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Abstract. Recovering sparse signals from linear measurements has demon-
strated outstanding utility in a vast variety of real-world applications. Com-
pressive sensing is the topic that studies the associated raised questions for
the possibility of a successful recovery. This topic is well-nourished and
numerous results are available in the literature. However, their dispersity
makes it time-consuming for practitioners to quickly grasp its main ideas
and classical algorithms, and further touch upon the recent advancements.
In this survey, we overview vital classical tools and algorithms in compres-
sive sensing and describe its significant recent advancements. We conclude
by a numerical comparison of the performance of described approaches.
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1 Introduction

In traditional sensing, i.e., uniform sampling, we need to densify measure-
ments to obtain a higher-resolution representation of physical systems. But
in applications like multiband signals with wide spectral ranges, the re-
quired sampling rate may exceed the specifications of the best available
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analog-to-digital converters (ADCs) [98]. On the other hand, measure-
ments obtained from linear sampling methods approximately carry a close
amount of information, which makes them reasonably robust; for example,
for packages lost in data streaming applications [93]. Compressive sens-
ing linearly samples sparse signals at a rate lower than the traditional rate
provided by the Nyquist-Shannon sampling theorem [135].

Recovering a sparse signal from a linear measurement is of high interest
to preserve more storage, to have less computation, energy, and commu-
nication time, and to propose effective data compression and transmission
methods [8, 9, 16, 25, 46, 53, 69, 98, 99, 104, 122, 144, 147]. There are also
specialised motivations behind this interest; for example, the recovery pro-
cess in compressive sensing requires prior knowledge about original signals,
which adds reasonable levels of security and privacy to the compressive
sensing based data acquisition framework [140]. Compressive sensing-based
face recognition techniques are invariant to rotation, re-scaling and data
translation [98]. Besides, compressive sensing has demonstrated outstand-
ing numerical stability in terms of not only noisy measurements but also
quantization errors [101]. In machine learning, compressive sensing has
demonstrated to boost the performance of pattern recognition methods.

The sparsity assumption as the basis of compressive sensing is not prac-
tically restrictive because it is empirically observed that desired signals in
an extensive range of applications are sparse, possibly after a change of
basis though. However, blind compressive sensing techniques are universal
in terms of transfer domains, namely, there is no need to know the sparsi-
fying basis while taking linear measurements [58]. Sparsity notion directly
leads to NP-hard problems and thus the original problem of compressive
sensing is computationally intractable; see Section 2 for the definition of
this problem. Two main strategies to tackle this obstacle are convex or
nonconvex relaxations and greedy algorithms; see Sections 3 and 4. There
are several other effective approaches that have different ideas than these
two categories. Hence, this survey attempts to briefly characterize these
promising studies as well.

To relax an `0-quasi-norm based sparse optimization problem, `0-quasi-
norm is often replaced by `p-(quasi)-norm with p > 0. Then, it is investi-
gated that under which conditions on problem parameters and for which p’s
both original and approximate problems uniquely obtain the same solution.
The efficiency of p = 1 is well-documented [22, 23, 27, 36, 42, 44, 54]. But
since this choice does not lead into strictly convex programs, the solution
uniqueness shortcoming needs to be addressed [81,138]. This case converts
to a linear program and since those matrices involved in sparse optimization



A survey on compressive sensing 311

often inherit large dimensions, well-known methods including simplex and
interior-point methods or specified algorithms are applied [20, 103]. The
shape of unit balls associated with 0 < p < 1 encourages examining this
case as well. It turns out that the recovery results for certain values of
0 < p < 1 are more robust and stable compared to p = 1 [33, 34]. Despite
these favorable theoretical results, nonconvex relaxations ask for a global
minimizer, which is an intractable task. One numerical way to bypass this
is by utilizing classical schemes that obtain a local minimizer with an initial
point sufficiently close to a global minimizer. For example, the solution of
least squared is an empirical suggestion for this initialization [33], although
there is no guarantee that such a solution is close enough. Nonetheless,
a recent theoretical study proves that the main representative problems
utilized in the realm of sparse optimization, such as the generalized ba-
sis pursuit and LASSO, almost always return a full-support solution for
p > 1 [108].

Greedy algorithms in our second class have low computational complex-
ity, especially for relatively small sparsity levels, and yet they are effective.
A well-received algorithm in this class which plays a key role is the orthogo-
nal matching pursuit (OMP). To directly solve the original problem of com-
pressive sensing, it exploits the best local direction in each step and adds its
corresponding index to the current support set. Then, it estimates the new
iteration as the orthogonal projection of the measurement vector onto the
subspace generated by columns in the current support set [116,118]. There
is an extensive literature on the capability of this algorithm in identifying
the exact support set that vary based on the required number of steps and
accounting for noise in the measurement vector. For example, a sufficient
condition for recovering an s sparse vector from an exact linear measure-
ment asks for an (s+1)st restricted isometry constant strictly smaller than
(
√
s+1)−1 [77]. This upper bound improves to the necessary and sufficient

bound of 1/
√
s+ 1. A result with the same spirit for the noisy measure-

ment is available that imposes an extra assumption on the magnitude of the
smallest nonzero entry of a desired sparse vector [127]. Further, stability is
also achievable with the presence of noisy measurements if the number of
required steps is increased [142]. Nevertheless, there are other algorithms
in this class that have the same spirit but attempt to resolve issues of the
OMP, such as stagewise OMP [43] and multipath matching pursuit [70]. For
example, many algorithms allow more indices to enter the current support
set for picking a correct index in each step such as the compressive sampling
matching pursuit [85] and subspace pursuit [124]. Other effective greedy
algorithms extending the OMP are simultaneous, generalized, and grouped
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OMP [112, 117, 121, 129]. Nonnegative and more general constrained ver-
sions of the OMP obtain similar recovery results based on variations of
the restricted isometry and the orthogonality constants [18,72,109]. These
algorithms are also generalized for block sparse signals [47,66].

The rest of paper is organized as follows. In Section 2, we first introduce
the original problem of compressive sensing and its extensions and varia-
tions. Section 3 is devoted to `p recovery which covers using convex and
nonconvex relaxations. In Section 4, we study several well-received greedy
algorithms. Finally, we report numerical performance results in Section 5.
Notation. For a natural number N , we let [N ] := {1, 2, . . . , N}. For a set
S ⊆ [N ], its number of elements and complement are denoted by card(S)
(or |S|) and Sc, respectively.

For a vector x ∈ RN and p > 0, let ‖x‖p := (
∑

i∈[N ] |xi|p)1/p. For

S = {i1, i2 . . . , i|S|} ⊆ [N ], we let xS := z ∈ RN such that zi = xi for i ∈ S
and zi = 0 whenever i ∈ Sc, that is, xS denotes the coordinate projection
of x onto the subspace generated by {ei1 , ei2 , . . . , ei|S|}. Given x ∈ RN , the
hard thresholding operator of order s is defined as Hs(x) := xS where S
contains s largest absolute entries of x (notation Ls(x) denotes this index
set). Further, let x+ := max(x, 0). A vector is called s-sparse if it has at
most s nonzero entries, i.e., its sparsity level is bounded by s. We use 〈., .〉
to denote the standard inner product between two vectors. We employ
1N to denote a vector of size N with each entry equal to 1, and simply
let 0 denote a zero vector, which its dimension should be clear based on
the discussed content. For a matrix A ∈ Rm×N , we denote its transpose
by AT , its adjacent by A∗ and its Frobenius norm by ‖A‖F . We denote
the jth column of A by Aj and, given a subset S ⊆ [N ], a corresponding
column submatrix is defined as AS := [Aj1 , Aj2 , . . . , Aj|S| ]. The null and
range spaces of this matrix are denoted by Ker(A) and R(A), respectively.
The symbol O stands for the standard big O notation.

2 Compressive sensing problem and its extensions
and variations

Compressive sensing (CS), also known as compressed sensing or sparse sam-
pling, is established based on sparsity assumption. Hence, we start with
preliminary definitions of sparsity and, a closely related concept, compress-
ibility.

Definition 1. For a vector x ∈ RN , let supp(x) := {i ∈ [N ] |xi 6= 0}
and ‖x‖0 := card(supp(x)). In particular, for s ∈ [N ], this vector is called
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s-sparse if ‖x‖0 ≤ s.

Definition 2. For a vector x ∈ RN , s ∈ [N ], and p > 0, let

σs(x)p := min
z∈RN

‖x− z‖p subject to ‖z‖0 ≤ s.

This vector is called s-compressible if σs(x)p is small for some p > 0. This
vector is sometimes called nearly s-sparse in `p-norm.

It is easy to show that σs(x)p = ‖x − xS‖p, where S ⊆ [N ] contains
all the s largest absolute entries of x (consequently, σs(x)p = 0 when x is
s-sparse). Roughly speaking, a vector is called sparse if most of its entries
are zero and it is called compressible if it is well-approximated by a sparse
vector. Sparsity as a prior assumption for a desired vector is consistent
with diverse applications because it is often doable to employ a change of
basis technique for finding sparse representations in a transform domain.
For instance, wavelet, Radon, discrete cosine, and Fourier transforms are
well-known as suitable and efficient choices for natural, medical, and digital
images, and speech signals, respectively.

The original problem of compressive sensing aims to recover a sparse
signal x from a linear measurement vector y = Ax, where A ∈ Rm×N (with
m� N) is the so called measurement, coding or design matrix. Hence, the
ultimate goal of compressive sensing is reasonably formulated as follows:

min
x∈RN

‖x‖0 subject to Ax = y. (CS)

To incorporate noisy measurements, one can study this problem:

min
x∈RN

‖x‖0 subject to ‖Ax− y‖2 ≤ η,

where η > 0 controls the noise level. These problems have demonstrated to
revolutionize several real-world applications in both science and engineering
disciplines, including but not limited to signal processing, imaging, video
processing, remote sensing, communication systems, electronics, machine
learning, data fusion, manifold processing, natural language and speech
processing, and processing biological signals [75,94,96,100,139].

In a broad range of real-world applications, we utilize ADCs to map
the real-valued measurements of physical phenomena (over a potentially
infinite range) to discrete values (over a finite range). As an illustration,
when we use b bits for representing the measurements digitally, the quan-
tization module in an ADC maps measurements to one of the 2b distinct
values that introduces error in measurements. Quantization module plays
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a bottleneck role in restricting the sampling rate of the ADCs because the
maximum sampling rate decreases exponentially when the number of bits
per measurement increases linearly. Quantization module also is the main
source of energy consumption in ADCs. Single-bit (or 1-bit) compressive
sensing enables us to reduce the number of bits per measurements to one
and introduces a proper model for successful recovery of the original signal.
This extreme quantization approach only retains the sign of measurements,
i.e., we have yi ∈ {1,−1} for all i ∈ [m], which results in a significantly
efficient, simple, and fast quantization [17,65].

A recent generalization of (CS) is the so called compressive sensing with
matrix uncertainty. This uncertainty finds two formulations that incorpo-
rate measurement errors as well. The first formulation is the following:

min
x∈RN , E∈Rm×N

‖(A+ E)x− y‖22 + λE‖E‖2F + λ‖x‖0,

where the matrix E is the perturbation matrix. The second one is the
following:

min
x∈RN , d∈Rr

∥∥∥∥(A(0) +
∑
i∈[r]

diA
(i))x− y

∥∥∥∥2

2

+ λd‖d‖22 + λ‖x‖0,

where the measurement matrices A(i)’s for i = 0, 1, . . . , r are known and
the unknown vector d is the uncertainty vector. In quantized compressed
sensing, we have either y = QAx or y = Q(Ax+v) where v is the noise such
that v ∼ N (0, σ2I) and Q : Rm → A ⊆ Rm is the set-valued quantization
function. Well-studied examples of such function, map Ax or Ax + v into
A = {x ∈ Rm | l ≤ x ≤ u} or A = {+1,−1}m [65, 132, 149]. The former
case leads to:

min
x∈RN

‖x‖0 subject to l ≤ Ax+ v ≤ u,

and the latter one yields the following problem:

min
x∈RN

‖x‖0 subject to y = sign(Ax+ v).

In some recent applications, we may have nonlinear measurements that
encourage the so called cardinality constrained optimization:

min
x∈RN

f(x) subject to ‖x‖0 ≤ s.

Two important examples are f(x) = ‖Ax− y‖2 (motivated by linear mea-
surements y = Ax) and f(x) =

∑m
i (yi−xTA(i)x)2 (proposed for quadratic
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measurements of yi = xTA(i)x for i = 1, 2, . . . ,m and symmetric matrices
A(i)’s) [107, 133]. Many algorithms have been proposed for solving this
cardinality constrained problem with specific and general smooth func-
tions [12–14, 19, 106]. In matrix setting, this problem converts to rank
minimization, which finds numerous applications [48]. Although we listed
some vital variations of compressive sensing above, our focus in this survey
is on the original problem to motivate the important tools, algorithms and
results in compressive sensing for a linear measurement possibly contami-
nated with some error or noise.

3 `p recovery with 0 < p ≤ 1: main formulations
and results

Since the problem (CS) is NP-hard [82], it is not tractable and it must be
handled indirectly. Because `p-norm approximates `0-norm as p goes to
zero, one approach to tackle (CS) is exploiting the so called Basis Pursuit
(BS) problem:

min
x∈RN

‖x‖1 subject to Ax = y. (BP)

Then, one investigates under which conditions (CS) and (BP) appoint the
same solution. This equivalence property occurs when the solution is highly
sparse and the measurement matrix has sufficiently small mutual incoher-
ence (defined below) [44].

Definition 3. For a matrix A ∈ Rm×N , the mutual coherence is defined
as

µ(A) := max
i 6=j

|〈Ai, Aj〉|
‖Ai‖2.‖Aj‖2

,

where Ai denotes the ith column vector of the matrix A.

The mutual coherence simply seeks the largest correlation between two
different columns. The following global 2-coherence is a generalization of
the mutual coherence (µ = ν1):

Definition 4. For a matrix A ∈ Rm×N , its kth global 2-coherence is defined
as below:

νk(A) := max
i∈[N ]

max
Λ⊆[N ]\{i},|Λ|≤k

(∑
j∈Λ

〈Ai, Aj〉2

‖Ai‖22.‖Aj‖22

)1/2

.

This tool is useful for a successful recovery of a weak version of or-
thogonal matching pursuit [134], while we focus on the standard mutual
coherence here to convey the main idea.
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Theorem 1. [45] Assume that ‖x‖0 < 0.5(1 + µ(A)−1). Then, problems
CS and BP uniquely obtain the signal x.

Sparsity is an inevitable assumption in the recovery process. This as-
sumption accompanied by other conditions on a measurement matrix such
as the mutual coherence or restricted isometry property (RIP) guarantee
a successful recovery through the problem BP. For example, the bound in
Theorem 1 is improved using the RIP tool defined below.

Definition 5. Let A be an m × N matrix. Then, this matrix has the
restricted isometry property of order s provided that there exists δs ∈ (0, 1)
such that

(1− δs)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs)‖x‖22 ∀x; ‖x‖0 ≤ s.

This definition demands each column submatrix AS with card(S) ≤ s
to have singular values in [1 − δs, 1 + δs]. Consequently, such submatrices
have linearly independent columns if δs < 1. Since this definition involves
all the s-tuples of columns, it is more rigorous than the mutual coherence
(δ2 = µ). Thus, the RIP tool derives to better upper bounds on the sparsity
level of a vector to be recovered, that is, less sparse vectors are properly
handled.

Theorem 2. [78] Problems CS and BP uniquely obtain the same s-sparse
solution if δ2s < 0.4931.

There are numerous similar results for recovering s-sparse signals in
compressive sensing literature based on the RIP constants, which are often
in the form of δks ≤ δ for some numbers k > 0 and δ ∈ (0, 1). For exam-
ple, the BP recovers all the s-sparse signals if δs < 1/3 and this bound is
sharp [24]. Since the condition δks ≤ δ is not practically verifiable due to its
computational complexity [74], a breakthrough in the compressive sensing
field took place when random matrices, such as Gaussian and Bernoulli,
demonstrated their capability to satisfy such appealing inequalities with a
high probability. In fact, for an m × N random matrix, where each en-
try is independently drawn from Gaussian or Bernoulli distributions, we
have δs ≤ δ for m ≥ Cδ−2s ln( eNs ) in which C > 0 does not depend on
s,m and N , and e is the natural number [11]. It must be mentioned that
most results for constructing deterministic matrices with the RIP prop-
erty depend on the mutual coherence, leading to m ≥ cs2 with c > 0.
This bound is not practical because the number of measurements m scales
quadratically in sparsity level s for deterministic matrices versus linearly
for random matrices. This confirms the desire of using random matrices
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in compressive sensing. On the other hand, there are recent promising re-
sults toward the practicality of deterministic matrices in terms of not only
the compression ratio of m/N but also the complexity of the recovery pro-
cess [3, 28, 59, 87]. For example, deterministic sparse coding matrices have
demonstrated to outperform both binary tree recovery and binary `1-norm
recovery methods in the so called binary compressive sensing [84]. The
majority of analyses within compressive sensing relies on the RIP but this
tool has minor drawbacks that are partially rectified via the NSP defined
below.

Definition 6. Let A be an m×N matrix. This matrix has the null space
property of order s if

‖vS‖1 < ‖vSc‖1; ∀v ∈ Ker(A) \ {0} and ∀S ⊆ [N ] with |S| ≤ s.

In principle, the measurement pair (A, y) carries all the required in-
formation for the recovery process. Since linear systems Ax = y and
PAx = Py have identical solution sets for a nonsingular matrix P , the
measurement pair (PA,Py) has the same information but it is numerically
a better choice for a suitable conditioning matrix P . Although the RIP
constants of matrices A and PA can vastly differ [141], the NSP is pre-
served if either one holds it. In addition, this property is necessary and
sufficient for the solution uniqueness of problem BP (in the uniform sense).

Theorem 3. [53] Every s-sparse vector x is the unique solution to BP
with y = Ax if and only the measurement matrix A holds the NSP of order
s.

The above theorem implies that under the NSP of order s, the convex
program BP as a matter of fact solves the NP-hard problem CS.

The Range Space Property (RSP) is another useful condition in com-
pressive sensing given by Zhao [146].

Definition 7. The matrix AT has the range space property of order s if
for any disjoint subsets S1 and S2 ⊆ [N ] with |S1|+ |S2| ≤ s there exists a
vector η ∈ R(AT ) such that

ηi = 1 ∀i ∈ S1; ηi = −1 ∀i ∈ S2 and ‖η(S1∪S2)c‖∞ < 1.

Theorem 4. [146] Every s-sparse vector x is exactly recovered by the
problem BP with y = Ax if and only if AT has the RSP of order s.

The matrix AT has the range space property of order s under several
assumptions such as s < 0.5(1 + µ(A)−1), δ2s(A) <

√
2 − 1 and the NSP
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of order 2s [146]. Further, an extended version of this property is useful
to provide a similar result to the above theorem for the nonnegative sparse
recovery.

So far, we have only discussed noiseless measurements in this section, al-
though a practical situation definitely imposes investigating noisy scenario
as well. Taking into account noisy measurements yields in the following
Quadratically Constrained Basis Pursuit (QCBP) problem (after replacing
`0 by `1):

min
x∈RN

‖x‖1 subject to ‖Ax− y‖2 ≤ η. (QCBP)

Theorem 5. [53] Given x ∈ RN and a matrix A ∈ Rm×N such that
δ2s < 4/

√
41 ≈ 0.6246, every minimizer x∗ of QCBP satisfies ‖x∗ − x‖2 ≤

Cs−1/2σs(x)1 +Dη with C > 0 and D > 0.

The following so called Least Absolute Shrinkage and Selection Opera-
tor (LASSO) is practically more efficient [50,64,128]:

min
x∈RN

1

2
‖y −Ax‖22 + λ‖x‖1. (LASSO)

There is a trade-off between feasibility and sparsity in the nature of this
problem, which is controlled by the regularization parameter λ. Not only
the LASSO has been extensively studied [113], but also there are various re-
sults for it in terms of its effectiveness in sparse optimization. For instance,
we bring the following theorem for deterministic measurement matrices.

Theorem 6. [64] Let y = Ax + e where x is supported on S ⊆ [N ] with
|S| ≤ s and e is a zero-mean additive observation noise. Assume that the
measurement matrix A satisfies ‖ATScAS(ATSAS)−1‖∞ < 1, λmin(ATSAS) >
m and maxj∈SC ‖Aj‖2 ≤

√
m. Further, assume that N = O(exp(mγ)), s =

O(mα), mini∈S xi > 1/m
1−β
2 with 0 < α + γ < β < 1. For λ = m

1−δ
2 such

that δ ∈ (γ, β−α), the LASSO problem recovers the sparsity pattern S with
probability 1− exp(−cmδ) for a constant c > 0.

For the case of random measurement matrices, this problem needs a
sample size m > 2s ln(N − s) to achieve exact recovery with a high prob-
ability. This probability converges to one for larger problems [64]. An
efficient algorithm for solving the BP utilizes a sequence of the LASSO
problems [136]. The following so called Basis Pursuit Denoising (BPD)
minimizes the feasibility violation while implicitly bounding the sparsity
level with a parameter τ ≥ 0 :

min
x∈RN

‖y −Ax‖2 subject to ‖x‖1 ≤ τ. (BPD)
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There are known relations among the optimums of the QCBP, LASSO,
and BPD problems, which can be found in [53]. The Dantzig Selector
(DS) problem arises in several statistical applications, so it has been also
employed in sparse recovery [23,26]:

min
x∈RN

‖x‖1 subject to ‖AT (Ax− y)‖∞ ≤ σ. (DS)

This problem manages noisy measurements and reduces to a linear pro-
gramming problem. To bring a pertaining result next, we need the following
restricted orthogonality quantity.

Definition 8. Given a matrix A ∈ Rm×N , its s, s′-restricted orthogonality
(RO) constant θs,s′ is defined as the smallest θ > 0 such that

|〈Ax,Ax′〉| ≤ θ‖x‖2‖x′‖2 ∀x and x′; ‖x‖0 ≤ s and ‖x′‖0 ≤ s′.

According to [23], for x ∈ RN , and a noisy y such that ‖AT (Ax−y)‖∞ ≤
σ and δ1.5s + θs,1.5s < 1, an optimal solution x∗ to DS obeys ‖x∗ − x‖2 ≤
Cs

1
2σ+Ds

−1
2 σs(x)1, where C and D are two constants depending on δ1.5s

and θs,1.5s. In particular, if x is an s-sparse vector, then ‖x∗−x‖2 ≤ Cs
1
2σ.

A very recent result related to the recovery of this problem as reported in
Corollary 5.6.1 of [144] is brought below.

Theorem 7. [144] Let A ∈ Rm×N with m < N and rank(A) = m. Con-
sider the DS problem. If AT satisfies the RSP of order k, then for any
x ∈ Rn, there is a solution x∗ of the DS approximating x with error

‖x−x∗‖2 ≤ γ{2σk(x)1+
(
‖AT (Ax− y)‖∞ − σ

)
+

+cAσ+cA‖AT (Ax−y)‖∞},

where γ is a constant and cA is a constant given as

cA = max
G⊆{1,...,n},|G|=m

‖A−1
G (AAT )−1A‖∞→1,

where AG stands for all positive m × m invertible submatrix of A. In
particular, for any x satisfying ‖AT (Ax− y)‖∞ ≤ σ, there is a solution x∗

of the DS approximating x with error

‖x− x∗‖2 ≤ γ{2σk(x)1 + cAσ + cA‖AT (Ax− y)‖∞} ≤ 2γ{σk(x)1 + cAσ}.

However the choice of p = 1 is the most interesting case, as `1-norm is
the closest convex norm to `0-quasi-norm [97] and convex optimization is
extremely well-nourished, the shape of a unit ball associated with `p-norm
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for 0 < p < 1 motivates researchers to explore the following nonconvex
problem:

min
x∈RN

‖x‖pp subject to Ax = y.

For certain values of p where 0 < p < 1, the above scheme leads to more
robust and stable theoretical guarantees compared to the case of p = 1
[34,102,130]. In other words, much less restrictive recoverability conditions
are achievable for certain p’s with 0 < p < 1 compared to `1-norm recovery
[148]. For instance, the following result implies that a sufficient condition
for recovering an s-sparse vector in the noiseless case via `0.5 minimization
is δ3s+27δ4s < 26, where an analogous result for `1-norm recovery requires
δ2s + 2δ3s < 1. We bring the following related theorem, which discusses
compressible vectors. Since it is practically stringent to impose sparsity, it
is desired to study compressible vectors.

Theorem 8. [102] Assume that A ∈ Rm×N satisfies

δks(A) + k
2
p
−1
δ(k+1)s(A) < k

2
p
−1 − 1,

for k > 1 such that ks is a natural number. Given x ∈ RN , let y = Ax+ e
with ‖e‖2 ≤ ε. Then, an optimal solution x∗ of

min
x∈RN

‖x‖pp subject to ‖Ax− y‖2 ≤ ε, (1)

obeys
‖x∗ − x‖p2 ≤ Cε

p +Ds
p
2
−1[σs(x)p]

p,

where

C = 2p

[
1 + kp/2−1(2/p− 1)−p/2

(1− δ(k+1)s)
p
2 − (1 + δks)p/2kp/2−1

]
, (2)

D =
2( p

2−p)p/2

k1−p/2

[
1 +

(1 + kp/2−1)(1 + δks)
p/2

(1− δ(k+1)s)p/2 − (1 + δks)p/2kp/2−1

]
. (3)

In particular, if x is an s-sparse vector, then ‖x∗ − x‖p2 ≤ Cεp.

The main issue with this result is its demand for a global minimizer of a
nonconvex function for which there is no known theoretical guarantee. One
way to bypass this is by utilizing classical schemes that obtain a local min-
imizer with an initial point that is sufficiently close to a global minimizer.
For example, the solution of least-squares is experimentally suggested for
this initialization [33], while there is no guarantee that such solution is in



A survey on compressive sensing 321

general close enough to a global minimizer. Since solving an unconstrained
problem is simpler, another approach for taking advantage of nonconvex
`p-minimization (1) with 0 < p < 1 is tackling the following `p-regularized
least squares problem:

min
x∈RN

1

2
‖Ax− y‖22 + λ‖x‖pp, (4)

where λ > 0 is the penalty parameter. Because problems (1) and (4) are
equivalent in limit, this parameter must be selected meticulously to obtain
an approximate solution for the original problem. Once λ > 0 is fixed,
algorithms such as iteratively-reweighted least squares explained in [105]
are beneficial. Furthermore, the choice of p plays a key role in the efficiency
of this approach; for example, the best choices in image deconvolution are
p = 1/2 and p = 2/3. The case of p = 1/2 is a critical choice because it
provides sparser solutions among p ∈ [1/2, 1) and any p ∈ (0, 1/2) does not
show significantly better performance [119]. As a result, it is essential to
have a specialized algorithm for this choice [131].

Despite p > 1 leads to strictly convex programming, it is theoretically
shown that in this case not only the solution is not sparse, but also each
entry is almost always nonzero. The same result holds for all the primary
problems mentioned above.

Theorem 9. [108] Let p > 1, N ≥ m,λ > 0, and τ > 0. For almost all
(A, y) ∈ Rm×N , a unique optimal solution x∗(A,y) to the any of the prob-

lems BP, QCBP, LASSO and BPD, when ‖.‖1 is replaced by ‖.‖pp, satisfies
|supp(x∗(A,y))| = N .

Recent applications in image processing, statistics and data science lead
to another class of sparse optimization problems subject to the nonnegative
constraint, i.e.,

min
x∈RN

‖x‖0 subject to Ax = y, x ≥ 0. (NCS)

This problem is similar to CS but their optimums differ in general. Similar
convex/nonconvex relaxation approaches are advantageous to tackle NCS
problem. Its convex relaxation leads to the so called Nonnegative Basis
Pursuit (NBP) [42,68,145]:

min
x∈RN

‖x‖1 subject to Ax = y, x ≥ 0. (NBP)

Theorem 10. [145] Any x ≥ 0 such that ‖x‖0 ≤ s is recovered by NBP
with y = Ax if and only if for any index subset S ⊆ [N ] such that |S| ≤ s
there exists η ∈ R(AT ) such that ηi = 1 for i ∈ S and ‖ηSc‖∞ < 1.
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For a theoretical study on the following nonnegative version of LASSO
formulation, see [63]:

min
x∈RN

1

2
‖y −Ax‖22 + λ‖x‖1 subject to x ≥ 0. (NLASSO)

Nonnegativity is an example of possible available prior information in the
recovery process, which enables us to employ sparse measurement matrices
for the recovery of remarkably larger signals [68]. In applications like in-
frared absorption spectroscopy, the non-zero elements of the original sparse
signal are bounded. Imposing this boundary condition reduces the optimal
set, and therefore its convex relaxation leads to a bounded/boxed basis
pursuit that obtains better recovery properties [40,41,73].

Majority of studies in compressive sensing focuses on continues signals
where x ∈ RN , even though there are several real-world applications that
include discrete signals [73]. Examples are discrete control signal design,
black-and-white or gray-scale sparse image reconstruction, machine-type
multi-user communications, and blind estimation in digital communica-
tions. Here, we aim to reconstruct a discrete signal whose elements take
their values from a finite set of alphabet. It is worth highlighting that
when x is discrete, even the `1-norm recovery method leads to an NP-
hard problem [71]. Nevertheless, the study [71] reveals this additional prior
knowledge about the original signal enhances the performance of both `0
and `1 norm recovery methods via imposing new constraints. For example,
the sum of absolute values is designed to recover discrete sparse signals
whose non-zero elements are generated from a finite set of alphabets with
a known probability distribution. In binary compressive sensing, we can
represent this model as follows:

min
x∈RN

(1− p)‖x‖1 + p ‖x− 1N‖1 subject to Ax = y, (5)

where p is the probability of each component being one; analogous to the
sparsity rate [67,73,83]. In this approach, when p goes to zero (x is sparse),
the problem (5) behaves like the BP. The sum of norms represents the
problem of binary compressive sensing as follows:

min
x∈RN

‖x‖1 + λ ‖x− 1
2 1N‖∞ subject to Ax = y,

where the parameter λ > 0 keeps `1 and `∞ balanced [120]. It is observed
that the `∞-norm minimization tends to capture a representation whose
coefficients have roughly the same absolute value [56, 111]. Hence, the
objective function ‖x‖1 + λ ‖x− 1

2 1N‖∞ is two fold. First, the sparsity is
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imposed via the `1-norm term. Second, for those remaining coefficients that
are deviated from 0, the binary property is explored through the `∞ term.
By the observation that solution of the `∞-norm minimization favors to
achieve a solution with the components of the same magnitude, the `∞ term
encourages those (deviated from 0) nonzero coefficients to be centered at 1
(because |xi− 1

2 | obtains the same value for xi = 0 or 1). Nonetheless, the
smoothed `0 gradient descent technique has demonstrated to outperform
such approaches in terms of recovery rate and time [73].

Finally, we emphasize on two important points. First, that most results
in sparse recovery are based on asymptotic properties of random matrices
but sometimes an application specifies a deterministic measurement matrix.
Thus, it is vital to have tractable schemes for testing properties like the
NSP, RIP, and etc. in potential situations; see, e.g., [37, 115]. In fact, the
nature of this requirement, encourages RIPless conditions [29,141]. Second,
all the introduced convex minimization problems can be solved by general
purpose interior-point methods, however specified algorithms designed for
these problems exist as well; see, e.g., [20, 32,103,137].

4 Greedy algorithms: main variations and results

Greedy algorithms are iterative approaches that take local optimal decisions
in each step to eventually obtain a global solution. Hence, their success is
due to some conditions on problem parameters. Greedy algorithms are
mostly simple and fast, which find numerous applications in various con-
temporary fields, including biology, applied mathematics, engineering, and
operations research. This supports the emerging interest in their perfor-
mance analysis.

Greedy algorithms are efficient in tackling those problems in compres-
sive sensing as well. Finding an s-sparse solution for an underdetermined
linear system casts as the following sparsity constrained problem:

min
x∈RN

‖Ax− y‖22 subject to ‖x‖0 ≤ s. (SC)

The most popular greedy algorithm to solve this problem is the Orthogonal
Matching Pursuit (OMP). To tackle the problem SC, starting from zero as
the initial iteration, the following OMP algorithm picks an appropriate
index in each step to add its current support set and it estimates the new
iteration as the orthogonal projection of the measurement vector onto the
subspace generated by corresponding columns of the current support set
[118,123].
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Orthogonal Matching Pursuit

Input: A ∈ Rm×N , y ∈ Rm, and initialize with x0 = 0 ∈ RN , and S0 = ∅.
Iteration: repeat until convergence:

Sn+1 = Sn ∪ {jn+1} s.t. jn+1 = arg maxj∈Scn

∣∣〈y −Axn, Aj〉∣∣,
xn+1 = arg min ‖Ax− y‖22 subject to supp(x) ⊆ Sn+1.

There is an extensive literature on the capability of the OMP in identi-
fying the exact support set either in at most s steps or at arbitrary many
steps [21,116,118].

Theorem 11. [77,127] Assume that A ∈ Rm×N satisfies the RIP of order
s+ 1 such that δs+1 ≤ 1√

s+1
. Then, the OMP recovers any s-sparse vector

x ∈ RN using y = Ax in at most s iterations.

Further, it is proved that, when s ≥ 2, for any δ such that 1/
√
s+ 1 ≤

δ < 1, any matrix with δs+1 = δ fails to recover all the s-sparse vectors
[80,125]. It is still an open question that in terms of the OMP performance
what happens if δs+1 ∈ ( 1√

s+1
, 1√

s+1
). A result with the same spirit of

Theorem 11 for noisy measurements requires an extra assumption on the
magnitude of the smallest nonzero entry of the desired vector [126]. Here,
we bring the next theorem that assumes δs + 2δ31s ≤ 1. This inequality
holds under the condition δ31s ≤ 1/3, which implies the number of required
measurements to successfully recover any s-sparse signal via the OMP is
O(s lnN), that is, the number of measurements m must be in the worst
case linear in sparsity level s.

Theorem 12. [142] Assume that A ∈ Rm×N satisfies δs + 2δ31s ≤ 1.
Then, given an s-sparse vector x ∈ RN , the OMP obeys

∥∥x(30s) − x
∥∥

2
≤ 2
√

6(1 + δ31s)
1
2

1− δ31s
‖Ax− y‖2.

There are also results for the success of this algorithm in case of avail-
ability of partial information on the optimal support set [57, 60]. This
partial information is of the form of either a subset of the optimal support
or an approximate subset with possibly wrong indices.

In many practical situations, there is no prior information available
about the sparsity of a desired signal but generalized versions of the OMP
are still enabled to recover it under a more stringent condition [38].

The OMP is also beneficial in recovering block sparse signals [47, 62,
66]. To elaborate on this block version of the OMP, assume that x =
[x[1]T , x[2]T , . . . , x[L]T ]T with x[i] = [xd(i−1)+1, xd(i−1)+2, . . . , xdi]

T , 1 ≤ i ≤
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L (we assume the number of nonzero elements in different blocks are equal
only for the sake of simplicity of exposition). Then, x is called a block s-
sparse signal if there are at most s blocks (indices) i such that x[i] = 0 ∈ Rd
[47]. The support of this block sparse vector is defined as Ω := {i |x[i] 6= 0}.
This definition reduces to the standard sparsity definition for d = 1. We
also partition the measurement matrix A as A =

[
A[1], A[2], . . . , A[L]

]
,

where A[i] =
[
Ad(i−1)+1, Ad(i−1)+2, . . . , Adi

]
, 1 ≤ i ≤ L. Then, for a set of

indices S = {i1, i2, . . . , i|S|}, we have x[S] := [x[i1]T , x[i2]T , . . . , x[i|S|]
T ]T ,

and A[S] :=
[
A[i1], A[i2], . . . , A[i|S|]

]
. The block orthogonal matching pur-

suit (BOMP) is as follows.

Block Orthogonal Matching Pursuit

Input: A ∈ Rm×Ld, y ∈ Rm, and initialize with x0 = 0 ∈ RLd, and S0 = ∅.
Iteration: repeat until convergence:

Sn+1 = Sn ∪ {jn+1} s.t. jn+1 = arg maxj∈[L]

∥∥A[j]T (y −A[Sn]x[Sn])
∥∥

2
,

x[Sn+1] = arg min
x∈R|Sn+1|d

∥∥A[Sn+1]x− y
∥∥2

2
.

To present the exact recovery result of this algorithm, we need two other
tools.

Definition 9. [47] Consider a block measurement matrix A introduced
above. The block mutual coherence of A is defined as

µB(A) := max
1≤l 6=r≤L

1

d

∥∥A[l]TA[r]
∥∥

2
,

and its block subcoherence is defined as

νB(A) := max
1≤l≤L

max
1≤i 6=j≤d

1

d

∣∣Ai[l]TAj [l]∣∣,
where Ai[l] and Aj [l] are the ith and jth columns of the block A[l].

Theorem 13. [66] Let x be a block sparse vector supported on Ω and
y = Ax + e where ‖e‖2 ≤ η and the measurement matrix satisfies (2s −
1)dµB(A) + (d− 1)νB(A) < 1. Further, suppose that

min
i∈Ω

∥∥x[i]
∥∥

2
≥

η
√

2(1 + (2d− 1)νB(A))

1− (2|Ω| − 1)dµB(A)− (d− 1)νB(A)
.

Then, the BOMP algorithm recovers block sparse vector x in |Ω| iterations.

A similar result for the capability of another extended version of the
OMP in recovering joint block sparse matrices is found in [55,110]. Despite
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many interesting features of the OMP, its index selection is problematic.
Precisely, if a wrong index is chosen, the OMP fails to expel this index so
that the exact support cannot be found in this situation. The Compres-
sive Sampling Matching Pursuit (CoSaPM) is an algorithm to resolve this
drawback [85]. To find an s-sparse feasible vector for an underdetermined
linear system, this algorithm allows 2s best potential indices enter the cur-
rent support set. Then, the following CoSaMP keeps s entries that play the
key role in the pertaining projection in the sense that their corresponding
entries have most magnitude.

Compressive Sampling Matching Pursuit

Input: A ∈ Rm×N , y ∈ Rm, and initialize with x0 = 0 ∈ RN , and S0 = ∅.
Iteration: repeat until convergence:

Un+1 = supp(xn) ∪ L2s(A
T (y −Axn)),

un+1 = arg min ‖Ax− y‖22 subject to supp(x) ⊆ Un+1,
xn+1 = Hs(un+1).

In the noiseless measurement case, the following theorem sates that any
s-sparse signal, is recovered as the limit point of a sequence generated by
the CoSaMP.

Theorem 14. [53] Assume that A ∈ Rm×N satisfies δ8s < 0.4782. Then,
for any x ∈ RN and e ∈ Rm, the sequence xn generated by CoSaMP using
y = Ax+ e, where s is replaced by 2s, obeys

‖x− xn‖2 ≤ Cs−1/2σs(x)1 +D‖e‖2 + 2ρn‖x‖2,

where constants C,D and ρ ∈ (0, 1) only depend on δ8s. In particular, if x̃
denotes a cluster point of this sequence, then

‖x− x̃‖2 ≤ Cs−1/2σs(x)1 +D‖e‖2.

The following generalized orthogonal matching pursuit (gOMP) allows
a given number of indices t ≥ 1 enter a current support set. Consequently,
a faster exact recovery under the RI constants involved conditions is at-
tained [121, 129]. A recent algorithm combines the BOMP and the gOMP
to propose a block generalized orthogonal matching pursuit for recovering
block sparse vectors with possibly different number of nonzero elements in
each block [95]. A closely related task to the problem SC is the following
nonnegative sparsity constrained (NSC) problem

min
x∈RN

‖Ax− y‖22 subject to ‖x‖0 ≤ s and x ≥ 0. (NSC)
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Generalized Orthogonal Matching Pursuit

Input: A ∈ Rm×N , y ∈ Rm, t ∈ N, and initialize with x0 = 0 ∈ RN , and
S0 = ∅.

Iteration: repeat until convergence:
Un+1 = Un ∪ Lt

(
AT (y −Axn)

)
,

xn+1 = arg min ‖Ax− y‖22 subject to supp(x) ⊆ Un+1.

Then, its solution may completely differ from the one to SC. Bruckstein
et al. [18] presented an adapted version of the OMP for finding nonnega-
tive sparse vectors of an underdetermined system, namely, the Nonnegative
Orthogonal Matching Pursuit (NOMP) below. They demonstrated its ca-
pability to find sufficiently sparse vectors. In practice, it is probable not to
have sparsity level in hand, this challenge is also doable [86].

Nonnegative Orthogonal Matching Pursuit

Input: A ∈ Rm×N , y ∈ Rm, and initialize with x0 = 0 ∈ RN , and S0 = ∅.
Iteration: repeat until convergence:

Sn+1 = Sn ∪ {jn+1} s.t. jn+1 = arg maxj∈Scn〈y −Axn, Aj〉+,

xn+1 = arg min ‖Ax− y‖22 subject to supp(x) ⊆ Sn+1 and x ≥ 0.

There is an emerging interest to explore novel greedy algorithms to find
a sparsest feasible point of a set [7,12]. This casts as a minimization problem
under sparsity constrained possibly intersecting a desired set. Nevertheless,
the main idea of a greedy algorithm here is to start with a feasible sparse
point (possibly zero) and add one or several candidate indices to the current
support set. Once the support set is updated, a new iteration is obtained
via a projection step. The Constrained Matching Pursuit (CMP) [109]
investigates the following constrained sparse problem:

min
x∈RN

‖x‖0 subject to Ax = y and x ∈ P,

where P ⊆ RN is a closed constraint set containing the origin. One can see
that the OMP and NOMP can be employed for solving the above problem
with the constraint set P with RN and RN+ , respectively.

The performance of the CMP relies on the measurement matrix A as
well as the involved constraint set P. In fact, there exists a set P for
which there is no measurement matrix A such that the CMP is successful
[109]. Hence, a class of convex coordinate-projection (CP) admissible sets
is of interest. A nonempty set P ⊆ RN is called CP admissible if for any
x ∈ P and any index set J ⊆ supp(x), we have xJ ∈ P. The conic
hull structure of the CP sets can be used to extend the RIP and the RO
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Constrained Matching Pursuit

Input: A ∈ Rm×N , y ∈ Rm,P ⊆ RN , and initialize with x0 = 0, and S0 = ∅.
Iteration: repeat until convergence:

Sn+1 = Sn ∪ {jn+1} s.t. jn+1 = arg minj∈Scn g
∗
j , where

g∗j = mint∈R ‖y −A(xn + t ej)‖22 subject to xn + t ej ∈ P,

xn+1 = arg min ‖Ax− y‖22 subject to supp(x) ⊆ Sn+1 and x ∈ P.

constants over these sets. A verifiable exact recovery condition is then
developed based on such constants for the closed convex CP admissible
cones [109]. (Consequently, a verifiable condition for the NOMP is in hand
because the nonnegative orthant is a closed convex CP admissible cone).
These verifiable conditions are often NP-hard to check, like almost all the
introduced tools in this survey such as the NSP, and RIP. But random
measurement matrices with the right size hold these verifiable conditions
with a high probability. This fact confirms the significance of random
measurements in sparse optimization [114].

There are many other effective algorithms in sparse optimization that
are applicable for the compressive sensing setting as well. For example,
threshholding based algorithms use the adjacent matrix A∗ for approxi-
mating inversion action and exploit the hard thresholding operator to solve
the square system A∗Ax = A∗y via a fixed-point method [15,31,39,49,51].
Iterative reweighted algorithms often outperform algorithms presented in
Section 3. The iterative reweighted `p-algorithm is as follows:

xn+1 ∈ arg min
x∈RN

‖Wnx‖p subject to ‖Ax− y‖2 ≤ ε,

where Wn is a diagonal weight matrix defined based on the current iteration
xn. For example, W k = diag(w1

n, w
2
n, . . . , w

N
n ) where wjn = 1/(|xjn| + γ)t

with t and γ > 0, which encourages small elements to approach zero quickly
[1, 30, 35]. The so called smoothed `0-norm takes advantage of smooth
approximations of the `0 quasi-norm to tackle the CS and NCS [61,79].

In traditional compressive sensing approaches, we recover sparse signals
from m = O(slogN/s) linear measurements. Model-based compressive
sensing enables us to substantially reduce the number of measurements to
m = O(s) without loosing the robustness of the recovery process [10]. In
fact, model based compressive sensing includes the structural dependencies
between the values and locations of the signal coefficients. For example,
modeling the problem of binary compressive sensing with a bi-partite graph
and representing the recovery process as an edge recovery scheme recovers
binary signals more accurately, compared to binary `1-norm and tree-based
binary compressive sensing methods [84].
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On the other hand, quantum annealers are type of adiabatic quantum
computers that tackle computationally intensive problems, which are in-
tractable in the realm of classical computing. From a problem solving point
of view, quantum annealers receive coefficients of an Ising Hamiltonian as
input and return a solution that minimizes the given energy function in
a fraction of a second [88]. Recent studies have revealed that well-posed
binary compressive sensing and binary compressive sensing with matrix un-
certainty problems are tractable in the realm of quantum computing [5,6].

5 Numerical performance analysis

In this section, we numerically examine the performance of the most preva-
lent sparse recovery methods introduced in this survey in recovering uni-
gram text representation from their linear embedding (measurement). To
describe the sparse recovery task of interest, we start by an introductory
explanation on document (text) unigram representations and embeddings.
Suppose that a vocabulary V is available, namely, a set of all the considered
words in a context. Then, a unigram representation of a document is sim-
ply a vector in R|V|, where its ith entry counts the occurrences of the ith
word of V in that document [89, 91]. Unigram representations are highly
sparse as the size of a vocabulary is often too large. These representations
are expensive to store and further may not be able to effectively capture the
semantic relations among the words of a vocabulary, so text embeddings
are naturally favorable.

We start by defining word embeddings and discuss text embeddings
afterward. The goal in word embedding is to encode each word of a vo-
cabulary into a vector representation in a much lower dimensional space
m � |V| such that the semantic relations among words are preserved.
Word embeddings have lately gained much attentions in broad applications
of the natural language processing such as classification, question answer-
ing and part of speech tagging. There are different linear and nonlinear
effective approaches for word embedding, for example, pretrained models
Global Vectors For Word Representation (GloVe) [92], word2vec [76] and
Rademacher embeddings. The GloVe is a neural (network) based word
embedding, where the word2vec is mainly based on matrix decomposition.
Assuming that word embeddings are available for all the words of a vocab-
ulary, a text embedding is simply a linear combination of them with the
coefficients coming from its unigram representation. In other words, we
have Axunigram

T = yembedding
T , where A ∈ Rm×|V| is an embedding (or mea-

surement matrix) generated from a specific methodology, xunigram
T ∈ R|V| is
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the unigram representation of a text, and yembedding
T ∈ Rm is its (unigram)

embedding. The measurement matrices in our experiments are generated
via GloVe embedding method and the Radamacher distribution with the
following probability mass function:

f(k) =

{
1/2 if k = −1,

1/2 if k = +1.

These matrices are: m× 17000 for MR movie reviews [90] and m× 20000
for SUBJ subjectivity dataset [89], respectively. Embedding sizes for our
experiments are m = 50, 100, 200, 300 and 1600.
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Figure 1: SUBJ dataset recovery.

These figures confirm the efficiency of `1 recovery and greedy algorithms
in recovering unigram representations of 50 documents, where success is
achieved if the relative error is smaller than 10−7. We avoid a detailed
explanation on the implemented algorithms for this specific application
rather finish this survey with a more general conclusion as follows. The `p
recovery with 0 < p ≤ 1, where p < 1 promises better theoretical results
than p = 1, and greedy algorithms are both effective in recovering sparse
vectors in various applications if the measurement matrix inherits several
properties explained in this survey. In the constrained case, the constraint
set also plays a crucial role in the sparse recovery conditions as well [109].
Nevertheless, these properties often provide sufficient conditions and for
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Figure 2: MR dataset recovery.

some applications specified measurement matrices can work properly as
well and even better than random matrices [4]. Further, except when the
sparsity level is relatively small, the `p recovery with 0 < p ≤ 1 is superior
to the greedy approach. For a more comprehensive study on the compu-
tational complexities and efficiency of these algorithms or related studies,
see, e.g., [2, 52,94,143].
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