over M×R. First let us recall the definition of cartesian
product of two vector bundles.

Definition 4.5 ([3]). Suppose π : ξ → M and π′ : ξ′ → M ′ are two
vector bundles with standard fibre F and F ′ respectively. Then the
cartesian product of the bundles ξ and ξ′ denoted by ξ× ξ′ is the tuple
(ξ × ξ′, π × π′,M ×M ′, F ⊕ F ′). That is, the vector bundle

π × π′ : ξ × ξ′ →M ×M ′

whose standard fibre is F ⊕ F ′, the direct sum of the vector spaces F
and F ′.

Now let π : ζ →M ×R be a Lie algebra bundle with standard fibre
L. Let i0 : M →M ×R be defined by i0(m) = (m, 0) and ζ0 = (i0)

∗(ζ)
be the pullback of ζ with respect to i0. Then we can form the bundle

ζ0 × R (4.2)

the cartesian product of the bundle ζ0 with the bundle i : R → R.
Clearly the bundle ζ0 × R is a Lie algebra bundle over M × R with
standard fibre L (in fact it is L× {0} ∼= L).

Lemma 4.6. With the hypothesis and notations above, there is a Lie
algebra bundle isomorphism

ϕ : ζ0 × R→ ζ (4.3)

Proof. Let ∇ζ be a Lie connection on ζ. For each m ∈M define

gm : R→M × R
by

gm(t) = (m, t)

Clearly each gm is a smooth path in M×R such that gm(0) = (m, 0) =
i0(m). Then by Proposition 4.4 we have a Lie bundle morphism induc-
ing gm : R→M × R say

ϕ : ζ(m,o) × R→ ζ
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such that it restricts to Lie algebra isomorphism on each fibre,

ϕm,t : ζ(m,0) × {t} → ζgm(t) = ζ(m,t) (4.4)

But we know that (ζ0)m is isomorphic to ζ(m,0) = ζi0(m). So we have a
Lie algebra isomorphism

ϕm,t : (ζ0)m × {t} → ζ(m,t) (4.5)

extending to a Lie bundle morphism

ϕ : ζ0 × R→ ζ

over M × R. �

Theorem 4.7 (Homotopy invariance). Let f0 : N →M and f1 : N →
M be smooth homotopic maps. Then the pullbacks f ∗0 ξ and f ∗1 ξ of a
smooth Lie algebra bundle π : ξ →M are isomorphic over N .

Proof. Let h : N × R → M be a homotopy connecting f0 and f1 i.e.
h|0 : N × {0} → M and h|1 : N × {1} → M are equal to f0 and f1
respectively. Let i0 : N × N × R and i1 : N → N × R be defined by
i0(x) = (x, 0) and i1(x) = (x, 1). Then h ◦ i0 = f0 and h ◦ i1 = f1. So
we have

f ∗0 ξ = i∗0(h
∗ξ)

and
f ∗1 ξ = i∗1(h

∗ξ)

By applying Lemma 4.6 to h∗ξ corresponding to i0, we see that h∗ξ
is isomorphic to i∗0(h

∗ξ) × R. Similarly Lemma 4.6 applied to h∗ξ
corresponding to i1, we see that h∗ξ is isomorphic to i∗1(h

∗ξ)× R.
Therefore i∗0(h

∗ξ)× R ∼= i∗1(h
∗ξ)× R and hence we have

i∗0(h
∗ξ) ∼= i∗1(h

∗ξ)

that is
f ∗0 ξ
∼= f ∗1 ξ

�

Corollary 4.8. Let f0 : N →M and f1 : N →M be smooth homotopic
maps. Then the pullbacks f ∗0G and f ∗1G of the Lie group bundle π :
G→M with simply connected fibres, are isomorphic over N .

Proof. Let ξ be the Lie algebra bundle L(G) of G over M . Then by
the above Theorem 4.7, we have

f ∗0 ξ
∼= f ∗1 ξ

But we know by Theorem 3.5,

L(f ∗0G) ∼= f ∗0 ξ
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and
L(f ∗1G) ∼= f ∗1 ξ

Therefore the Lie algebra bundles L(f ∗0G) and L(f ∗1G) are isomorphic.
But since the fibres of G are simply connected, so are the fibres of f ∗0G
and f ∗1G. Therefore by uniqueness in [2, Theorem 3], we have

f ∗0G
∼= f ∗1G

�

Corollary 4.9. Every Lie algebra bundle over a contractible base space
is trivial.

Proof. Let us fix m0 in M , the base space of Lie algebra bundle ξ. Since
M is contractible the identity map of M is homotopic to the constant
map f : M → M , f(m) = m0. Therefore by Theorem 4.7 it follows
that i∗ξ ∼= f ∗ξ. That is

ξ ∼= M × ξm0

�

In the same way we have

Corollary 4.10. Every Lie group bundle over a contractible base space
is trivial.
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