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Abstract. We consider in this paper the l0-norm based dictionary learning approach com-
bined with total variation regularization for the image restoration problem. It is formulated
as a nonconvex nonsmooth optimization problem. Despite that this image restoration model
has been proposed in many works, it remains important to ensure that the considered mini-
mization method satisfies the global convergence property, which is the main objective of this
work. Therefore, we employ the proximal alternating linearized minimization method whereby
we demonstrate the global convergence of the generated sequence to a critical point. The re-
sults of several experiments demonstrate the performance of the proposed algorithm for image
restoration.
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1 Introduction

Image restoration is one of the earliest and most classical linear problems in imaging. Generally,
the information in the image consists of a degraded representation of the original object and
one can roughly distinguish two sources of degradation, the process of image formation and
the process of image recording. The degradation due to the image formation process is usually
called the blur operation, which is a sort of band-limiting of the object. While the degradation
introduced by the recording process refers to the noise. Hence, image deblurring aims to recover
a clean image from its degraded form. For an observed image y the problem of image restoration
can be expressed by the following equation:

y = Hu+ v,
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where H is a linear operator that represents the degradation matrix, u is the original image,
and v represents the noise. In general, image restoration problem recovering u from y is known
as image deconvolution or image deblurring. When H is the identity operator, estimating u
from y is referred to as image denoising. The problem of estimating u from y is called a linear
inverse problem which, for most scenarios of practical interest, is ill-posed, either the direct
operator does not have an inverse or it is nearly singular with noise sensitivity, or due to the
ill-conditioning of H [35,36] . Therefore, in order to stabilize the recovery of u, it is necessary to
incorporate prior-enforcing regularization on the solution. For regularization methods, finding
and modeling appropriate prior knowledge of images is one of the most important concerns.
This is especially true whenever information is incomplete, damaged or degraded. Consequently,
variational models for image processing in general consist of two terms. The first term is fidelity
or data fitting term and the second one is a regularization term which is formulated as:

arg min
u

1

2
‖Hu− y‖22 + λJ(u),

where the first term in the objective function represents the fidelity term that measures the
discrepancy between Hu and the observation y. Also, J(u) is the regularization term and λ is
a positive parameter used to balance the two terms for the minimization problem.

Several regularization models have been studied in the literature. Total variation approach,
first introduced for image denoising [13,15], is based on minimizing certain energy function and
it has been widely used in the image restoration problem. The success of total variation based
methods for image processing is due to their ability to preserve edges in images. Since it was
introduced by [29], intensive research has focused on developing efficient methods to solve TV-
based minimization problem [9, 15, 22], where one of the main minimization difficulties is the
presence of the nonsmooth TV norm in the objective function. Another popular approach that
has been successfully used is the dictionary learning. In recent past decades, this unsupervised
leaning technique has been emerged as an efficient way to solve various computer vision tasks
such as: image recovery, super-resolution problem, image classification and speech separation
[18–20, 28]. This success is mainly due to its good reputation in both theoretical research and
practical applications in different disciplines. Many methods for learning sparse representation
have been developed over the recent years. Among those methods, the KSVD [3] with OMP [27]
algorithm, the online dictionary learning and proximal based methods [3,7]. Recent models have
proposed a hybrid model where they combined the sparse representation with TV regularization
[25]. Concerning image restoration, as long as sparse representation allows well extracting
features from data, combined with total variation, the method performs excellent combination
of feature extraction and edge preservation.

This paper takes a step in this direction by considering image restoration model that contains
three terms, the nonconvex sparse representation prior, the total variation regularization and
the fidelity term. Regarding the resolution of this model, most classical strategy tended to focus
on using the alternating minimization method. This technique provides several sub-problems
to solve, where each sub-problem is solved separately by using some existing algorithms. The
most considered scenario is the use of KSVD algorithm to learn the dictionary matrix, the
orthogonal matching pursuit (OMP) to get the sparse approximation, while for total variation,
splitting variable techniques [1, 8, 16] are used to decouple the problem. To the best of our
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knowledge, no one has studied its global convergence. Therefore, the main aim of this work
is the study of convergence analysis by considering an appropriate minimization method with
multiple variables. Thereby, we demonstrate that the whole sequence generated by this method
globally converges to a critical point.

2 Problem statement

2.1 Dictionary learning framework

The dictionary learning model has led to a large success in image denoising before being ex-
tended to numerous applications in computer vision. Without making any a priori assumption
about the data except a parsimony principle, the method is able to produce an unsupervised
dictionary learning devoted to noise reduction. Since dictionary learning is often considered as
a computationally demanding process especially when the size of the data is large as the images,
it is often learned over image patches. Given an image in its vectorized form u ∈ RN , we note
ul ∈ Rn the vector representation of the square 2D image patch of size

√
n ×
√
n pixels. The

image patch ul is obtained by multiplication of u by a matrix Rl of size n ×N whose columns
are indexed by the image pixels. The l0-quasi norm is used to encode the sparsity of the patch
representation, T is the required sparsity level, and z is used to denote the set of sparse repre-
sentations {zl}l of all patches. Such an approach follows a methodology that allows the use of
different schemes for unsupervised learning dictionary and the sparse coding steps as well as it
is valid for the other reconstruction tasks. Formally, the dictionary learning model is given by
the minimization problem:

min
D∈D,z∈RK,n

1

2

L∑
l

‖Rlx−Dzl‖22 + µ‖zl‖0, (1)

where ‖.‖0 is the sparsity measure defined as the number of nonzeros entries in the input, D is
referred to the dictionary, a matrix of values which gets us a sparse from z of the image patches.
The usual strategy to solve problem (1) is by using an alternating optimization procedure which
basically consists in alternatively learning the sparse approximation when the dictionary is con-
sidered fixed and then in updating the dictionary with the current sparse coefficients. The
cardinality constraint is used to enforce the sparsity. However, such sparsity constraint is non-
convex and the resulting problem is known to be NP-hard. The first and most obvious approach
to getting “pretty good” solutions to NP-Hard problems is to devise greedy algorithms. Greedy
algorithms has been developed to solve the l0-norm minimization in its current form [26, 27].
This algorithms attempt to solve the exact problem by different linear algebraic tools. The
greedy algorithms known to be easy to implement and computationally can be extremely fast.
The main principle is to detect or estimate the underlying support set of a given sparse vector
followed by evaluating the associated signal values. Among the mainly existing greedy algo-
rithms, the most used one is the OMP algorithm [27]. Differently, faced with the challenge of
the nonconvexity and the associated NP-hardness, a traditional workaround in literature has
been to modify the problem formulation itself for which existing tools can be applied. This is of-
ten done by relaxing the problem so that it becomes a convex optimization problem. Therefore,



16 S. Mohaoui, A. Hakim, S. Raghay

the l0-norm formulation can be relaxed and solved optimally with the l1-norm minimization, this
problem is known as the convex sparse coding problem. However, l0-regularization problem still
has some advantages over l1-regularization. The l1-norm may fail to recover sparse solutions
for some ill-posed inverse problems, and when dealing with large vectors, these methods are
computationally very expensive [33]. Hence, compared with the l1-norm, l0-norm can directly
recover sparser solutions. Fortunately, in recent years, a new process has permeated the fields
of machine learning and image processing, consists of directly solve the nonconvex problems
instead of relaxing them. In this vein, the so-called nonconvex optimization methods have been
consider. At first glance, however, this approach seems doomed to fail, given the NP-hardness
results. However in numerous deep and illuminating results, it has been revealed that if the
problem possesses some structure, such as sparsity or low rankness, then nonconvex optimiza-
tion methods are able to avoid NP-hardness as well as provide probably optimal solution (see
for more insight [34]). Furthermore, the recent development of proximal methods led to signifi-
cant advances in the design and analysis of algorithms, such as the iterative hard thresholding
algorithms [32] that operate directly on the l0 regularized problem.

2.2 Image restoration by dictionary learning and TV model

Natural images and images encountered in real applications are structured and often have many
repetitive local patterns, in particular edges, smooth regions, and textures. The so-called nonlo-
cal self-similarity is among the most successful priors for image restoration properties. Evidently,
due to such properties, methods incorporating sparse representation and adaptive patch based
models have exhibited very good results. Therefore, we consider the patch based dictionary
learning model for image restoration model. Moreover, to overcome the artifacts sometimes
caused by the patch based priors, the TV regularization is added in the minimization model.
Hence, the restoration model is a sum of three terms, the fidelity term, the total variation reg-
ularization, and the nonconvex sparse representation prior. The minimization problem is given
as follows:

arg min
z,D,u

1

2
‖Hu− y‖22 + µ1‖∇u‖1 +

µ2

2

∑
l

‖Rlu−Dzl‖22 + µ3‖z‖0, (2)

In the expression (2), the first term is the fidelity term that controls the global proximity of
u to the blurred image y. The second term is the total variation prior defined by ‖∇u‖1 =
|∇xu|1 + |∇yu|1 with ∇ = [∇x,∇y] is the gradient operator in the discrete setting, whose two
components at each pixel (i, j) are defined as follows

(∇xu)i,j =

{
ui+1,j − ui,j , for i < m,

0, for i = m,

(∇yu)i,j =

{
ui,j+1 − ui,j , for j < n,

0, for j = n.

For the last two terms in equation (2), one controls the proximity of the patch Rlu of the
reconstruction to the deblurred patch Dzl for each l, and the other one controls the sparsity of
the representation of the patches.
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Indeed such a model is rather difficult to solve, because it is neither convex nor smooth. The
recent development of proximal methods led to significant advances in the design and analysis
of algorithms for solving problems involving sum of nonsmooth convex or nonconvex functions
[12, 23, 24]. The recent paper [12] introduced a proximal alternating linearized minimization
algorithm denoted by PALM algorithm for solving a broad class of nonconvex and nonsmooth
minimization problems. The fundamental advantages of the presented PALM method is that it
only requires the objective function to be smooth at the term that uses all variables and that
this smooth part has component-wise Lipschitz continuous gradient for convergence. Moreover,
it has been proven that under certain conditions, each sequence generated by the PALM scheme
globally converges to a critical point.

3 Notation and preliminaries

For an extended real valued function f : Rd −→ (−∞,+∞], we say that f is proper if it is
never −∞ and its domain defined by Dom(f) = {x ∈ Rd : f(x) < +∞} is nonempty. For a
closed C ∈ Rn, its indicator function IC is defined by:

IC(s) =

{
0, if s ∈ C,
∞, otherwise,

Let f : Rd −→ (−∞,+∞] be a proper and lower semi-continuous function:
(1) For a given x ∈ Dom(f), the Frechet sub-differential of f at x written ∂̂f(x) is the set of all
vectors u ∈ Rd which satisfy:

lim
y 6=x;y−→x

f(y)− f(x)− < u, y − x >
‖y − x‖

≥ 0,

when x /∈ Dom(f) then ∂̂f(x) = ∅.
(2) The limiting sub-differential of f at x is defined as:

∂f(x) = {u ∈ Rn, ∃xk −→ x, f(xk) −→ f(x) and uk ∈ ∂̂f(xk) −→ u; k −→∞}. (3)

The sub-differential (3) reduces to the derivative of f (denoted by∇f) if f is continuously
differentiable.

A necessary (but not sufficient) condition for x ∈ Rd to be a minimizer of f is 0 ∈ ∂f(x) and
a point that satisfies this condition is called limiting-critical or simply critical.

(3) For any subset S ⊂ Rd and any point x ∈ Rd the distance from x to S is defined and
denoted by :

dist(x, S) = inf{‖y − x‖; y ∈ S}.

Note that when S is empty, we have dist(x, S) = +∞ for all x ∈ Rd. Note also that for any real
extended valued function f on Rd and any x ∈ Rd:

dist(x, ∂f(x)) = inf{‖u‖;u ∈ ∂f(x)}.
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(4) Given x ∈ Rd and λ > 0, the proximal operator associated to f is defined by:

Proxfλ(x) = arg min

{
f(u) +

λ

2
‖u− x‖22, u ∈ Rd

}
.

When the function f is the indicator function of a nonempty and closed set X i.e for the function
δX : Rd −→ (−∞,+∞], the proximal map reduces to the projection operator onto X defined by
:

PX (x) = arg min
{
‖u− x‖22, u ∈ X

}
.

4 Image restoration via a proximal-based algorithm

4.1 Proximal alternating linearized minimization method

For many years, convex optimization which consists of minimizing a sum of convex or smooth
functions has been received great interest. Several works on such convex problems have provided
a sound theoretical foundation. Both, the theoretic and computing advantages created many
benefits to practical use. However, what deserves the special consideration is the fact that the
convex or smooth models are often approximations of nonconvex. A very well-known example
is the l0 minimization norm in sparse recovery problems which is commonly relaxed as convex
l1-norm. Despite the numerical complexities arising with nonconvex regularization, a variety
applications have shown their importance in many disciplines. As a result, increasing alternating
methods have been paid to a broad nonconvex optimization problem. Among those methods, the
PALM scheme build on the Kurdyka-Lojasiewicz (KL) property allows to analyze various classes
of nonconvex nonsmooth problems as well as establishing the global convergence of the sequence
generated by PALM scheme. The KL property played a fundamental role on the convergence
analysis of PALM method. For our purpose, we review the method for the problems of the form:

min
x,y,z

B(x, y, z) = H(x, y, z) + F (x) +R(y) +G(z), (4)

where F : Rn −→ (−∞,+∞], R : Rm −→ (−∞,+∞] and G : Rd −→ (−∞,+∞] are extended
valued, proper and lower semi-continuous functions. And H : Rn×Rm×Rd −→ R is C1: smooth
function with Lipschitz gradient on any bounded set and convex with respect to either x,y or z.

At the kth iteration the PALM scheme updates the estimate of (x, y, z) alternatively by
solving the following linearized proximal problems:

xk+1 = arg min
x

< ∇xH(xk, yk, zk), x− xk > +
tkx
2
‖x− xk‖22 + F (x),

yk+1 = arg min
y

< ∇yH(xk+1, yk, zk), y − yk > +
tky
2
‖y − yk‖22 + R(y),

zk+1 = arg min
z

< ∇zH(xk+1, yk+1, zk), x− zk > +
tkz
2
‖z − zk‖22 + G(z),

where tkx, tky and tkz are appropriately chosen step sizes. Using the the Proximal operator, the
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minimization problems are equivalent to the following proximal problems:

xk+1 ∈ ProxFtkx
(xk − 1

tkx
∇xH(xk, yk, zk)),

yk+1 ∈ ProxRtky
(yk − 1

tky
∇yH(xk+1, yk, zk)),

zk+1 ∈ ProxGtkz
(zk − 1

tkz
∇zH(xk+1, yk+1, zk)).

4.2 PALM algorithm for the proposed restoration model

In this subsection, we describe an adaptation of the PALM algorithm to the suggested deblurring
model (2). In doing so, we first define the following sets:

χ =
{
u ∈ Rn×m such that l ≤ uij ≤ h

}
,

C = {z ∈ Rp such that ‖zk‖∞ ≤M} ,
D =

{
D ∈ RN×p such that ‖dj‖2 ≤ 1 j = 1, . . . , p

}
.

In order to express the image deblurring model as in the form of (4) we set:
H(u,D, z) = 1

2‖Hu− y‖
2
2 + µ2

2

∑
l ‖Rlu−Dzl‖22,

F (u) = µ1‖∇u‖1 + Iχ(u),

R(D) = ID(D),

G(z) = µ3‖z‖0 + IC(z),

(5)

where Iχ(u), ID(D) and IC(z) denotes the indicator functions of the sets χ, D and C. The bound
constraints on u model the situation where all pixel values have lower and upper bounds, for
example when u is an image with pixel values in the range [0, 256] or [0, 1]. While for zk, the
bound constraint is to prevent some elements of sparse coefficients to have unusual large values.
To avoid the scenario that dictionary columns have arbitrary large norm which would lead to
small values of the sparse approximations, we restrict its column to have an l2-norm less or
equal than 1. Then to use PALM algorithm for solving (2), let D(0) be the initial dictionary
and u(0) = y then for k = 0, 1, ..

zk+1 ∈ ProxGtkz
(zk − 1

tkz
∇zH(ẑk, Dk, uk)), (6)

Dk+1 ∈ ProxR
tkd

(Dk − 1

tkd
∇DH(zk+1, D̂k, uk)), (7)

uk+1 ∈ ProxFtku
(uk − 1

tku
∇uH(zk+1, Dk+1, ûk)), (8)

and ẑk, D̂k, ûk are the extrapolated points given by: ẑk = zk−1 + wkz (zk−1 − zk−2), D̂k =
Dk−1 +wkd(Dk−1 −Dk−2) and ûk = uk−1 +wku(uk−1 − uk−2) respectively, with wkz ;wkd ;wku ≤ 1.
Hence, the update (6), (7) and (8) can be explicitly obtained by direct minimization.
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Sparse Coefficients: Given the dictionary matrix Dk, and the image uk, the task is to get
the sparse coefficient zk that satisfies (6), in which each iteration requires solving a minimization
problem. We define

ek = zk − 1

tkz
∇zH(ẑk, Dk, uk) = zk − µ2

tkz

∑
l

DT (Dkẑkl −Rluk),

and solve the minimization problem

zk+1 = arg min
z∈C

1

2
‖z − ek‖22 + µ3‖z‖0 = arg min

z∈C

1

2

p∑
i=1

(zi − eki )2 + µ3I{zi 6=0}. (9)

Basically, one could solve the scalar problem due to the component wise property. The term
Γ(zi) = µ3I{zi 6=0} is the weighted l0 penalty defined by

Γ(zi) =

{
0, if zi = 0,
µ3, if zi 6= 0.

Its proximity operator is a set valued mapping defined by:

ProxΓ(zi) =


{0}, if |zi| <

√
2µ3,

{0,
√

2µ3}, if zi =
√

2µ3,
{−
√

2µ3, 0}, if zi = −
√

2µ3,
{zi}, if |zi| >

√
2µ3.

By choosing
√

2µ3 as the value of zi = ±
√

2µ3, we get the Hard thresholding operator [30, 32]
with α =

√
2µ3

(Tα(z))i =

{
0, if |zi| < α,
zi if |zi| ≥ α.

Hence, it is easy to see that the solution of (9) is

zk+1 = PC(Tα(zk − 1

tkz
∇zH(ẑk, Dk, uk)) = min(Tα(zk − 1

tkz
∇zH(ẑk, Dk, uk),M)).

Dictionary matrix: Given the obtained sparse approximation zk+1 and the image uk, we
update the dictionary matrix by computing the proximal operator which corresponds to solving a
minimization problem. Since the proximity mapping over the indicator function is the projection
operator, thus the dictionary learning is obtained by

Dk+1 = PD(Dk − 1

tkd
∇DH(zk+1, D̂k, uk)),

where PD denotes the Euclidean projection to D defined for any D as:

(PD)i =
di

max(1, ‖di‖2)
∀i = 1, . . . , p.
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Image Reconstruction: The reconstruction step is to solve the denoising problem based
total variation:

sk = uk − 1

tku
∇uH(zk+1, Dk+1, ûk),

uk+1 = arg min
v

µ1‖∇v‖1 + Iχ(v) +
λ

2
‖v − sk‖22,

uk+1 = arg min
v∈χ

µ1‖∇v‖1 +
λ

2
‖v − sk‖22.

(10)

Problem (10) is a very known denoising problem in the area of image processing. A variety of
methods and algorithms that cover the minimization of this problem efficiently were developed.
The classical method used for the minimization of total variation denoising problem is [15], where
the author proposed to consider a dual approach and a gradient based algorithm for solving the
resulting dual problem. In the same direction, the forward backward splitting (FBS) method
and its accelerated versions also used this dual approach. Following the same strategy, we first
form a dual formulation of the problem (10):

min
v∈χ

µ1‖∇v‖1 +
λ

2
‖v − sk‖22 = max

‖q‖∞≤1
min
v∈χ

µ1〈q,∇v〉+
λ

2
‖v − sk‖22. (11)

Hence, for a given q, the minimal value of v satisfies: Pχ(sk+µ1/λ∇T q), where ∇T is the discrete
divergence (which is the negative adjoint of the gradient operator). Plugging this expression for
v back into the second part of (11), we get the dual problem:

min
‖q‖∞≤1

{‖(sk + µ1/λ∇T q)‖22 − ‖Pχ(sk + µ1/λ∇T q)− (sk + µ1/λ∇T q)‖22}. (12)

Then, we simply minimize a quadratic function with an infinity-norm constraint using a recent
variation of FBS algorithm [22]. To do so, we only need to determine the gradient of the objective
function which is continuously differentiable. Thus, define Λχ(x) = ‖x − Pχ(x)‖22. Its gradient
is ∇Λχ(x) = 2(x− Pχ(x)). Hence, the dual problem is reformulated as

min
h(q) = ‖q‖∞≤1

{‖(sk + µ1/λ∇T q)‖22 − Λχ(sk + µ1/λ∇T q)}.

The gradient of the dual objective function is given by

∇h(q) = ∇q(‖(sk + µ1/λ∇T q)‖22 − Λχ(sk + µ1/λ∇T q)) =
2µ1

λ
∇(Pχ(sk + µ1/λ∇T q)).

The solution of the dual problem is obtained using a variant of FBS algorithm, in which resulting
scheme alternately performs gradient descent step q = q−t∇h(q), and then re-projects the result
back into the infinity-norm ball using the formula q∗ij ← qij/max(1, qij). Once we obtain q∗ the
solution of (12), the optimal (denoised) image is then given by

u∗ = Pχ(sk + µ1/λ∇T q∗).
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To make the whole objective non-increasing, at the kth iteration we set wkz = wkd = wku = 0 (i.e
no extrapolation) if B(uk, Dk, zk) > B(uk−1, Dk−1, zk−1).

Algorithm 1: PALM algorithm for the combined deblurring model

Initialisation: Set D(0), z(0) and u(0) = y
for k = 1, 2, 3, . . . ,Maxiter do
1. Sparse approximation step:

zk+1 = min(Tα(zk − 1

tkz
∇zH(ẑk, Dk, uk),M).

2. Dictionary update step:

Dk+1 = PD(Dk − 1

tdk
∇DH(zk+1, D̂k, uk)).

3. Reconstruction step:

uk+1 = Pχ(sk + µ1/λ∇T p∗).

if B(uk+1, Dk+1, zk+1) > B(uk, Dk, zk) then

Re-update uk+1, Dk+1, zk+1 with ẑk+1 = zk, D̂k+1 = Dk, ûk+1 = uk

end

end

5 Convergence Analysis

Here, first we give some important definitions and results used in convergence analysis.

The Kurdyka Lojasiewicz property: This property plays a basic role in the convergence
analysis.
Let η ∈ (0,+∞], we denote by Ψη the class of all concave and continuous functions ϕ :
(0,+∞] −→ R+ which satisfy the following conditions

1. ϕ(0) = 0,

2. ϕ is C1 on (0, η] and continuous at 0,

3. for all (0, η) : ϕ′(s) > 0.

Definition 1 (Kurdyka-Lojasiewcz property). Let f : Rd −→ (−∞,+∞] be a proper and lower
semi-continuous function.

(i) The function f is said to have the Kurdyka-Lojasiewcz property at x ∈ Dom(∂f) where
Dom(∂f) = {y ∈ Rd : ∂f(y) 6= ∅} if there exists η ∈ (0,+∞], a neighborhood U
of x and a function ϕ ∈ Ψη such that the following inequality holds for all y ∈ U ∪
[f(x) < f(y) < f(x) + η]

ϕ′(f(y)− f(x))dist(0, ∂f(y)) ≥ 1.



DL and TV model for image restoration with convergence analysis 23

(ii) If f satisfies the KL property at each point of Dom(∂f), then f is called a KL function.

Remark 1. A proper lower semi-continuous function F : Rn −→ (−∞,+∞] has the Kurdyka
Lajasiewicz property at any non critical point.

Definition 2 (Semi-algebraic sets and functions). A subset S of Rn is called semi-algebraic if
there exists a finite number of real polynomial functions Pij and Qij such that

S = ∪j ∩i {x ∈ Rn Pij(x) = 0 and Qij(x) < 0}.

A function is called semi-algebraic if its graph

Graph(f) = {(x, t) ∈ Rn × R such that t = f(x)},

is a semi-algebraic set.

Semi-algebraic functions satisfy the Kurdyka-Lojasiewicz property (see [10], [11]) with ϕ(s) =
cs1−θ for θ belong to [0, 1) and some positive real number c. We have the following results.

Theorem 1 (Convergence result). The sequence sk = (zk, Dk, uk) generated by Algorithm 1
converge to the critical point of problem (2) if the following conditions hold:

(1) The functions F , G and R are lower semi-continuous;

(2) H(z,D, u) is a C1 function;

(3) B(z,D, u) is a KL function;

(4) The partials gradient ∇zH, ∇DH and ∇uH are globally Lipschitz with moduli Lz, Ld and
Lu respectively;

(5) {sk}k∈N is a bounded sequence and the steps size must be such that tkz > Lz, t
k
d > Ld,

tku > Lu;

(6) ∇H(z,D, u) is Lipschitz continuous on bounded subsets of Rn × Rm × Rd.

Remark 1. Note that the KL property is an assumption on the class of function to be minimized
and does not depend on the structure of the considered algorithm. And as the goal is to
prove that the whole sequence converges to a critical point of B, the role of KL property is to
demonstrate that the generated sequence {sk}k∈N is a Cauchy sequence. (see [12] for the proof).

The convergence rate of the method is given through the following estimations. Thereby,
Algorithm 1 has at least sub-linear convergence rate.
If the desingularizing function ϕ of Ψ is of the form ϕ(s) = cs1−θ, where c is positive real number
and θ belong to [0, 1), then the following estimations hold (for more detail see [5]).

(i) If θ = 0 then the sequence zk converges in a finite number of steps.

(ii) If θ ∈ [0, 1/2] then there exist ω > 0 and τ ∈ [0.1) such that ‖sk − s∗‖ ≤ θτk.

(iii) If θ ∈ [1/2, 0) then there exist ω > 0 such that ‖sk − s∗‖ ≤ k−
1−θ
2θ−1 .



24 S. Mohaoui, A. Hakim, S. Raghay

Proof of Theorem 1. We show that Algorithm 1 satisfies the conditions of Theorem 1.

(1), (2) Observe that χ, C and D are closed sets and hence the indicator functions Iχ(u), ID and
IC are lower semi-continuous, and indeed the ‖.‖0 is also lower semi-continuous. Hence,
the functions F , R and G are lower semi-continuous while the function H is a C1 function.

(3) As we mentioned above, to prove the first condition, that is, the objective function satisfies
the Kurdyka-Lojasiwicz property in its effective domain, it is sufficient to prove that the
objective function is a semi-algebraic function, i.e., to prove that each term in the function
(4) defined via (5) is a semi-algebraic function.

(i) H(u,D, z) = 1
2‖Hu − y‖

2
2 + µ2

2

∑
l ‖Rlu − Dzl‖22 is a real polynomial functions and

thus by definition, H(u,D, z) is a semi-algebraic function.

(ii) F (u) = µ1‖∇u‖1 + Iχ(u), where

χ = ∩nmk=l {u ∈ Rnm such that l ≤ uk ≤ h}
= ∩nmk=l ∪hs=l {u ∈ Rnm such that uk = s}

which is a semi-algebraic set and the indicator function of a semi-algebraic set is a
semi-algebraic function.

For u −→ ‖u‖1, we set ϕ : s > 0 −→ s
n1
n2 where n1, n2 are positive numbers. The

graph of ϕ is given by

Graph(ϕ) =
{

(s, t) ∈ R2
+, ϕ(s) = t

}
=
{

(s, t) ∈ R2
+, s

n1
n2 = t

}
=
{

(s, t) ∈ R2, sn1 − tn2 = 0
}
∩ R2

+.

Therefore Graph(ϕ) is a semi-algebraic set, and hence ϕ is semi-algebraic function.
Consequently, the function ϕ : x −→ |xi|p ∀i with fractional integers p = n1

n2
is a

semi-algebraic function. Particularly, the function ϕ : x −→ ‖x‖p is a semi-algebraic
function for fractional integers p, since the sum of semi-algebraic functions is a semi-
algebraic function. In our case p = 1. Moreover, ∇ : Rn×m −→ R2n×m is a linear
operator and thus the composite function ϕ ◦ ∇ : u −→ ‖∇u‖1 is semi-algebraic.
Therefore, the function F (u) is semi-algebraic.

(iii) For R(D) = ID(D), we have

D =
{
D ∈ RN×p such that ‖dj‖2 ≤ 1 ∀j = 1, . . . , p

}
= ∩pj=1

{
D ∈ RN×p such that

N∑
k=1

d2
jk ≤ 1

}
,

which is a semi-algebraic set and then the indicator function of D is also semi-
algebraic.

(iv) G(z) = µ3‖z‖0 + IC(z), where ‖.‖0 is the sparsity term that counts the number of
nonzero elements of a vector z ∈ Rp. The graph of ‖.‖0 is given by

Graph(‖.‖0) = {(x, t) ∈ Rp × R+, ‖x‖0 = t} =

{
(x, t) ∈ Rp × R+,

p∑
i=1

I{xi 6=0} = t

}
,
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where I{xi 6=0} = {1 if i ∈ {xi 6= 0} and 0 otherwise}. We set
Jt = {I ⊆ {1, . . . , p} s.t |I| = t}, then we have

Graph(‖.‖0) = {(x, t) ∈ Rp × R+, |{xi 6= 0,∀i = 1, . . . , p}| = t}
= ∪pt=0 ∪I∈Jt {(x, t) s.t. xi 6= 0 for i ∈ I, xi = 0 for i ∈ Ic}.

Thus Graph(‖.‖0) is semi-algebraic. While for IC(z) we observe that

C = {z ∈ Rp such that ‖zk‖∞ ≤M} = ∪Mi=1 {z : ‖zk‖∞ = i} ,

which is a semi-algebraic set, hence the indicator function is semi-algebraic. Therefore
each term of the objective function is semi-algebraic function then it is KL function.

(4) (i) ‖∇zH(z1, D
k, uk)−∇zH(z2, D

k, uk)‖ ≤ ‖(Dk)TDk‖2‖z1 − z2‖ = L(Dk)‖2‖z1 − z2‖.
(ii) ‖∇DH(zk, D1, u

k)−∇DH(zk, D2, u
k)‖2 ≤ ‖zk(zk)T ‖‖z1 − z2‖ = L(zk)‖z1 − z2‖

(iii) ‖∇uH(zk, Dk, u1)−∇zH(zk, Dk, u2)‖ ≤ (‖HTH‖2 + µ2
∑

l ‖RTl Rl‖2)‖z1 − z2‖

= L(H,R)‖z1 − z2‖,
where HTH is a circulant square matrix and RTl Rl is a diagonal matrix its entries cor-
respond to image pixel locations and their values are equal to the number of overlapping
patches contributing at those pixel locations.

(5) The sk = (zk, Dk, uk) is a bounded sequence since zk ∈ C, Dk ∈ D and uk ∈ χ for any
k = 1, 2, . . .. In addition, the step sizes can be chosen as
tkz = max(γ1L(Dk), l+1 ) where γ1 > 1, l+1 > 0,
tkd = max(γ2L(zk), l+2 ) where γ2 > 1, l+2 > 0,
tku = max(γ3L(H,R), l+3 ) where γ3 > 1, l+3 > 0.

(6) For the last condition in Theorem 1, as we have mentioned above, the function

H(z,D, u) =
1

2
‖Hu− y‖22 +

µ2

2

∑
l

‖Rlu−Dzl‖22,

is a smooth function. Moreover, the gradient of the objective function is given by

∇H(z,D, u) = (HT (Hu−y) +µ2

∑
l

RT
l (Rlu−Dzl), µ2

∑
l

(Dzl−Rlu)zTl , µ2

∑
l

DT (Dzl−Rlu)).

which has a Lipschitz constant on any bounded set, i.e., for all bounded sets S there exists
a constant C > 0 such that {(z1, D1, u1), (z2, D2, u2)} ⊆ S, we have

‖∇H(z1, D1, u1)−∇H(z2, D2, u2)‖ ≤ C‖(z1, D1, u1)− (z2, D2, u2)‖.

So the proof is completed. 2
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6 Results and discussion

In this section, we present the experimental results of the proposed approach for image de-
blurring. For the experimental setting, first it should be noted that all implementations were
carried out using Matlab R2015 in a desktop pc equipped with an intel core i3. The Algorithm
1 is evaluated on classical gray-level images: Barbara, House, Boats and Peppers. Through
all the experiments we use the Gaussian blur generated by the Matlab function fspecial with
two standard deviation 1.6 and 2 and noise=

√
2. For the comparison, some image restoration

approaches including TVMM [9] and BM3DDEB [17] have been implemented. The quality of
recovered images was evaluated by Peak signal to noise ration PSNR defined by

PSNR = 10 log10

2552

MSE
,

where

MSE =
1

mn

m∑
i=1

n∑
j=1

[u0(i, j)− u(i, j)]2 .

The u0 and u are the original and recovered images respectively. On the other hand, the visual
comparison of reconstructed images obtained by the three approaches is presented in Figures
1, 2 and 3. It can be seen visually that Algorithm 1 present remarkable results with respect
to other algorithms in several images. Table 1 represents the obtained PSNR values of the two
cases fspecial(Gaussian, 25, 1.6) and fspecial(Gaussian, 25, 2).

Table 1: The reconstruction PSNR values of the tested images using Gaussian blur.
Image House Barbara Boats Pepper

Gaussian blur, σ =
√

2 and s.v = 1.6

TVMM 33.05 24.62 30.33 26.63
BM3DDEB 32.87 28.19 30.63 27.48
Ours 33.41 26.07 30.99 27.72

Gaussian blur, σ =
√

2 and s.v = 2

TVMM 31.95 24.15 28.80 25.75
BM3DDEB 31.10 24.35 29.05 26.14
Ours 32.33 24.36 29.52 26.60

7 Conclusion

In this paper, we interested in proximal methods for the minimization of image restoration
problem based dictionary learning and the total variation model. Therefore, an adaptation of
the proximal alternating linearized method for this nonconvex nonsmooth minimization problem
was presented. Thereby, we demonstrate that the generated sequence by the proposed algorithm
globally converges to a critical point at least in sub-linear rate. Numerical performance of
the proposed algorithm is evaluated by some experiments results of image deblurring problem
compared with two popular deblurring methods.
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Figure 1: Visual comparison of image deblurring on gray image Boats (256× 256). From left to
right and to bottom: original image, noisy and blurred image by Gaussian blur with the standard
deviation of 1.6, the deblurred image by TVMM, BM3DDEB, and our proposed approach.

Figure 2: Visual comparison of image deblurring on gray image House (256× 256). From left to
right and to bottom: original image, noisy and blurred image by Gaussian blur with the standard
deviation of 1.6, the deblurred image by TVMM, BM3DDEB, and our proposed approach.

Figure 3: Visual comparison of image deblurring on gray image Peppers (256 × 256). From
left to right and to bottom: original image, noisy and blurred image by Gaussian blur with
the standard deviation of 1.6, the deblurred image by TVMM, BM3DDEB, and our proposed
approach.
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