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HARARY SPECTRUM OF GENERALIZED
COMPOSITION OF GRAPHS AND HARARY

EQUIENERGETIC GRAPHS

H. S. RAMANE∗, D. PATIL, K. ASHOKA, AND B. PARVATHALU

Abstract. The Harary spectrum of a connected graph G is the
collection of the eigenvalues of its Harary matrix. The Harary en-
ergy of a graph G is the sum of absolute values of its Harary eigen-
values. Harary equitable partition is defined and is used to obtain
Harary spectrum of generalized composition of graphs. Harary
equienergetic graphs have been constructed with the help of gen-
eralized composition through Harary equitable partition.

1. Introduction

Thoughout this paper we consider simple, undirected graphs. Let G
be a graph on n vertices with vertex set V (G) = {v1, v2, . . . , vn}. The
degree of a vertex v in a graph G is the number of edges incident to it.
If all vertices of G have same degree equal to r, then G is said to be
an r-regular graph. The distance between the vertices vi and vj is the
length of a shortest path joining them in G and is denoted by dG(vi, vj).
The diameter of a graph G is the maximum distance between any pair
of vertices and is denoted by diam(G). For graph theoretic terminology
we refer the book [7].

The adjacency matrix of a graph G is the square matrix A(G) = [aij]
of order n, in which aij = 1 if vi is adjacent to vj and aij = 0, otherwise.
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The eigenvalues of A(G) are the adjacency eigenvalues of G, and they
are labeled as λ1 ≥ λ2 ≥ · · · ≥ λn [3].

The Harary matrix [9] (also called as reciprocal distance matrix [10])
of a graph G is a square matrix H(G) = [hij] of order n, where

hij =

{
1

dG(vi,vj)
, if i 6= j

0, if i = j.

It was used in the study of molecules in QSPR (quantitative structure
property relationship) models [9].

In mathematical chemistry, topological index, also known as molec-
ular descriptor, is a single number that can be used to characterize
some property of the graph of a molecule. So far, hundreds of indices
of graphs are introduced for various purposes. Among these, indices of
graphs that are defined on the basis of distances in graphs represent
a large family of molecular descriptors. In recent years, characteriz-
ing the extremal graphs in a given set of graphs with respect to some
distance based topological index has become an important direction in
chemical graph theory [21].

The Harary index defined as the sum of the reciprocal of the distances
between all pairs of vertices can be derived from the Harary matrix.
It has a number of interesting properties and it has shown a modest
success in structure-property correlations [13, 20].

The eigenvalues of H(G) labeled as ξ1, ξ2, . . . , ξn are said to be the
Harary eigenvalues of G and their collection is called as Harary spec-
trum. The Harary index and the largest eigenvalue of the Harary ma-
trix are well connected [22].

Let φ(M) = φ(M : ξ) denotes the characteristic polynomial in ξ of
matrix M . The collection of the eigenvalues of a matrix M is called its
spectrum and is denoted by σ(M).

Two non-isomorphic graphs are said to be Harary cospectral if they
have same Harary eigenvalues. The results on Harary eigenvalues of a
graph are obtained in [2, 4, 8, 22].

The Harary energy of a connected graph G, denoted by EH(G), is
defined as [5]

EH(G) =
n∑

i=1

|ξi|. (1.1)

The Harary energy is defined in full analogy with the ordinary graph
energy, defined as the sum of the absolute values of the eigenvalues of
its adjacency matrix [6, 11]. The ordinary graph energy has a relation
with the total π-electron energy of a molecule in quantum chemistry
[11]. Bounds for the Harary energy of a graph are reported in [1, 2, 5].
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Two connected graphs G1 and G2 of same order are said to be Harary
equienergetic if EH(G1) = EH(G2). Trivially, the Harary cospectral
graphs are Harary equienergetic. In [15] the Harary energy of line
graphs of certain regular graphs is obtained and thus constructed the
Harary equienergetic graphs. Construction of pairs of Harary equiener-
getic graphs is given in [16] for n ≥ 6 vertices.

Stevanović [19] has studied distance spectrum of joined union (gen-
eralized composition) of graphs and constructed distance equienergetic
graphs. Lu et al. [12] defined distance equitable partition and have
studied distance spectrum.

The equitable partition of a adjacency matrix of graph is given in
[18] and of distance matrix is given in [12]. The distance equienergetic
graphs have been constructed using generalized composition through
distance equitable partition [17]. In this paper we use similar technique
of [17] to report the equitable partition for Harary matrix and obtain
the Harary spectrum of generalized composition of graphs. Further
we construct the regular as well as non regular Harary equienergetic
graphs having different spectra.

Definition 1.1. [18] If G is a graph with vertices v1, v2, . . . , vn, then
the generalized composition of graphs, denoted by G[G1, G2, . . . , Gn],
is formed by taking the disjoint graphs G1, G2, . . . , Gn and then joining
every point of Gi to every point of Gj whenever vi is adjacent to vj in
G.

Let N(v) denotes the set of vertices which are adjacent to v in G.

Definition 1.2. [18] A partition V1∪V2∪ . . .∪Vk of a vertex set V (G)
is equitable or (a coloration [14]) if for each i and for all v1, v2 ∈ Vi,
|N(v1) ∩ Vj| = |N(v2) ∩ Vj| for all j.

The partition of V (G) into singletons is always equitable. In gener-
alized composition if a graph G is regular then V (G) can be taken as
partite set in an equitable partition. If P is an equitable partition, we
associate with it an k × k matrix Q = [qij], where qij = |N(v) ∩ Vj|
for any v ∈ Vi. Such a matrix is called a equitable partition matrix (or
coloration matrix ).

We denote dD(v, S) =
∑

u∈S dG(u, v) where v ∈ V (G) and S is a non
empty subset of V (G) not containing v.

Definition 1.3. [12] Let G be a connetced graph and Π : V1∪V2∪. . . Vk
be vertex set partition of V (G). Then Π is called a distance equitable
partition if for any v ∈ Vi, dD(v, Vj) = bij is a constant depending only
on i, j (1 ≤ i, j ≤ k). The matrix B∗Π = (bij)k×k is called distance
divisor matrix of G with respet to Π.
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Let Kn denotes the complete graph on n vertices.

Proposition 1.4. [16] Let G1 and G2 be r-regular, Harary equiener-
getic graphs of same order n and diam(Gi) ≤ 2, i = 1, 2. Then for
any regular graph G with diam(G) ≤ 2, K2[G1, G] and K2[G2, G] are
Harary equienergetic graphs.

2. Harary Equitable Partition and Harary Spectrum of
Generalized Composition of Graphs

We denote dH(v, S) =
∑

u∈S
1

dG(u,v)
, where v ∈ V (G) and S is a non

empty subset of V (G) not containing v. Harary equitable partition of
a graph G in terms of dH(v, S) is defined in the following way.

Definition 2.1. Let G be a connected graph and Π : V1 ∪V2 ∪ . . .∪Vk
be a partition of the vertex set V (G). Then Π is said to be a Harary
equitable partition if for any v ∈ Vi, dH(v, Vj) = bij is constant depend-
ing on i, j (1 ≤ i, j ≤ k). The matrix corresponding to the equitable
partition Π, denoted by H∗Π = (bij)k×k, is called Harary divisor matrix.

Lemma 2.2. Let G be a connected graph with a Harary equitable par-
tition Π : V1 ∪ V2 ∪ . . .∪ Vk of the vertex set V (G). Then HC = CH∗Π,
where H is the Harary matrix of G, and C and H∗Π are characteristic
matrix and Harary divisor matrix with respect to Π, respectively.

Proof. The (v, j)-th entry of HC is

(HC)vj =
∑
u∈Vj

1

dG(v, u)
= dH(v, Vj) = bij

and (CH∗Π)vj = bij, where v ∈ Vi. Hence the result follows. �

Theorem 2.3. Let G be a connected graph and Π : V1 ∪ V2 ∪ . . . ∪ Vk
be a Harary equitable partition of G. Then φ(H∗Π) divides φ(H), where
H is the Harary matrix of G and H∗Π is the Harary divisor matrix with
respect to Π.

Proof. If C is the characteristic matrix with respect to Π then C has
rank k. Choose a matrix C∗ of order n× (n− k) so that (C|C∗) is an
invertible matrix of order n, where n = |V (G)|. Then there exists two
matrices Y and Z such that HC∗ = CY + C∗Z. This equation along
with Lemma 2.2 yields

H(C|C∗) = (C|C∗)
(
H∗Π Y
O Z

)
.

Which implies that det(ξI − H) = det(ξI − H∗Π) det(ξI − Z), since
(C|C∗) is invertible. Hence the result follows. �
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Corollary 2.4. Let G be a connected graph of order n with Harary
equitable partition Π and Harary divisor matrix H∗Π of G with respect
to Π. Then the largest eigenvalue of H∗Π is same as the largest Harary
eigenvalue of G.

Proof. If µ is the largest eigenvalue of H∗Π with eigenvector y then
H∗Πy = µy. Consider x = Cy, where C is the characteristic matrix
with respect to Π. Therefore by Lemma 2.2, we have
Hx = H(Cy) = (HC)y = (CH∗Π)y = C(H∗Πy) = C(µy) = µ(Cy) =
µx, which implies x is an eigenvector of H. If y > 0, then x > 0. Hence
by Perron-Frobenius Theorem, µ is the largest Harary eigenvalue of
G. �

Figure 1.

Example 2.5. Consider the graph G as in Figure 1 with vertex set
V (G) = {v1, v2, v3, v4, v5, v6, v7, v8}. Consider the partition

Π : {v1, v2} ∪ {v3} ∪ {v4} ∪ {v5} ∪ {v6} ∪ {v7, v8},
which constitute an equitable partition. The Harary divisor matrix
corresponding to this equitable partition is

H∗Π =


1 1 1/2 1/3 1/4 2/5
2 0 1 1/2 1/3 1/2
1 1 0 1 1/2 2/3

2/3 1/2 1 0 1 1
1/2 1/3 1/2 1 0 2
2/5 1/4 1/3 1/2 1 1

 .

The part of the spectrum due to H∗Π is

{3.9017, 1.3863, 0.0047,−0, 7735,−1.1730,−1.3461}
and that due to the partitions {v1, v2} and {v7, v8} is {−1,−1}. These
two together form the Harary spectrum of G.
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Theorem 2.6. Let G be the connected graph of order n with vertices
u1, u2, . . . , un. For i = 1, 2, . . . , n, let Gi be an ri-regular graph of
order ki with eigenvalues µi,1 = ri ≥ µi,2 ≥ · · · ≥ µi,ki of adjacency
matrix A(Gi). Then the Harary spectrum of generalized composition
G[G1, G2, . . . , Gn] consists of the eigenvalues 1

2
(µi,j− 1), i = 1, 2, . . . , n

and j = 2, 3, . . . , ki and the eigenvalues of the Harary divisor matrix

H∗Π =



k1+r1−1
2

k2
dG(u1,u2)

k3
dG(u1,u3)

· · · kn
dG(u1,un)

k1
dG(u2,u1)

k2+r2−1
2

k3
dG(u2,u3)

· · · kn
dG(u2,un)

k1
dG(u3,u1)

k2
dG(u3,u2)

k3+r3−1
2

. . . kn
dG(u3,un)

...
...

...
. . .

...
k1

dG(un,u1)
k2

dG(un,u2)
k3

dG(un,u3)
· · · kn+rn−1

2

 .

Proof. The Harary matrix of the generalized composition
U = G[G1, G2, . . . , Gn] is a block matrix

H(U) =


J−I+A(G1)

2
dG(u1, u2)J dG(u1, u3)J · · · dG(u1, un)J

dG(u2, u1)J J−I+A(G2)
2

dG(u2, u3)J · · · dG(u2, un)J

dG(u3, u1)J dG(u3, u2)J J−I+A(G3)
2

· · · dG(u3, un)J
...

...
...

. . .
...

dG(un, u1)J dG(un, u2)J dG(un, u3)J · · · J−I+A(Gn)
2

 ,

where I and J are the identity and all one’s matrices of suitable orders.
As Gi is an ri-regular graph, ri is its adjacency eigenvalue with eigen-

vector j, where j is all one’s vector, for i = 1, 2, . . . , n and remaining
eigenvectors are orthogonal to j. Any eigenvector y of Gi corresponding
to an arbitrary eigenvalue µ 6= ri satisfies jTy = 0. Then the eigen-
vector x of H(U) corresponding to the eigenvalue 1

2
(µ − 1) is given

by

xw =

{
yw, w ∈ Vi
0, w /∈ Vi

which can be justified as follows:
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H(U)x =



1
dG(u1,ui)

J
...

1
dG(ui−1,ui)

J
J−I+A(Gi)

2
1

dG(ui+1,ui)
J

...
1

dG(un,ui)
J


y =



1
dG(u1,ui)

Jy
...

1
dG(ui−1,ui)

Jy
Jy−Iy+A(Gi)y

2
1

dG(ui+1,ui)
Jy

...
1

dG(un,ui)
Jy


=

1

2
(µ− 1).

As Gi is an ri-regular graph, the vertex set of Gi can be taken as
a partite set. The remaining n eigenvalues can be obtained from the
Harary divisor matrix with diagonal entries ki+ri−1

2
which is due to the

fact that the graph is locally of diameter 2 in the generalized compo-
sition and non diagonal entries are

kj
dG(ui,uj)

, i 6= j. Hence the result

follows. �

Figure 2. P3[K3, C4, K2]

Example 2.7. Consider the graph G[H1, H2, H3] with the vertex set
{v1, v2, v3, v4, v5, v6, v7, v8, v9} as in Figure 2, where G = P3, H1 = K3,
H2 = C4 and H3 = P2 . It is noted that each of H1, H2 and H3 are
regular connected components and can be taken as partite sets in the
Harary equitable partition. The corresponding Harary divisor matrix
is

H∗Π =

 2 4 1
3 5/2 2

3/2 4 1

 .
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The part of the spectrum due to H∗Π is

{7.1291, 0.2098,−1.8389}

and that due to three partitions {v1, v2, v3}, {v4, v5, v6, v7} and {v8, v9}
is

{−1,−1,−1.− 1/2,−1/2,−3/2}.
These two together form the Harary spectrum of G.

Lemma 2.8. Let G1 be an r-regular graph of order n1 and G2 be a non
regular graph of order n2. Then the Harary spectrum of K2[G1, G2] is

σ(H∗Π)
⋃(

σ(H(G1))\
{
n1 + r − 1

2

})
where H∗Π is the Harary divisor matrix of K2[G1, G2].

Proof. Let V (G2) = {v1, v2, . . . , vn2}. As G1 is a regular and G2 is
non regular, the partition V (G1)

⋃
(
⋃n2

i=1{vi}) can be taken as Harary
equitable partition and the Harary divisor matrix H∗Π can be written
as (

n1+r−1
2

J1×n2

n1Jn2×1 A(G2) + 1
2
A(G2)

)
.

By Theorem 2.3,

σ(H(K2[G1, G2])) = σ(H∗Π)
⋃(

σ(H(G1))\
{
n1 + r − 1

2

})
.

�

3. Harary equienergetic graphs

Theorem 3.1. Let G be a connected graph of order n such that G
also connected. Let Ge1 and Ge2 be an r-regular, Harary equienergetic
graphs of same order k. If G1, G2, . . . , Gi, . . . , Gn are any n graphs of
orders k1, k2, . . . , ki, . . . , kn respectively. Then G[G1, G2, . . . , Ge1 , . . . , Gn]
and G[G1, G2, . . . , Ge2 , . . . , Gn] are Harary equienergetic, where Gi is
replaced by Ge1 and Ge2 respectively for 1 ≤ i ≤ n in
G[G1, G2, . . . , Gi, . . . , Gn]. In addition if Ge1 and Ge2 are Harary equiener-

getic, then G[G1, G2, . . . , Ge1 , . . . , Gn] and G[G1, G2, . . . , Ge2 , . . . , Gn]
are also Harary equienergetic.

Proof. IfGi is regular then V (Gi) is a partite set and ifGi is non-regular
then each vertex of Gi can be taken as a partite set for 1 ≤ i ≤ n. These
two kind of partite sets together form a Harary equitable partition of
G[G1, G2, . . . , Gi, . . . , Gn]. The Harary divisor matrix corresponding to
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this Harary equitable partition of G[G1, G2, . . . , Gi, . . . , Gn] for Gi =
Ge1 and Gi = Ge2 is same and can be written as

H∗Π =



D1
b12B12

dG(u1,u2)
· · · b1iB1i

dG(u1,ui)
· · · b1nB1n

dG(u1,un)
b21B21

dG(u2,u1)
D2 · · · b2iB2i

dG(u2,ui)
· · · b2nB2n

dG(u2,un)
...

...
. . .

...
...

bi1Bi1

dG(ui,u1)
bi2Bi2

dG(ui,u2)
· · · Di · · · binBin

dG(ui,un)
...

... . . .
...

. . .
...

bn1Bn1

dG(un,u1)
bn2Bn2

dG(un,u2)
· · · bniBni

dG(un,ui)
· · · Dn


, (3.1)

where

Di =

{
A(Gi) + 1

2
A(Gi), if Gi is a non-regular graph

ki+ri−1
2

, if Gi is an ri-regular graph,

bij =


kj if Gi is non-regular and Gj is regular

kj if Gi and Gj both are regular

1 if Gi is regular and Gj is non-regular

1 if Gi and Gj both are non-regular,

and

Bij =


Jki×1 if Gi is non-regular and Gj is regular

1 if Gi and Gj both are regular

J1×kj if Gi is regular and Gj is non-regular

Jki×kj if Gi and Gj both are non-regular.

By Theorem 2.3,
σ(H(G[G1, G2, . . . , Ge1 , . . . , Gn]))

=


n⋃

j=1
j 6=i

whenever Gj is rj-regular

[
σ(H(Gj))\

{
kj + rj − 1

2

}]
⋃(

σ(H(Ge1))\{
k + r − 1

2
}
)⋃

σ(H∗Π).

Therefore



40 RAMANE, PATIL, ASHOKA, AND PARVATHALU

EH(G[G1, G2, . . . , Ge1 , . . . , Gn])

=


n∑

j=1
j 6=i

whenever Gj is rj- regular

[
EH(Gj)−

kj + rj − 1

2

]
+ EH(Ge1))−

k + r − 1

2
+ E(H∗Π), (3.2)

where E(H∗Π) is the sum of the absolute values of the eigenvalues of
H∗Π.

Similarly
EH(G[G1, G2, . . . , Ge2 , . . . , Gn])

=


n∑

j=1
j 6=i

whenever Gj is rj- regular

[
EH(Gj)−

kj + rj − 1

2

]
+ EH(Ge2))−

k + r − 1

2
+ E(H∗Π). (3.3)

Since Ge1 and Ge2 are Harary equienergetic, the result follows by
Eqs. (3.2) and (3.3).

In addition if Ge1 and Ge2 are Harary equienergetic, then

G[G1, G2, . . . , Ge1 , . . . , Gn] andG[G1, G2, . . . , Ge2 , . . . , Gn] are also Harary
equienergetic. The proof follows with the same Harary equitable par-
tition by incorporating the following changes in Eq. (3.1):

Di =

{
A(Gi) + 1

2
A(Gi) if Gi is a non-regular graph

ki − ri
2
− 1 if Gi is an ri-regular graph.

Hence
EH
(
G[G1, G2, . . . , Ge1 , . . . , Gn]

)

=


n∑

j=1
j 6=i

whenever Gj is rj-regular

[
EH(Gj)−

(
kj −

rj
2
− 1
)]


+ EH(Ge1)−
(
k − r

2
− 1
)

+ E(H∗Π) (3.4)
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and
EH
(
G[G1, G2, . . . , Ge2 , . . . , Gn]

)

=


n∑

j=1
j 6=i

whenever Gj is rj-regular

[
EH(Gj)−

(
kj −

rj
2
− 1
)]


+ EH(Ge2)−
(
k − r

2
− 1
)

+ E(H∗Π), (3.5)

where E(H∗Π) is the sum of the absolute values of the eigenvalues of
H∗Π.

Since Ge1 and Ge2 are Harary equienergetic, the result follows by
Eqs. (3.4) and (3.5). �

Corollary 3.2. Let G be a connected graph of order n. Let Ge1 and
Ge2 be an r-regular, Harary equienergetic graphs of same order k. If
G1, G2, . . . , Gi, . . . , Gn are regular graphs of orders k1, k2, . . . , ki, . . . , kn
with degrees r1, r2, . . . , ri, . . . , rn respectively. Then
G[G1, G2, . . . , Ge1 , . . . , Gn] and G[G1, G2, . . . , Ge2 , . . . , Gn] are Harary
equienergetic, where Gi is replaced by Ge1 and Ge2 respectively for 1 ≤
i ≤ n in G[G1, G2, . . . , Gi, . . . , Gn]. In addition if Ge1 and Ge2 are

Harary equienergetic, then G[G1, G2, . . . , Ge1 , . . . , Gn] and

G[G1, G2, . . . , Ge2 , . . . , Gn] are also Harary equienergetic.

Proof. As G1, G2, . . . , Gi, . . . , Gn are regular graphs,
⋃n

i=1 V (Gi) is a
Harary equitable partition of G[G1, G2, . . . , Gi, . . . , Gn]. The Harary
divisor matrix corresponding to this Harary equitable partition of
G[G1, G2, . . . , Gi, . . . , Gn] for Gi = Ge1 and Gi = Ge2 is same and can
be written as

H∗Π =



k1+r1−1
2

k2
dG(u1,u2)

· · · ki
dG(u1,ui)

· · · kn
dG(u1,un)

k1
dG(u2,u1)

k2+r2−1
2

· · · ki
dG(u2,ui)

· · · kn
dG(u2,un)

...
...

. . .
...

...
k1

dG(ui,u1)
k2

dG(ui,u2)
· · · ki+ri−1

2
· · · kn

dG(ui,un)
...

...
...

. . .
...

k1
dG(un,u1)

k2
dG(un,u2)

· · · ki
dG(un,ui)

· · · kn+rn−1
2


. (3.6)
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By Theorem 2.3,
σ(H(G[G1, G2, . . . , Ge1 , . . . , Gn]))

=
n⋃

j=1
j 6=i

[
σ(H(Gj))\

{
kj+rj−1

2

}]⋃(
σ(H(Ge1))\

{
k+r−1

2

})
⋃
σ(H∗Π).

Therefore
EH (G[G1, G2, . . . , Ge1 , . . . , Gn])

=
n∑

j=1
j 6=i

[
EH(Gj)−

kj + rj − 1

2

]
+ EH(Ge1)−

k + r − 1

2
+ E(H∗Π). (3.7)

Similarly
EH (G[G1, G2, . . . , Ge2 , . . . , Gn])

=
n∑

j=1
j 6=i

[
EH(Gj)−

kj + rj − 1

2

]
+ EH(Ge2)−

k + r − 1

2
+ E(H∗Π). (3.8)

Since Ge1 and Ge2 are Harary equienergetic, the result follows by
Eqs. (3.7) and (3.8).

In addition if Ge1 and Ge2 are Harary equienergetic, then

G[G1, G2, . . . , Ge1 , . . . , Gn] andG[G1, G2, . . . , Ge2 , . . . , Gn] are also Harary
equienergetic. The proof follows with the same Harary equitable par-
tition by incorporating changes in the diagonal entries of the Harary
divisor matrix (3.6) as ki − ri

2
− 1 for 1 ≤ i ≤ n. Hence

EH
(
G[G1, G2, . . . , Ge1 , . . . , Gn]

)
=

n∑
j=1
j 6=i

[
EH(Gj)−

(
kj −

rj
2
− 1
)]

+ EH(Ge1)−
(
k − r

2
− 1
)

+ E(H∗Π)

(3.9)
and
EH
(
G[G1, G2, . . . , Ge2 , . . . , Gn]

)
=

n∑
j=1
j 6=i

[
EH(Gj)−

(
kj −

rj
2
− 1
)]

+ EH(Ge2)−
(
k − r

2
− 1
)

+ E(H∗Π).

(3.10)
Since Ge1 and Ge2 are Harary equienergetic, the result follows by

Eqs. (3.9) and (3.10). �
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Corollary 3.3. Let G be a connected graph of order n. Let G1i and G2i

be Harary equienergetic, regular graphs of same order ki and of same de-
gree ri, i = 1, 2, . . . , n. Then G[G11, G12, . . . , G1n] and G[G21, G22, . . . , G2n]
are Harary equienergetic.

Proof. As G1i and G2i are regular graphs, i = 1, 2, . . . , n, the par-
titions

⋃n
i=1 V (G1i) and

⋃n
i=1 V (G2i) are Harary equitable partitions

of G[G11, G12, . . . , G1n] and of G[G21, G22, . . . , G2n] respectively. The
Harary divisor matrix corresponding to these Harary equitable parti-
tions is same and can be written as

H∗Π =



k1+r1−1
2

k2
dG(u1,u2)

· · · ki
dG(u1,ui)

· · · kn
dG(u1,un)

k1
dG(u2,u1)

k2+r2−1
2

· · · ki
dG(u2,ui)

· · · kn
dG(u2,un)

...
...

. . .
...

...
k1

dG(ui,u1)
k2

dG(ui,u2)
· · · ki+ri−1

2
· · · kn

dG(ui,un)
...

...
...

. . .
...

k1
dG(un,u1)

k2
dG(un,u2)

· · · ki
dG(un,ui)

· · · kn+rn−1
2


.

By Theorem 2.3,

σ(H(G[G11, G12, . . . , G1n])) =
n⋃

i=1

[
σ(H(G1i))\

{
ki + ri − 1

2

}]⋃
σ(H∗Π).

Therefore

EH (G[G11, G12, . . . , G1n]) =
n∑

i=1

[
EH(G1i)−

ki + ri − 1

2

]
+ E(H∗Π).

(3.11)
Similary

EH (G[G21, G22, . . . , G2n]) =
n∑

i=1

[
EH(G2i)−

ki + ri − 1

2

]
+ E(H∗Π).

(3.12)
Since EH(G1i) = EH(G2i), i = 1, 2, . . . , n, by Eqs. (3.11) and (3.12),

we have

EH (G[G11, G12, . . . , G1n]) = EH (G[G21, G22, . . . , G2n]) .

�

Remark 3.4. In Corollary 3.2, if G = Kn and k1 − r1 = k2 − r2 =
· · · = k − r = · · · = kn − rn = p and k1 + k2 + · · · + k + · · · + kn = s,
then G[G1, G2, . . . , Ge1 , . . . , Gn] and G[G1, G2, . . . , Ge2 , . . . , Gn] are of
order s and of degree t = s − p with E(H∗Π) = t + (n − 1)(s − t).
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This way of construction enables to construct family of regular Harary
equienergetic graphs.

Remark 3.5. If the conditions in the above Remark 3.4 are not satisfied,
we get family of non-regular Harary equienergetic graphs.

Remark 3.6. The proposed method of construction leads to a family
of co-spectral or non co-spectral Harary equienergetic graphs when a
pair (Ge1 , Ge2) of co-spectral or non co-spectral Harary equienergetic
regular graphs of same order and of same degree are considered.

Remark 3.7. Proposition 1.4 is a particular case of Corollary 3.2.
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