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Abstract. The elasticity interface problems occur frequently when two or more materials meet.
In this paper, a meshfree point collocation method based on moving kriging interpolation is pro-
posed for solving the two-phase elasticity system with an arbitrary interface. The moving kriging
shape function and its derivatives are constructed by moving kriging interpolation technique.
Since the shape function possesses the Kronecker delta property then the Dirichlet boundary
condition can be implemented directly and easily. Numerical results demonstrate the accuracy
and efficiency of the proposed method for the studied problems with constant and variable co-
efficients.
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1 Introduction

The elasticity interface problems have attracted a lot of attention from theoretical analysis and
numerical studies, see [11, 14–16, 18, 21–23, 34] and the references therein. The elasticity prob-
lems of multiple phases of elastic materials separated by phase interfaces arise in many areas,
such as the atomic interactions [29], the epitaxial growth of thin films [4], and the crystalline
materials [12] problems. The understanding of these physical processes is crucial to improve ma-
terial stability properties, and in turn to develop new and advanced materials that have many
applications in automobile manufacture, aircraft industries, and modern communication tech-
nologies [26,35]. However, solving such elasticity problems is not often easy due to complicated
geometries and multiple components that appear in these problems [2, 8, 17].

Meshfree methods have gained much attention in solving the interface problems because
they involve simple processing, arbitrary node distribution, and flexibility of placing nodes at
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arbitrary locations [1, 9, 24]. In recent years, a variety of meshfree methods has been studied
to the interface problems [5, 10, 19, 20, 27, 28, 33]. As the moving least squares (MLS) scheme
is considered a beneficial scheme to approximate discrete data with reasonable accuracy, the
meshfree point collocation method based on MLS shape function can be an efficient technique
to solve interface problems. However, the approximative nature of the MLS shape functions
makes it more difficult to impose the Dirichlet boundary condition due to the lack of Kronecker
delta property of the shape functions. An effective way to solve this problem is to use the moving
kriging interpolation (MKI) instead of the MLS approximation [13,32]. The MKI possesses the
Kronecker delta function property and the Dirichlet boundary can be implemented directly and
easily [6, 25].

Meshfree strong form methods are an attractive alternative to the weak forms. Because
these methods do not require any numerical integration to generate the global stiffness matrix.
However, the meshfree collocation methods based on MLS numerically suffer from high-order
derivatives computations [28]. As is said in [7,13], the computational cost of derivatives in MKI
is lower than MLS approximation. Therefore, the use of MK shape function in the meshfree
point collocation method can be computationally effective.

The various of meshless methods based on MKI has been studied to solve elasticity prob-
lem [3,30,31,36]. In this paper, the MKI based meshfree point collocation method is studied for
solving the two-phase elasticity system. To construct the proper shape function near the inter-
face, an efficient modification of the correlation function in MKI is considered. In this technique,
the computational domain disjoints into two subdomains that in each domain, a boundary value
problem with a smooth solution is solved. In the proposed method, direct collocation at the
nodes is used to impose the Dirichlet boundary condition and the jump conditions.

The structure of the paper is as follows. In the next section, a brief review of the MKI
scheme is discussed. Section 3 is devoted to the state of the two-phase elasticity problem. The
implement of the MKI based meshfree point collocation method is demonstrated for solving the
studied problem in Section 4. Also, in this section, the modification of the correlation function in
MKI across the interface is explained. In Section 5, the obtained numerical results are presented.
The paper ends by concluding remarks in Section 6.

2 MKI scheme

In this section, a review of the MK interpolation is given. For more details of the MKI, see [13,32].
Consider a set of n nodes scattered in a domain Ω and xi be the coordinates of node i. Let the
local approximation vh(x) of v(x) in a small neighbourhood Ωx of x be as follows

vh(x) = ψ(x)v, x ∈ Ωx, (1)

where ψ(x) = [ψ1(x), . . . , ψn(x)], and v =[v1, v2, . . . , vn]T is a vector of nodal variables. The
shape function ψ(x) of MKI is defined as [13]

ψ(x) = p(x)A + r(x)B, (2)

where p(x) = [p1(x), p2(x), . . . , pm(x)], pj(x) (j = 1, 2, . . . ,m) are monomial basis functions, m
is the number of terms of the basis. r(x) is the vector of correlation function between point x
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and the given local nodes which are located inside the supporting domain of x,

r(x) = [γ(x,x1), γ(x,x2), . . . , γ(x,xn)].

The matrices A and B are in the following forms

A = (PTR−1P)−1PTR−1,

B = R−1(I− PA),

where P and R are the polynomial basis function values matrix and the symmetric correlation
matrix, respectively, as follows

P =


p1(x1) . . . pm(x1)
p1(x2) . . . pm(x2)

...
. . .

...
p1(xn) . . . pm(xn)

 , R =


γ(x1,x1) . . . γ(x1,xn)
γ(x2,x1) . . . γ(x2,xn)

...
. . .

...
γ(xn,x1) . . . γ(xn,xn)

 .
Many functions can be used as a correlation function [13, 37]. In this paper, the quartic spline
function is used as the correlation function γ(xi,xj),

γ(xi,xj) =

{
1 + r2

ij(−6 + 8rij − 3r2
ij), rij ≤ 1,

0, rij > 1,

where rij =
||xi−xj ||

ρi
and ρi is the average distance of the local nodes.

The αth derivative of function v(x) with respect to x = (x, y) is defined by a differential
operator Dα

xv(x) := ∂αv
∂xα1∂yα2 , where α = α1 + α2. The derivatives of the approximation (1) are

obtained as follows

Dα
xv

h(x) =
(
Dα

xp(x)A +Dα
xr(x)B

)
v.

It should be noted that the shape function of the MKI possesses the Kronecker delta function
property. This property enables meshfree methods to impose the Dirichlet boundary condition
directly.

3 The two-phase elasticity problem

Let Ω be an open bounded domain in R2 which is separated into two subdomains Ω+ and
Ω− by interface Γ, i.e., Γ = Ω̄+ ∩ Ω̄−. See Figure 1 for an illustration. It is assumed that
the subdomains Ω+ and Ω− are occupied by two different elastic materials. In this paper, the
two-phase elasticity system is considered in the following form:

∇.σ(u) + f = 0, in Ω+ ∪ Ω−, (3)

with the Dirichlet boundary condition

u = g, on ∂Ω, (4)
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Figure 1: A sketch of the domain for the two-phase elasticity problem with interface Γ.

and the jump conditions

[u]Γ = jD, on Γ, (5)

[σ(u).n]Γ = jF, on Γ. (6)

Here, σ is the stress tensor. f = (f1, f2)T is the body force which is known, u = (u1(x, y), u2(x, y))T

is the position of the point (x, y) of the deformed elastic body. The jump [.]Γ is defined as the
difference of the limiting values from the outside of the interface to the inside, and n is the unit
normal direction of the interface Γ pointing from the − phase to the + phase. For isotropic
elasticity problems, the stress-strain relation is given by σ(u) = λtr(ε(u))I + 2µε(u), where
ε(u) = 1

2

(
∇u + (∇u)T

)
is the strain tensor with the trace being tr(ε(u)) =

∑
i,j εi,j(u). The

Lame parameters λ and µ can be constant or spatial dependent functions. The physical param-
eters have a finite jump discontinuity as follows

(λ, µ) =

{
(λ+, µ+), in Ω+,
(λ−, µ−), in Ω−.

The equations (3)-(6) can be written in the component-wise form as follows,

(λ+ 2µ)
∂2u1

∂x2
+ µ

∂2u1

∂y2
+ (λx + 2µx)

∂u1

∂x
+ µy

∂u1

∂y

+(λ+ µ)
∂2u2

∂x∂y
− µy

∂u2

∂x
− λx

∂u2

∂y
= −f1, in Ω±, (7)

(λ+ µ)
∂2u1

∂x∂y
+ λy

∂u1

∂x
+ µx

∂u1

∂y
+ µ

∂2u2

∂x2

+(λ+ 2µ)
∂2u2

∂y2
+ µx

∂u2

∂x
+ (λy + 2µy)

∂u2

∂y
= −f2, in Ω±, (8)

(u1, u2) = (g1, g2), on ∂Ω, (9)

[(u1, u2)] = (jD1, jD2), on Γ, (10)[
(λ+ 2µ)n1

∂u1

∂x
+ µn2

∂u1

∂y
+ µn2

∂u2

∂x
+ λn1

∂u2

∂y

]
= jF1, on Γ, (11)[

λn2
∂u1

∂x
+ µn1

∂u1

partialy
+ µn1

∂u2

∂x
+ (λ+ 2µ)n2

∂u2

∂y

]
= jF2, on Γ. (12)
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4 Numerical method

In the proposed method, the governing equations, the boundary condition, and the jump con-
ditions are discretized by the collocation technique. Before the discretization of the governing
equations, first, the modification of the MK shape function is explained across the interface Γ.

Consider the domain Ω consisting of two different materials separated by the interface Γ.
To modify the MKI’s correlation function, the collocation nodes are split into two sets Λ+ and
Λ−, where Λ+(Λ−) shows the set of nodes that belong exclusively to the subdomain Ω̄+(Ω̄−).
To create the proper discontinuity in the shape function across the interface, the modification
of correlation function in MKI is considered as follows

γ±(xi,xj) =

{
γ(xi,xj), xi,xj ∈ Λ±,
0, otherwise.

(13)

It is easy to see that in this technique, nodes from a subdomain are not required to influence
the other. As the support domain of a point in a subdomain contains only nodes from the same
subdomain. However, the support domain of a point on Γ contains nodes from Λ+ and Λ−.
Thus two sets of nodes are assigned on the interface Γ at the same location, but with different
material properties.

Substituting Eq. (13) into Eq. (1), the approximation value of vh can be expressed in the
following form

vh(x) = vh±(x) =

NΛ±∑
i=1

ψ±i (x)v±i , x ∈ Ω̄±,

where NΛ± is the number of nodes in Ω̄±.
Let uh± = (uh±1 , uh±2 )T in Eqs. (7)-(12). The strategy in the collocation method is simul-

taneously solving equations (7)-(12). Collocating (7)-(8) at the interior points Λ±I , (9) at the
boundary points Λb and (10)-(12) at the interface points ΛΓ, leads to the following system

NΛ±∑
i=1

((
(λ±+2µ±)(xj)ψ

±
i,xx(xj) + µ±(xj)ψ

±
i,yy(xj) + (λ±x + 2µ±x )(xj)ψ

±
i,x(xj)

+µ±y (xj)ψ
±
i,y(xj)

)
u±1,i +

(
(λ± + µ±)(xj)ψ

±
i.xy(xj)− µ

±
y (xj)ψ

±
i,x(xj)

−λ±x (xj)ψ
±
i,y(xj)

)
u±2,i

)
= −f±1 (xj), xj ∈ Λ±I , (14)

NΛ±∑
i=1

((
(λ± + µ±)(xj)ψ

±
i,xy(xj) + λ±y (xj)ψ

±
i,x(xj) + µ±x (xj)ψ

±
i,y(xj)

)
u±1,i

+
(
µ±(xj)ψ

±
i,xx(xj) + (λ± + 2µ±)(xj)ψ

±
i.yy(xj) + µ±x (xj)ψ

±
i,x(xj)

+ (λ±y + 2µ±y )(xj)ψ
±
i,y(xj)

)
u±2,i

)
= −f±2 (xj), xj ∈ Λ±I , (15)

(u+
1,j , u

+
2,j) = (g1(xj), g2(xj)), xj ∈ Λb, (16)

(u+
1,j , u

+
2,j)− (u−1,j , u

−
2,j) = (jD1(xj), jD2(xj)), xj ∈ ΛΓ, (17)
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NΛ+∑
i=1

((
(λ+ + 2µ+)(xj)n

+
1 ψ

+
i,x(xj) + µ+(xj)n

+
2 ψ

+
i,y(xj)

)
u+

1,i +
(
µ+(xj)n

+
2

ψ+
i,x(xj) + λ+(xj)n

+
1 ψ

+
i,y(xj)

)
u+

2,i

)
−
NΛ−∑
i=1

((
(λ− + 2µ−)(xj)n

−
1

ψ−i,x(xj) + µ−(xj)n
−
2 ψ
−
i,y(xj)

)
u−1,i +

(
µ−(xj)n

−
2 ψ
−
i,x(xj)− λ−(xj)

n−1 ψ
−
i,y(xj)

)
u−2,i

)
= jF1(xj), xj ∈ ΛΓ, (18)

NΛ+∑
i=1

((
λ+(xj)n

+
2 ψ

+
i,x + µ+(xj)n

+
1 ψ

+
i,y

)
u+

1,i +
(
µ+(xj)n

+
1 ψ

+
i,x + (λ+ + 2µ+)(xj)

n+
2 ψ

+
i,y

)
u+

2,i

)
−
NΛ−∑
i=1

((
λ−(xj)n

−
2 ψ
−
i,x + µ−(xj)n

−
1 ψ
−
i,y

)
u−1,i +

(
µ−(xj)n

−
1

ψ−i,x + (λ− + 2µ−)(xj)n
−
2 ψ
−
i,y

)
u−2,i

)
= jF2(xj), xj ∈ ΛΓ, (19)

The system (14) -(19) can be written in the following matrix-vector form

KU = F, (20)

where K is the coefficients matrix of size 2(NΛ+ + NΛ−) × 2(NΛ+ + NΛ−) and also the vectors
of U = [U1,U2]T , F = [F1,F2]T are as follows

Ul = [u−l (XΓ), u−l (XΛ−
I

), u+
l (XΓ), u+

l (XΛ+
I

), u+
l (XΛb)],

Fl = [jDl(XΓ), f−l (XΛ−
I

), jFl(XΓ), f+
l (XΛ+

I
), gl(XΛb)], l = 1, 2.

Note that the vector of w(Yp) is defined as w(Yp) = [w(y1), w(y2), . . . , w(yNP )], in which Yp =
[y1, y2, . . . , yNP ]. By solving (20), the values of displacement function uh are found at the inner
points and points on the interface Γ.

5 Numerical experiments

In the current work, three numerical examples are presented to demonstrate the efficiency and
accuracy of the proposed method. In all of them, the computational domain Ω is the rectangular
region [−1, 1] × [−1, 1] with interface Γ within the domain. To discretize the computational
domain, firstly, a set of regularly or irregularly distributed nodes in Ω is distributed. Then the
nodes located on or very closed to the interface are removed. Finally, a set of regularly distributed
nodes is placed on the interface Γ and the boundary ∂Ω. Note that in regular distribution, nx
and ny are the number of grid points in the x− and y− directions, respectively. The shifted and
scaled quadratic polynomial basis functions are used to stabilize the MKI scheme [32] where a
quadratic polynomial basis function is considered.

Example 1. In this example, a two-phase elasticity problem is studied with the piecewise
constant physical parameters and the ellipse interface. The interface is the zero set of L(x, y) =
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x2/4+y2−r0. The Dirichlet boundary condition and the interface conditions are obtained from
the following exact solution

(u1(x, y), u2(x, y)) = (1/µL(x, y)x, 1/µL(x, y)y).

This example is studied with two sets of physical parameters λ, µ, and radii of the interface r0.
Tables 1 and 2 show the convergence behavior of the proposed method with (λ+, λ−, µ+, µ−, r0) =

Table 1: The values of error in Example 1 for (λ+, λ−, µ+, µ−, r0) = (20, 2, 10, 1, 0.4).

nx × ny 10× 10 20× 20 40× 40 80× 80

L∞(u) 9.71e-3 3.65e-3 9.97e-4 3.05e-4
L2(u) 1.25e-2 2.72e-3 8.15e-4 2.27e-4

Table 2: The values of error in Example 1 for (λ+, λ−, µ+, µ−, r0) = (500, 5, 100, 1, 0.3).

nx × ny 16× 16 32× 32 64× 64 128× 128

L2(u) 2.52e-3 6.15e-4 1.03e-4 3.91e-5
L2(u) [18] 2.02e-3 6.64e-4 1.38e-4 2.74e-5

(20, 2, 10, 1, 0.4), (λ+, λ−, µ+, µ−, r0) = (500, 5, 100, 1, 0.3), respectively. In Table 2, the obtained
errors are also compared with those obtained by [18]. Figure 2 plots the numerical displacement
solutions of u1 and u2 with (λ+, λ−, µ+, µ−, r0) = (20, 2, 10, 1, 0.4) and nx = ny = 80.
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Figure 2: The plots of computed displacement solutions uh1(x, y) and uh2(x, y) in Example 1.

Example 2. In this example, the behavior of the proposed method is investigated for the two-
phase elasticity problem with variable physical parameters and the interface x2 +y2 = 0.25. The
physical parameters λ and µ are considered as follows(

λ+

λ−

)
=

(
5000000 + 2000000(x+ y)

3000000 + 2500000xy

)
,

(
µ+

µ−

)
=

(
2500000 + 3000000(x+ y)

3000000 + 2500000xy

)
,
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The Dirichlet boundary condition and the interface conditions are obtained from the following
exact solution (

u+
1

u−1

)
=

(
−(r4 + c0 log(2r))/10− r2

0 + (r4
0 + c0 log(2r0))/10

−r2

)
,

(
u+

2

u−2

)
=

(
log(1 + x2 + 3y2) + sin(xy)− 4r2 + 4r2

0

log(1 + x2 + 3y2) + sin(xy)

)
,

where r0 = 0.5, c0 = −0.1 .

Table 3: The values of error in Example 2.

nx × ny 10× 10 20× 20 40× 40 80× 80

L∞(u) 5.75e-2 9.25e-3 3.47e-3 6.52e-4
L∞(u) [34] - 1.01e-2 5.54e-3 3.47e-4

Table 3 presents the convergence behavior of the proposed method and also the numerical
results have been compared with the reported numerical results in [34]. Figure 3 plots the
numerical displacement solutions of u1 and u2 with nx = ny = 80.
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Figure 3: The plots of computed displacement solutions uh1(x, y) and uh2(x, y) in Example 2.

Example 3. As testing of the proposed method for the two-phase elasticity problem with a
more complex interface, flower shape is considered in the polar coordinate r = 0.5 + sin 5θ

7 . The
Dirichlet boundary condition and the interface conditions are obtained from the following exact
solution (

u+
1

u−1

)
=

(
exp(−3.52(x2 + y2)5)

exp(−(7(x2 + y2)3 − 5x4y + 10x2y3 − y5)2)

)
,(

u+
2

u−2

)
=

(
exp(−3.52(x2 + y2)5) + xy

exp(−(7(x2 + y2)3 − 5x4y + 10x2y3 − y5)2) + xy

)
,
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In this example, the two-phase elasticity problem is solved with regularly and irregularly dis-
tributed nodes with (λ+, λ−, µ+, µ−) = (5, 1, 10, 2). The achieved errors of both node distribu-
tions are reported in Table 4. Figures 4 and 5 show the plots of the computed solution with
(NΛ+ , NΛ−) = (5425, 1482) with regularly and irregularly distributed nodes, respectively.

Table 4: The values of error in Example 3.

(NΛ+ , NΛ−) (143, 61) (427, 135) (1395, 358) (5425, 1482)

L∞(u){regular distribution} 3.20e-2 6.32e-3 2.49e-3 9.22e-4
L∞(u){irregular distribution} 2.09e-2 5.71e-3 1.80e-3 6.71e-4
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Figure 4: The plots of computed displacement solutions uh1(x, y) and uh2(x, y) in Example 3
(regular distribution).

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−3

−2

−1

0

1

2

3

xy

u
1
(x

,y
)

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−4

−2

0

2

4

6

8

xy

u
2
(x

,y
)

Figure 5: The plots of computed displacement solutions uh1(x, y) and uh2(x, y) in Example 3
(irregular distribution).
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6 Conclusion

In this paper, a simple and effective meshfree point collocation method was proposed to
simulate the elasticity interface problems. The developed MKI shape function was considered
as the basis function in the proposed method. The correlation function correction was used to
construct the appropriate shape functions across the interface. As the MKI has the Kronecker
delta property then the Dirichlet boundary condition was imposed directly and easily. The
performance of the proposed method was investigated for some test problems with constant and
variable physical parameters. The obtained numerical results were also compared with some
numerical techniques in the literature. The numerical results also confirmed that the proposed
method for the simulation of elasticity problems with a complex interface can be accurate and
effective.
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