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THE PROBABILITY THAT THE COMMUTATOR
EQUATION [x, y] = g HAS SOLUTION IN A FINITE

GROUP

M. HASHEMI ∗ , M. PIRZADEH AND S. A. GORJIAN

Abstract. Let G be a finite group. For g ∈ G, an ordered pair
(x1, y1) ∈ G × G is called a solution of the commutator equation
[x, y] = g if [x1, y1] = g. We consider ρg(G) = {(x, y)|x, y ∈
G, [x, y] = g}, then the probability that the commutator equation
[x, y] = g has solution in a finite group G, written Pg(G), is equal

to
|ρg(G)|
|G|2 .

In this paper, we present two methods for the computing Pg(G).
First by GAP , we calculate Pg(G) for G = An, Sn and g ∈ G. Also
we note that this method can be applied to any group of small
order. Then by using the numerical solutions of the equation xy−
zu ≡ t(mod n), we derive formulas for calculating the probability
of ρg(G) where G = Hm, Gm, Km and g ∈ G.

1. Introduction

In the last years there has been a growing interest in the use of prob-
ability in finite group theory. One of the most important aspects that
have been studied is the probability that two elements of a finite group
G commute. This is denoted by d(G) and is called the commutativity
degree of G. In obtaining the properties of d(G), Gustafson [6] proved
that for a non-abelian finite group G, d(G) ≤ 5

8
and he used the equal-

ity d(G) = k(G)
|G| where k(G) is the number of conjugacy classes of G.
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M. Hashemi [7] gave some explicit formulas of d(G) for some partic-
ular finite groups G. In [10], the probability that the commutator of
two randomly chosen elements in a finite group is equal to a given el-
ement of that group was studied. Explicit computations are obtained
for groups G which |G′ | is prime number. Also in [9], by considering
some commutator equations in finite groups, show that the number of
solutions of such equations are characters of that group.

This paper is organized as follows: In Section 2 we state some re-
sults that are required in later sections. In Section 3, for finite group
G and g ∈ G, we first introduce the concept Pg(G). Then by us-
ing GAP (Groups, Algorithms, Programming), we obtain Pg(G) when
G = An, Sn, for some n. Also we note that this method can be used to
any group of small order. Section 4 is devoted to calculations of Pg(G),
where G = Hm, Gm, Km, Q4m, Dm and g ∈ G.

Most of results in Sections 3 and 4 were suggested by data from a
computer program written in the computational algebra system GAP
[3].

2. Preliminaries and Results

For integers m, n, l; we consider the following finitely presented
groups,

Hm =〈a, b|am2

= bm = 1, b−1ab = a1+m〉, m ≥ 2,

Gm =〈a, b|am = bm = 1, [a, b]a = [a, b], [a, b]b = [a, b]〉,
K(n, l) =〈a, b|abn = bla, ban = alb〉, where (n, l) = 1.

In this section, we first present some results concerned with Hm, Gm

and K(n, l). In particular these results show that these groups are
finite. Then we solve the equation xy−uz ≡ t (mod n), which is needed
in Section 4. First, we state a lemma without proof that establishes
some properties of groups of nilpotency class 2.

Lemma 2.1. If G is a group and G
′ ⊆ Z(G), then the following hold

for every integer k and u, v, w ∈ G, where [u, v] := u−1v−1uv denotes
the commutator of u, v:

i) [uv, w] = [u,w][v, w] and [u, vw] = [u, v][u,w].
ii) [uk, v] = [u, vk] = [u, v]k.

iii) (uv)k = ukvk[v, u]k(k−1)/2.
iv) If G = 〈a, b〉 then G

′
= 〈[a, b]〉.

The following Lemma can be seen in [2]:
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Lemma 2.2. (i) Every element of Hm may be uniquely represented by
bjai, where 0 ≤ i ≤ m2 − 1 and 0 ≤ j ≤ m− 1.

(ii) Z(G) = G
′
= 〈am〉 and |Z(G)| = m.

(iii) |Hm| = m3.

Now, we consider the group
T = Gm×Gm

∼= 〈X1∪X2|R1∪R2∪S〉, where Xi = {ai, bi, ci} generates
the i−th factor of T , Ri = {ami = bmi = cmi = 1, [ai, ci] = [bi, ci] = 1},
S = {[x, y] = e|x ∈ X1, y ∈ X2} and ci = [bi, ai].

Then we obtain the following.

Proposition 2.3. For G = Gm and T = G×G, we have

i) every element of G can be written uniquely in the form arbs[b, a]t

where 0 ≤ r, s, t ≤ m− 1.
ii) |G| = m3, Z(G) = G

′
= 〈[a, b]〉 and |Z(Gm)| = m.

iii) Every element of T is uniquely expressible in the form;

ar111 bs111 ct111 ar122 bs122 ct122 ,

where 0 ≤ r11, r12, s11, s12, t11, t12 < m.
iv) Z(T ) = T

′
= 〈c1, c2〉 and |T | = m6.

The following Theorem is taken from [1] and [8].

Theorem 2.4. For the finitely presented group

K(n, l) = 〈a, b|abn = bla, ban = alb〉
where (n, l) = 1, we have;

i) al−n = bn−l, |a| = |b| = (l − n)2 and |K(n, l)| = |l − n|3.
ii) K(n, l) ∼= K(1, l − n+ 1) ∼= Km = 〈a, b|a−1bma = b, b−1amb = a〉.

iii) [a, b] = bm−1 ∈ Z(Km).
iv) Every element of Km may be uniquely presented by x = arbsa(m−1)t,

where 1 ≤ r, s, t ≤ m− 1.

By the results 2.2, 2.3 and 2.4, we see that Hm, Gm and K(n, l) are
finite groups.
The following theorem is crucial for the aims of this paper.

Theorem 2.5. For the integers t, n and variables x, y, u and z, the
number of solutions of the equation xy − uz ≡ t (mod n) is∑

d|n

[
∑
d2|(d,t)

(
n2

d
φ(
n

d
)φ(

d

d2

)× d2)].
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Proof. Let d = (n, x). Then the equation xy − uz ≡ t (mod n) is
reduced to y ≡ (x

d
)∗(uz+t

d
) (mod n

d
) and this equation has a solution

if and only if uz + t ≡ 0 (mod d), where k∗ is the arithmetic inverse
of k respect to n

d
. By these facts, we first solve the sub equation

uz + t ≡ 0 (mod d). For this, consider d1 = (d, t) and d2 = (d, u).
Then the equation uz+ t ≡ 0 (mod d) has a solution if and only if d2|t
(i.e d2|d1). In this case, z ≡ ( u

d2
)∗(−t

d2
)(mod d

d2
) is a solution. Then for

d2|d1, the solution set of the equation is A = {(u, z)|(u, d) = d2, z ∈
{a, a + d

d2
, ..., a + (d2 − 1) × ( d

d2
)}}, where a = ( u

d2
)∗(−t

d2
). Hence the

number of solutions of the equation uz + t ≡ 0 (mod d) is∑
d2|d1

φ(
d

d2

)× d2,

where d1 = (d, t).
As an immediate consequence of these we get for d|n, (x, y, u, z) is
a solution of y ≡ (x

d
)∗(uz+t

d
) (mod n

d
) if and only if d = (x, n), y =

(x
d
)∗(uz+t

d
) and (u, z) ∈ A. So that, for d|n, the number of solutions of

y ≡ (x
d
)∗(uz+t

d
) (mod n

d
) is

φ(
n

d
)(
∑
d2|d1

φ(
d

d2

)× d2).

This leads us to; the number of solutions of xy − uz ≡ t (mod n) is
equal to∑
d|n

[φ(
n

d
)×d×(

∑
d2|d1

φ(
d

d2

)× d2×
n2

d2
)] =

∑
d|n

[
n2

d
φ(
n

d
)(
∑
d2|d1

φ(
d

d2

)× d2)].

As required. �

By elementary concepts of number theory, we have the following
corollary:

Corollary 2.6. Let t, n be integers and i, j, r and s be variables when
0 ≤ i, s < n and 0 ≤ r, j < n2. Then, the number of solutions of the
equation ri− sj ≡ t (mod n) is

n3
∑
d|n

[
∑
d2|(d,t)

(
n

d
φ(
n

d
)φ(

d

d2

)× d2)].

GAP stands for “Groups, Algorithms, Programming” and is a pro-
gram that runs in D.O.S. that is used for computation in algebra. We
used GAP and the Small Group Library package available for GAP.
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This GAP package contains varying properties of the groups, depend-
ing on the classification and complexity of the group.(For more infor-
mation about GAP (see [3]). The following table is a list of commands
that we found useful.

Some Commands in GAP.

COMMAND PURPOSE

SymmetricGroup(n); Returns the symmetric Group of order n.

AlternatingGroup(n); Returns the Alternating Group of order n.

Center(G); Returns the center of group G.

t := ConjugacyClasses(G); Defines t as a list of conjugacy classes of group G.

Size(t); Returns the number of conjugacy classes of G.

DerivedSubgroup(G); Returns the commutator subgroup of group G.

IsAbelian(G); Returns “true” is group G is Abelian and “false” if it is not.

Order(G); Returns the order of a group G.

Exponent(g); Returns the order of an element.

LogTo(”filename”); Saves a file.

LogTo(); Ends the file.

3. Definitions and computations

In this section, we first prove the Lemma 3.4 which shows that for g
and h in conjugacy class [β];

|ρg(G)| = |ρh(G)|.
Then by this result and a GAP program, we calculate Pg(G) for G =
An, Sn and g ∈ G. We note that most of these groups are not nilpo-
tent and the rest have nilpotency class at least 3. First, we recall the
following definition:

Definition 3.1. Let G be a finite group. For g ∈ G, we define the
concept Pg(G) as follows:

Pg(G) =
|{(x, y) ∈ G×G; [x, y] = g}|

|G×G|
.

Clearly for every g ∈ G, we have 0 ≤ Pg(G) ≤ 1, in particular for
g ∈ G − G

′
we get Pg(G) = 0. Note that there are examples of

groups G, where Pg(G) = 0 even when g ∈ G′
(see [5]). Also Pg(G) =

1 if and only if g = e and G is abelian. For simplify, we consider

ρg(G) = {(x, y) ∈ G × G; [x, y] = g} then |G2| =
∑
g∈G′

|ρg(G)| and

Pg(G) = |ρg(G)|
|G|2 . In particular, d(G) = |ρe(G)|

|G|2 .

Definition 3.2. Let X be a nonempty set and A(X) the set of all
bijections X → X. The elements of A(X) are called permutations
and A(X) is called the group of permutations on the set X. If X =
{1, 2, ..., n}, then A(X) is called the symmetric group on n letters and
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denoted by Sn. The order of Sn is n!. For each n ≥ 2, let An be the set
of all even permutations of Sn. Then An is a normal subgroup of Sn
of index 2 and order |Sn|

2
= n!

2
. The group An is called the alternating

group on n letters or the alternating group of degree n.

Definition 3.3. In a group G, two elements x and h are called conju-
gate when h = g−1xg for some g ∈ G. Also the conjugacy class of x is
the set [x] = {g−1xg|g ∈ G}.

Clearly, two elements of Sn are conjugate if and only if they have the
same cycle type.

Lemma 3.4. Let g1 and g2 be in the same conjugacy class of group G,
then |ρg1(G)| = |ρg2(G)|.

Proof. Let [β] be a conjugacy class of group G and g1, g2 ∈ [β], then
there exits a ∈ G such that g1

a = g2. Thus

|ρg1(G)| =|{(x, y) ∈ G×G | [x, y] = g1}|
=|{(xa, ya) ∈ G×G | [x, y]a = g1

a}|
=|{(xa, ya) ∈ G×G | [xa, ya] = g2}|
=|ρg2(G)|.

�

Now, we give a GAP program for computing |ρg(A7)| and g ∈ A7.
n:=7; ](for example)
f:=AlternatingGroup(n);
e:=Elements(f);
t:=Size(f);
g:=(1,2,3); ](for example)
i1:=0;
for j in [1,2..t] do
for i in [1,2..t] do
s := (e[i] ∗ e[j])−1 ∗ e[j] ∗ e[i];
k := s ∗ g−1;
g1:=Order(k);

if g1 <= 1 then
i1:=i1+1;
fi;
od;
od;
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i1; ]( this value is equal to |ρ(1,2,3)(A7)|)

In Table 1, by the above program, |ρ(1,2,3)(An)| are obtained for
n = 2, 3, ..., 7. Clearly, that program also works for the calculating
of |ρ(1,2,3)(Sn)|.

For the calculating |ρg(An)| and |ρg(Sn)|, by using the above Lemma,
we consider the following elements of S7.

β1 =(1), β2 = (1, 2), β3 = (1, 2)(3, 4), β4 = (1, 2, 3), β5 = (1, 2, 3, 4),

β6 =(1, 2, 3)(4, 5), β7 = (1, 2, 3, 4, 5), β8 = (1, 2)(3, 4)(5, 6),

β9 =(1, 2, 3)(4, 5, 6), β10 = (1, 2, 3, 4)(5, 6), β11 = (1, 2, 3, 4, 5, 6),

β12 =(1, 2, 3)(4, 5)(6, 7), β13 = (1, 2, 3, 4)(5, 6, 7),

β14 =(1, 2, 3, 4, 5)(6, 7), β15 = (1, 2, 3, 4, 5, 6, 7), β16 = (1, 2, 4),

β17 =(1, 2, 3, 5, 4), β18 = (1, 2, 3, 4, 6), β19 = (1, 2, 3, 4, 5, 7, 6).

We note that, for every g ∈ S7, there exist βi such that g ∈ [βi].
Then, it is sufficient to compute |ρβi(Sn)| for n = 4, 5, 6, 7. It is clear,

Pβi(Sn) =
|ρβi (Sn)|

(n!)2
.

We are now in a position to find Pg(S4).

Example 3.5. We have S4 = {α1, α2, ..., α24}, where

α1 =(1), α2 = (1, 2, 3, 4), α3 = (1, 3)(2, 4), α4 = (1, 4, 3, 2),

α5 =(1, 2, 4, 3), α6 = (1, 4)(2, 3), α7 = (1, 3, 4, 2), α8 = (1, 3, 2, 4),

α9 =(1, 2)(3, 4), α10 = (1, 4, 2, 3), α11 = (2, 3, 4), α12 = (2, 4, 3),

α13 =(1, 3, 4), α14 = (1, 4, 3), α15 = (1, 2, 4), α16 = (1, 4, 2),

α17 =(1, 2, 3), α18 = (1, 3, 2), α19 = (1, 2), α20 = (1, 3), α21 = (1, 4),

α22 =(2, 3), α23 = (2, 4), α24 = (3, 4).

There are five conjugacy classes in S4:

[α1] ={α1},
[α2] ={α2, α4, α5, α7, α8, α10},
[α9] ={α3, α6, α9},

[α17] ={α11, α12, α13, α14, α15, α16, α17, α18},
[α19] ={α19, α20, α21, α22, α23, α24}.
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Suppose g = α17 = (1, 2, 3), then

|ρg(S4)| =|ρα11(S4)| = |ρα12(S4)| = |ρα13(S13)| = |ρα14(S4)| = |ρα15(S4)|
=|ρα16(S4)| = |ρα18(S4)|,

By using Table 1, we know that Pg(S4) = 1
16
. Therefore

Pg(S4) =Pα11(S4) = Pα12(S4) = Pα13(S4) = Pα14(S4) = Pα15(S4)

=Pα16(S4) = Pα18(S4) =
1

16
.

In the Table 2, by the above results, we obtained |ρβi(An)| and |ρβi(Sn)|,
for 1 ≤ i ≤ 19. Also we note that this method can be applied to any
group of small order.

4. Computations on 2-generated groups of nilpotency
class 2

In this section we study the probability of ρg(G) for a finite 2-
generated group G of nilpotency class 2. We first prove the Theorem
4.1, which is a crucial result for calculating Pg(G). In particular, for
the integer m ≥ 2, we consider the finite groups Hm, Gm and Km as
follows:

Hm =〈a, b|am2

= bm = 1, b−1ab = a1+m〉;
Gm =

〈
a, a|am = bm = 1, [a, b]a = [a, b], [a, b]b = [a, b]

〉
;

Km =〈a, b|a−1bmb = a, b−1amb = a〉.

Then by applying Theorems 2.5 and 4.1, we calculate Pg(Hm), Pg(Gm)
and Pg(Km).

Theorem 4.1. For the finite 2-generated group G = 〈a, b〉 of nilpotency
class 2 and g = [a, b]t ∈ G

′
, |ρg(G)| is a multiple of the number of

solutions of the equation ri− sj ≡ t (mod d) where d = |[a, b]|.

Proof. Let G = 〈a, b|R〉 be a finite 2-generated group of nilpotency
class 2. Then G

′ ⊆ Z(G) and by Lemma 2.1, G ∼= 〈a, b|R〉 where
{am, bn, [a, b]a[b, a], [a, b]b[b, a]} ⊆ R, for some m, n ≥ 2. Now for
x = xs11 x

s2
2 ...x

sk
k ∈ G where xi ∈ {a, b} and s1, s2, ..., sk are integers, by

using the relations bjai = aibj[bj, ai], we may easily prove that x = arbsg
where 0 ≤ r ≤ m − 1, 0 ≤ s ≤ n − 1 and g ∈ G

′
. So that by

the fourth part of Lemma 2.1, every element of G can be written in
the form ar1bs1 [b, a]t1 where 0 ≤ r1 ≤ m − 1, 0 ≤ s1 ≤ n − 1 and
0 ≤ t1 ≤ |[a, b]| − 1. Then for x = ar1bs1 [b, a]t1 , y = ar2bs2 [b, a]t2 and
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g = [a, b]tg ∈ G′
, we have

|ρg(G)| =|{(x, y) ∈ G×G; [x, y] = g}|
=|{(x, y) ∈ G×G; [a, b]r1s2−r2s1 = [a, b]tg}|
=|{(r1, s1, t1, r2, s2, t2); r1s2 − r2s1 ≡ tg(mod d)}|.

�

In what follow, by using the results 2.5, 2.6 and 4.1, we calculate the
probability ρg(Hm), ρg(Gm) and ρg(Km) which are 2-generated groups
of nilpotency class 2. So that this method can be used for finite groups
of nilpotency class 2.

To obtain the probability ρg(Hm), let x, y ∈ Hm. Then by the first
part of Lemma 2.2, we have x = br1as1 , y = br2as2 ∈ Hm where 0 ≤
r1, r2 ≤ m − 1 and 0 ≤ s1, s2 ≤ m2 − 1. Now using Lemma 2.1 and
relations of Hm, we get

xy =br1as1br2as2 = br1+r2as1+s2 [as1 , br2 ] = br1+r2as1+s2 [a, b]s1r2

=br1+r2as1+s2+ms1r2 ,

and

[x, y] =a−s1b−r1a−s2b−r2br1as1br2as2

=a−s1−s2b−r1−r2 [b−r1 , a−s2 ]br1+r2as1+s2 [as1 , br2 ]

=[a, b]r2s1−r1s2 .

On the other hand, for x, y, g ∈ G where g = [x, y] ∈ G′
= 〈[a, b]〉 there

is 1 ≤ tg ≤ m such that g = [x, y] = [a, b]tg .

By using the above information, we prove that;

Theorem 4.2. For the group G = Hm and g ∈ G
′
, Pg(G) = α

m6 .

Where α = m3[
∑
d|m

(
∑
d2|(d,tg)

m

d
φ(
m

d
)φ(

d

d2

)× d2)].

Proof. For the g ∈ G′
, we obtain

|ρg(G)| =|{(x, y) ∈ G×G; [x, y] = g}|
=|{(x, y) ∈ G×G; am(r2s1−r1s2) = amtg}|
=|{(r1, s1, r2, s2); r2s1 − r1s2 ≡ tg(mod m)}|.
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So that, by Corollary 2.6, we have

|ρg(G)| = m3
∑
d|m

[
m

d
φ(
m

d
)(
∑
d2|d1

φ(
d

d2

)× d2)], where d|m, d1 = (d, tg).

And the result follows from the Pg(G) = |ρg(G)|
|G|2 . �

In order to obtain the Pg(Gm), by considering Lemma 2.3, let x =
ar1bs1 [a, b]t1 , y = ar2bs2 [a, b]t2 ∈ Gm where 1 ≤ r1, r2, s1, s2, t1, t2 ≤ m.
Then

[x, y] = [a, b]r1s2 [b, a]r2s1 = [a, b]r1s2−r2s1 .

On the other hand by the second part of Lemma 2.3, G
′
m = 〈[a, b]〉.

Then for g = [x, y] ∈ G′
m = 〈[a, b]〉 there is tg such that g = [a, b]tg .

These lead us to:

Theorem 4.3. For the group G = Gm and g ∈ G
′
, Pg(G) = α

m6 .

Where α = m3[
∑
d|m

(
∑
d2|(d,tg)

m

d
φ(
m

d
)φ(

d

d2

)× d2)].

Proof. By definition of Pg(G), it is sufficient that we find |ρg(G)|. We
have

|ρg(G)| =|{(x, y) ∈ G×G; [x, y] = g}|
=|{(x, y) ∈ G×G; [a, b]r1s2−r2s1 = [a, b]tg}|
=|{(r1, s1, t1, r2, s2, t2); r1s2 − r2s1 ≡ tg(mod m)}|.

So that by Theorem 2.5 and since each of integers t1 and t2 admit m

values, we obtain |ρg(G)| = m3
∑
d|m

[
m

d
φ(
m

d
)(
∑
d2|d1

φ(
d

d2

)× d2)],where

d|m, d1 = (d, tg). �

Theorem 4.4. For the group G = Km and g ∈ G
′
, Pg(G) = α

m6 .
Where

α = (m− 1)3[
∑
d|m−1

(
∑
d2|(d,tg)

m− 1

d
φ(
m− 1

d
)φ(

d

d2

)× d2)].

Proof. By definition of Pg(G) and Theorem 2.4, we have

|ρg(G)| =|{(x, y) ∈ G×G; [x, y] = g}|
=|{(x, y) ∈ G×G; [a, b]r1s2−r2s1 = [a, b]tg}|
=|{(r1, s1, t1, r2, s2, t2); r1s2 − r2s1 ≡ tg(mod (m− 1))}|.
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So that by Theorem 2.5 and 0 ≤ t1, t2 < m− 1, we have

|ρg(G)| = (m− 1)3
∑
d|m−1

[
m− 1

d
φ(
m− 1

d
)(
∑
d2|d1

φ(
d

d2

)× d2)],

where d|m− 1, d1 = (d, tg). �

Let T = Gm ×Gm. In what follow, by using the results 2.3, 2.5 and
4.1, we calculate Pg(T ).
For x, y ∈ T , by the Lemma 2.3-(iii), we have x = ar111 bs111 ct111 ar122 bs122 ct122 ,
y = ar211 bs211 ct211 ar222 bs222 ct222 and [x, y] = cs11r21−r11s211 cs12r22−r12s222 ∈ T ′

=
〈c1, c2〉.

By using these facts, we prove the following theorem:

Theorem 4.5. For g = ct11 c
t2
2 ∈ T

′
, we have Pg(T ) = αβ

m12 . Where

α =m3[
∑
d|m

(
∑
d2|(d,t1)

m

d
φ(
m

d
)φ(

d

d2

)× d2)].

β =m3[
∑
d|m

(
∑
d2|(d,t2)

m

d
φ(
m

d
)φ(

d

d2

)× d2)].

Proof. We have

|ρg(T )| =|{(x, y) ∈ T × T ; [x, y] = g}|
=|{(x, y) ∈ T × T ; cs11r21−r11s211 cs12r22−r12s222 = ct11 c

t2
2 }|

=|{(r11, s11, t11, r12, s12, t12, r21, s21, t21, r22, s22, t22);

s11r21 − r11s21 ≡ t1(mod m), s12r22 − r12s22 ≡ t2(mod m)}|.
By the Theorem 2.5 and since t11, t12, t21 and t22 admit m values, we
have

|ρg(G)| =m6(
∑
d|m

[
∑
d2|(d,t1)

(
m

d
φ(
m

d
)φ(

d

d2

)× d2)])

×(
∑
d|m

[
∑
d2|(d,t2)

(
m

d
φ(
m

d
)φ(

d

d2

)× d2)]).

The theorem is proved. �

In the rest of this section, we compute Pg(G) where G = Q4m and
G = Dm, m ≥ 3. We know that these groups are not nilpotent.
For m ≥ 2, we consider the generalized quaternion group Q4m as follow:

Q4m = 〈a, b|a2m = 1, am = b2, b−1ab = a−1〉.
Then we have
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(1) Q4m = {aibj|1 ≤ i ≤ 2m, 1 ≤ j ≤ 2} and |Q4m| = 4m.
(2) Q′4m = 〈a2〉 and b2 ∈ Z(Q4m).

Then, by using the above, we obtain

Theorem 4.6. For the group G = Q4m and g ∈ G′
, we have

Pg(G) =

{
m+3
4m

if g = e;
3

4m
if g 6= e.

Proof. Let x = ar1bs1 , y = ar2bs2 ∈ Q4m. By the Second and Third
relations of Q4m, we obtain b2ar = arb2 and bar = a−rb. Hence, we
have

xy = ar1bs1ar2bs2 =

{
ar1+r2bs1+s2 if s1 = 2;
ar1−r2bs1+s2 if s1 = 1.

x−1y−1 = b−s1a−r1b−s2a−r2 =

{
b−s1−s2a−r1−r2 if s2 = 2;
b−s1−s2ar1−r2 if s2 = 1.

Then

[x, y] = x−1y−1xy =


e if s1 = s2 = 2;
a2r2 if s1 = 1 and s2 = 2;
a−2r1 if s1 = 2 and s2 = 1;
a2(r1−r2) if s1 = s2 = 1.

So

|ρe(G)| = |{(x, y)|[x, y] = e}| = |{(r1, s1, r2, s2)|s1 = s2 = 2}|
+|{(r1, s1, r2, s2)|s1 = 1, s2 = 2, r2 ≡ 0 (mod m)}|
+|{(r1, s1, r2, s2)|s1 = 2, s2 = 1, r1 ≡ 0 (mod m)}|
+|{(r1, s1, r2, s2)|s1 = s2 = 1, r1 − r2 ≡ 0 (mod m)}|

= 4m2 + 12m.

And for g = a2t ∈ Q′4m − {e}, we have

|ρg(G)| = |{(x, y)|[x, y] = g}|
= |{(r1, s1, r2, s2)|s1 = 1, s2 = 2, r2 ≡ t (mod m)}|
+|{(r1, s1, r2, s2)|s1 = 2, s2 = 1, r1 ≡ −t (mod m)}|
+|{(r1, s1, r2, s2)|s1 = s2 = 1, r1 − r2 ≡ t (mod m)}| = 12m.

Then the result follows from Pg(G) = |ρg(G)|
|G|2 . �

By [4], for the dihedral group Dm = 〈a, b|am = b2 = (ab)2 = 1〉, we
have;

(1) Dm = {aibj|0 ≤ i ≤ m− 1, 0 ≤ j ≤ 1}.
(2) |Dm| = 2m and

D′m =

{
〈a2〉 if m = 2k;
〈a〉 if m = 2k + 1.
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Now, let x = ai1bj1 , y = ai2bj2 ∈ Dm. Then [x, y] = aα, where

α = (−1)j1+j2(−i2 + i1(1− (−1)j2)) + (−1)j2i2.

That is

α =


0 if j1 = j2 = 0;
2(i1 − i2) if j1 = j2 = 1;
−2i1 if j1 = 0, j2 = 1;
2i2 if j1 = 1, j2 = 0.

By combining all these facts and Pg(G) = |ρg(G)|
|G|2 , we obtain;

Theorem 4.7. For the group G = Dm and g ∈ G, we have

i) if m is odd, then

Pg(G) =

{
m+3
4m

if g = e;
3

4m
if g 6= e.

ii) If m is even, then

Pg(G) =

{
m+6
4m

if g = e;
3

2m
if g 6= e.

Proof. It is sufficient that we find |ρg(G)| for every g ∈ D′m. For g = at,
we have ρg(G) = {(x, y) ∈ Dm ×Dm; [x, y] = at}. Then
|ρg(G)| = |{(x, y) ∈ Dm ×Dm; aα = at}| = |{(i1, j1, i2, j2);α ≡ t(mod m)}|.
Now, we consider two cases for m.
Case 1: m is odd, then for g ∈ D′m = {ai| i = 0, 1, ...,m− 1}, we have

|ρe(G)| = |{(x, y)|[x, y] = e}| = |{(i1, j1, i2, j2)|j1 = j2 = 0}|
+|{(i1, j1, i2, j2)|j1 = j2 = 1, 2(i1 − i2) ≡ 0(mod m)}|
+|{(i1, j1, i2, j2)|j1 = 0, j2 = 1, 2i1 ≡ 0(mod m)}|
+|{(i1, j1, i2, j2)|j1 = 1, j2 = 0, 2i2 ≡ 0(mod m)}|

= m2 + 3m.

And for g = at 6= e;

|ρg(G)| = |{(x, y)|[x, y] = g}|
= |{(i1, j1, i2, j2)|j1 = 0, j2 = 1, 2i1 ≡ t(mod m)}|
+|{(i1, j1, i2, j2)|j1 = j2 = 1, 2(i1 − i2) ≡ t(mod m)}|
+|{(i1, j1, i2, j2)|j1 = 1, j2 = 0, 2i2 ≡ t(mod m)}| = 3m.

Case 2: m is even. Then for g ∈ D′m = {a2i| i = 1, ..., m2 }, we have

|ρe(G)| = |{(x, y)|[x, y] = e}| = |{(i1, j1, i2, j2)|j1 = j2 = 0}|
+|{(i1, j1, i2, j2)|j1 = j2 = 1, 2(i1 − i2) ≡ 0(mod m)}|
+|{(i1, j1, i2, j2)|j1 = 0, j2 = 1, 2i1 ≡ 0(mod m)}|
+|{(i1, j1, i2, j2)|j1 = 1, j2 = 0, 2i2 ≡ 0(mod m)}|

= m2 + 6m.
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And for g = a2t 6= e, we have;

|ρg(G)| =|{(x, y)|[x, y] = g}|
=|{(i1, j1, i2, j2)|j1 = 0, j2 = 1, 2i1 ≡ 2t(mod m)}|
+|{(i1, j1, i2, j2)|j1 = j2 = 1, 2(i1 − i2) ≡ 2t(mod m)}|
+|{(i1, j1, i2, j2)|j1 = 1, j2 = 0, 2i2 ≡ 2t(mod m)}| = 6m.

This completes the proof of the theorem. �

Table 1

n |ρ(1,2,3)(An)| |ρ(1,2,3)(Sn)| P(1,2,3)(An) P(1,2,3)(Sn)

2 0 0 0 0
3 0 9 0 1/4
4 0 36 0 1/16
5 63 252 7/400 7/400
6 378 1782 7/2400 11/3200
7 4536 16632 1/1400 11/16800

Table 2

G S4 S5 S6 S7 A4 A5 A6 A7

|ρβ1(G)| 120 840 7920 75600 48 300 2520 22680
|ρβ2(G)| 0 0 0 0 - - - -
|ρβ3(G)| 56 248 1888 14832 32 32 472 2952
|ρβ4(G)| 36 252 1782 16632 0 63 378 4536
|ρβ5(G)| 0 0 0 0 - - - -
|ρβ6(G)| - 0 0 0 - - - -
|ρβ7(G)| - 200 1325 10800 - 65 365 2700
|ρβ8(G)| - - 0 0 - - - -
|ρβ9(G)| - - 1782 11016 - - 378 3132
|ρβ10(G)| - - 1024 9216 - - 256 2304
|ρβ11(G)| - - 0 0 - - - -
|ρβ12(G)| - - - 9144 - - - 2664
|ρβ13(G)| - - - 0 - - - -
|ρβ14(G)| - - - 0 - - - -
|ρβ15(G)| - - 8820 - - - 2016
|ρβ16(G)| - - - - 0 - - -
|ρβ17(G)| - - - - - 65 - -
|ρβ18(G)| - - - - - - 365 -
|ρβ19(G)| - - - - - - - 2016
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