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SEMI n-ABSORBING IDEALS IN THE SEMIRING Z+
0

J. N. CHAUDHARI∗, M. D. SURYAWANSHI AND D. R. BONDE

Abstract. In this paper, all principal (m,n)-closed ideals and
principal semi n-absorbing ideals in the semiring of non-negative
integers are investigated.

1. Introduction

The concept of 2-absorbing ideals in a commutative ringR with 1 6= 0
was introduced by Ayman Badawi [2] and extended to n-absorbing
ideals in R by Anderson and Badawi [3]. Chaudhari [4] introduced the
concept of 2-absorbing ideals in commutative semiring R with 1 6= 0,
which is a generalization of prime ideals in R. All 2-absorbing ideals in
the semiring of non-negative integers are investigated by Chaudhari [5].
Chaudhari and Ingale [8] have introduced the notion of n-absorbing
ideals in commutative semiring R with 1 6= 0 and investigated all
n-absorbing ideals in the semiring (Z+

0 , gcd, lcm) and all n-absorbing
principal ideals in the semiring of non-negative integers. Several other
authors used these concepts and some other relative concepts which are
generalizations of prime ideals. Anderson and Ayman Badawi [1] in-
troduced the concept of semi-n-absorbing ideal and (m,n)-closed ideal
in a commutative ring R with 1 6= 0 which are generalizations of n-
absorbing ideals in R. Chaudhari and Ingale [7] have characterized
prime ideals, semi prime ideals, irreducible k-ideals and irreducible
principal T -ideals in the ternary semiring of non-positive integers. For
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the definition of semiring we refer [9]. We assume throughout that all
semirings are commutative with 1 6= 0.

Denote the sets of all non-negative integers, positive integers and
non-negative real numbers respectively by Z+

0 , N and R+
0 . Then under

usual addition and multiplication of nonnegative integers, Z+
0 forms a

commutative semiring with identity 1 but it is not a ring.
In this paper we introduce the concept of (m,n)-closed ideal and

semi n-absorbing ideal in commutative semiring R with 1 6= 0 and
study some generalizations of n-absorbing ideals in the semiring Z+

0 .
Throughout this paper we use the following notations:

a | b (a - b): a divides b (a does not divide b) where a, b ∈ Z+
0 .

〈a〉: the principal ideal generated by a where a ∈ Z+
0 .

〈m1,m2, · · · ,mk〉: the ideal generated by m1,m2, · · · ,mk in Z+
0 , where

m1 < m2 < · · · < mk and mi - mj for all i < j.
(m1,m2, · · · ,mk): the gcd of m1,m2, · · · ,mk in Z+

0 , where m1 < m2 <
· · · < mk.
[x]l: the largest integer ≤ x, where x ∈ R+

0 .
[x]s: the smallest integer ≥ x, where x ∈ R+

0 .
a1a2 · · · âi · · · an: the term ai is excluded from the product a1a2 · · · ai · · · an

If a ∈ Z+
0 and a ≥ 2, then a = pr11 p

r2
2 · · · p

rk
k is the prime power fac-

torization (ppf) of a where p1, p2, · · · , pk are pair wise distinct primes,
ri ≥ 1, k ≥ 1 and p1 < p2 < · · · < pk.

Definition 1.1. A proper ideal I of a semiring R is called semi-n-
absorbing ideal of R, if xn+1 ∈ I implies xn ∈ I, where n ∈ N, x ∈ R.

Clearly an n-absorbing ideal of a semiring R is a semi-n-absorbing
ideal of R and a semi-1-absorbing ideal of R is just a semi prime ideal
of R. The following example shows that the converse is not true.

Example 1.2. Let I = 18Z+
0 = 〈2 · 32〉. Then I is a semi-2-absorbing

ideal of Z+
0 but not a 2-absorbing ideal of Z+

0 as 2×3×3 = 18 ∈ I and
2× 3 = 6 /∈ I, 3× 3 = 9 /∈ I.

Example 1.3. Let I = 4Z+
0 = 〈4〉. Then I is a semi-2-absorbing ideal

of Z+
0 but not a semiprime ideal of Z+

0 as 22 = 4 ∈ I and 2 /∈ I.

Clearly an n-absorbing ideal of a semiring R is also an (n + 1)-
absorbing ideal of R but this may not be true for semi n-absorbing
ideals of R.

Example 1.4. Let I = 16Z+
0 = 〈16〉. Then I is a semi-2-absorbing

ideal of Z+
0 but it is not a semi 3-absorbing ideal of Z+

0 as 24 = 16 ∈ I
and 23 = 8 /∈ I.
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Now the following theorem gives a characterization of non-zero prin-
cipal semi n-absrobing ideals of the type 〈pk〉 where p is a prime number
and k ∈ N, in the semirng Z+

0 .

Theorem 1.5. Let I = 〈pk〉 where p is a prime number and k ∈ N.
Then I is a semi-n-absorbing ideal of Z+

0 if and only if k = (n+1)a+r
where a, r are integers such that a ≥ 0, 1 ≤ r ≤ n and a+ r ≤ n.

Proof. Let I = 〈pk〉 be a semi-n-absorbing ideal of Z+
0 , where p is a

prime number and k ∈ N. By applying division algorithm to k and
n + 1 there exist integers a and r such that a ≥ 0, 0 ≤ r ≤ n and
k = (n + 1)a + r. If r = 0, then k = (n + 1)a. Therefore a > 0
as k > 0 and n + 1 > 0. Therefore (pa)n+1 = (pn+1)a = p(n+1)a =
pk ∈ I and hence (pa)n = pna ∈ I, since I is semi-n-absorbing ideal.
It is a contradiction as n < n + 1 ⇒ na < (n + 1)a = k. Therefore
r 6= 0. Hence 1 ≤ r ≤ n and n + 1 < k as k = (n + 1)a + r.
Choose the smallest positive integer d such that pd(n+1) ∈ I. Now
(n+ 1)(a+ 1) = (n+ 1)a+ (n+ 1) = k− r+n+ 1 = k+n+ 1− r > k
as r ≤ n < n+ 1. So choose d = a+ 1. Now d = a+ 1 is the smallest
positive integer such that pd(n+1) ∈ I. That is (pa+1)n+1 ∈ I. Now
p(a+1)n = (pa+1)n ∈ I, since I is a semi-n-absorbing ideal. Therefore
(a+ 1)n = na+ n ≥ k = (n+ 1)a+ r and hence na+ n ≥ na+ a+ r.
Therefore, n ≥ a + r. Thus k = (n + 1)a + r where a, r are integers
such that a ≥ 0, 1 ≤ r ≤ n and a+ r ≤ n.

Conversely, suppose that k = (n+1)a+r, where a and r are integers
such that a ≥ 0, 1 ≤ r ≤ n and a+ r ≤ n. To show that I = 〈pk〉 is a
semi-n-absorbing ideal of Z+

0 . Let xn+1 ∈ I.
Case (I): a = 0. Then k = r and hence 1 ≤ k ≤ n. Now, xn+1 ∈
I = 〈pk〉 ⇒ p | x. So pk | xk and hence pk | xn as k ≤ n. Thus
xn ∈ 〈pk〉 = I.
Case (II): a 6= 0. Then a > 0. Now we have pk|xn+1 as xn+1 ∈ I = 〈pk〉.
If pk|x, then pk|xn and hence xn ∈ I. Assume that pk - x. Choose the
largest positive integer i such that pi|x, 1 ≤ i < k. Then (n + 1)i is
the largest positive integer such that p(n+1)i|xn+1. Now xn+1 ∈ I =
〈pk〉 ⇒ n + 1 ≥ k. Therefore (n + 1)i ≥ n + 1 ≥ k. This implies
0 ≥ k − (n + 1)i = (n + 1)a + r − (n + 1)i = (n + 1)(a − i) + r.
Therefore i > a, since 1 ≤ r ≤ n. Thus i = a+ b for some b ≥ 1. Then

k = (n + 1)a + r gives k
n

= (n+1)a+r
n

= na+a+r
n

= a + a+r
n
≤ a + 1 as

a + r ≤ n. Since b ≥ 1, we have i = a + b ≥ a + 1 ≥ k
n
. Therefore

ni ≥ k. Thus pni|xn as pi|x and hence pk|xn as ni ≥ k. Thus xn ∈ I
and hence I is a semi-n-absorbing ideal. �
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Definition 1.6. Let m,n ∈ N. A proper ideal I of a semiring R is
called an (m,n)-closed ideal of R if xm ∈ I where x ∈ R implies that
xn ∈ I.

Thus an ideal I of a semiring R is a semi n-absorbing ideal of R if
and only if it is a (n+ 1, n)-closed ideal of R and I is a semiprime ideal
of R if and only if it is a (2, 1)-closed ideal of R. Clearly, every proper
ideal of R is an (m,n)-closed ideal for 1 ≤ m ≤ n. Thus we generally
assume that 1 ≤ n < m. Clearly if I is an n-absorbing ideal of R, then
it is (m,n)-closed for every m ∈ N.

Now the following theorem gives a characterization of non-zero prin-
cipal (m,n)-closed ideals of the type 〈pk〉 where p is a prime number
and k ∈ N, in the semiring Z+

0 .

Theorem 1.7. Let I = 〈pk〉 be an ideal in Z+
0 , where p is a prime

number and k ∈ N. Let 1 ≤ n < m. Then I is an (m,n)-closed
ideal if and only if k = ma + r, where a, r ∈ Z+

0 , 1 ≤ r ≤ n and
ac + r ≤ n, where c ≡ m(modn). Further if a 6= 0, then m = n + c
where 1 ≤ c ≤ n− 1.

Proof. Let I = 〈pk〉 be an (m,n)-closed ideal, k ∈ N and p is a prime
number. By division algorithm, k = ma+ r, a ∈ Z+

0 and 0 ≤ r < m.
If r = 0, a > 0 as k ∈ N. Now (pa)m = pma = pk ∈ I implies

(pa)n ∈ I, since I is an (m,n)-closed ideal. Therefore, pna ∈ I = 〈pk〉
implies na ≥ k a contradiction as n < m ⇒ na < ma = k. Therefore,
r 6= 0 and hence 1 ≤ r ≤ m − 1. Choose the smallest positive integer
d such that (pd)m ∈ I. Then m(a + 1) = ma + m = k − r + m > k
as r < m. Also, ma < k as r > 0. Therefore ma < k < ma + m =
m(a + 1). Thus d = a + 1 is the smallest positive integer such that
pm(a+1) = (pa+1)m ∈ I implies (pa+1)n ∈ I as I is an (m,n)-closed
ideal. Therefore n(a + 1) = na + n ≥ k = ma + r. This implies
n ≥ ma+ r−na = a(m−n) + r ≥ r as a(m−n) ≥ 0. Thus 1 ≤ r ≤ n.
Now, since n < m, by division algorithm, we have m = bn + c where
b ≥ 1, 0 ≤ c ≤ n−1. Therefore n ≥ a(bn+c−n)+r = a(b−1)n+ac+r
where ac + r ≥ 1. Since n ≥ a(b − 1)n + ac + r and ac + r ≥ 1, we
have a(b − 1) = 0. For if a(b − 1) 6= 0, b > 1, then ac + r ≥ 1 implies
a(b− 1)n+ ac+ r ≥ a(b− 1)n+ 1 and this implies n ≥ a(b− 1)n+ 1
which is not true. Thus a(b − 1) = 0 and hence n ≥ ac + r where
c ≡ m(modn). Now if a 6= 0, b − 1 = 0. i.e. b = 1. Thus m = n + c
where a ≤ c ≤ n− 1 as n < m.

Conversely, assume that k = ma+r, a ∈ Z+
0 , 1 ≤ r ≤ n and ac+r ≤ n

where c ≡ m(modn). Also, assume that if a 6= 0, then m = n+c where
1 ≤ c ≤ n− 1. To show that I is an (m,n)-closed ideal. Let xm ∈ I
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Case (I): a = 0. Then k = r, 1 ≤ r ≤ n. Therefore 1 ≤ k ≤ n. Now,
xm ∈ I = 〈pk〉 ⇒ p|x as p is a prime number. Therefore pk|xk. This
implies pk|xn as k ≤ n. Therefore xn ∈ I.
Case (II): a 6= 0. We have xm ∈ I = 〈pk〉. So that pk|xm implies p|x.
If pk|x, then pk|xn and hence xn ∈ I. Assume that pk - x. Choose
the largest positive integer i such that pi|x, 1 ≤ i < k. Then mi is
the largest positive integer such that pmi|xm. Therefore mi ≥ k i.e.
0 ≥ k − mi = ma + r − mi = m(a − i) + r. Therefore a < i, thus
i = a + b for some integer b ≥ 1. Now, k = ma + r and m = n + c
gives k = (n + c)a + r = na + ca + r. Therefore k

n
= a + ca+r

n
≤ a + 1

as ca + r ≤ n. Therefore i = a + b ≥ a + 1 ≥ k
n

as b ≥ 1. Therefore

ni ≥ k. Now, pi|x⇒ pni|xn⇒ pk|xn as ni ≥ k and hence xn ∈ I = 〈pk〉.
Therefore I is an (m,n)-closed ideal of Z+

0 . �

Theorem 1.8. Let I = 〈pk〉 be an ideal in Z+
0 , where p is a prime

number and k ∈ N. Then following statements are equivalent:

(1) I is an (m,n)-closed ideal
(2) Exactly one of the following statemants holds

(i) 1 ≤ k ≤ n,
(ii) There is a positive integer a such that k = ma+r = na+d

for integers r and d with 1 ≤ r, d ≤ n− 1,
(iii) There is a positive integer a such that k = ma+r = n(a+1)

for an integer r with 1 ≤ r ≤ n− 1.

Proof. (1)⇒ (2) Suppose that I is an (m,n)-closed ideal of Z+
0 . Then

by Theorem 1.7, k = ma+r, where a, r ∈ Z+
0 , 1 ≤ r ≤ n and ac+r ≤ n,

where c ≡ m(modn). Further if a 6= 0, then m = n + c with 1 ≤ c ≤
n− 1.
Thus, if a = 0, then k = r and thus 1 ≤ k ≤ n. This proves (i).
If a 6= 0, a > 0 and k = ma + r. Also, since c ≡ m(modn), c 6= 0 as
n < m. Next ac+ r ≤ n, 1 ≤ r ≤ n. Now, k = ma+ r and m = n+ c
⇒ k = (n + c)a + r = na + ca + r = na + d where d = ac + r ≤ n. If
d < n, then k = ma + r = na + d with 1 ≤ r, d ≤ n − 1. This proves
(ii).
Now if d = n, then k = ma+r = na+n = n(a+1) with 1 ≤ r ≤ n−1.
This proves (iii).
(2)⇒ (1) First suppose that 1 ≤ k ≤ n. Let xm ∈ 〈pk〉 = I. Therefore
pk|xm ⇒ p|x ⇒ pk|xn as k ≤ n. Therefore xn ∈ 〈pk〉 = I, and hence I
is an (m,n)-closed ideal of Z+

0 .
Now, suppose that a ≥ 1 such that k = ma+ r = na+ d, 1 ≤ r, d ≤

n−1. Then ma = na+d−r or m = n+
(
d−r
a

)
= n+c, where c =

(
d−r
a

)
is an integer with 1 ≤ c ≤ n− 1. Thus, m = n+ c with 1 ≤ c ≤ n− 1.
Therefore by Theorem 1.7, I is (m,n)-closed ideal of Z+

0 .
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Finally, suppose that there is an integer a ≥ 1 such that k = ma+r =

n(a+ 1), where 1 ≤ r ≤ n− 1. Now, m = n(a+1)−r
a

= n+ n−r
a

= n+ c
for an integer c = n−r

a
≤ n− 1 as a ≥ 1 and hence by theorem 1.7, I is

an (m,n)-closed ideal. �

Now we give the following lemma which will be used in the subse-
quent theorem.

Lemma 1.9. Intersection of finite number of (m,n)-closed ideals in
the semirng R is an (m,n)-closed ideal.

Proof. Trivial. �

Now the following theorem gives a characterization of non-zero prin-
cipal (m,n)-closed ideals in the semiring Z+

0 .

Theorem 1.10. Let I = 〈pr11 pr22 ...p
rk
k 〉 be an ideal in Z+

0 and let 1 ≤
n < m,where n,m ∈ N, p1, p2, ..., pk are prime numbers such that p1 <
p2 < · · · < pk and r1, r2, ..., rk are positive integers. Then the following
statements are equivalent:

(1) I is an (m,n)-closed ideal of Z+
0 ,

(2) 〈prjj 〉 is an (m,n)-closed ideal of Z+
0 , for every 1 ≤ j ≤ k.

Proof. (1) ⇒ (2)
Suppose that I is an (m,n)-closed ideal of Z+

0 . Let xm ∈ 〈prjj 〉 where

x ∈ Z+
0 . Let y = xpr11 p

r2
2 ...p̂

rj
j ...p

rk
k . Then ym = xm

(
pr11 p

r2
2 ...p̂

rj
j ...p

rk
k

)m
∈

I. Since I is an (m,n)-closed ideal, yn ∈ I. Therefore xn
(
pr11 p

r2
2 ...p̂

rj
j ...p

rk
k

)n
∈

I = 〈pr11 pr22 ...p
rk
k 〉 ⇒ pr11 p

r2
2 ...p

rk
k | xn

(
pr11 p

r2
2 ...p̂

rj
j ...p

rk
k

)n
⇒ p

rj
j |xn ⇒

xn ∈ 〈prjj 〉. Therefore 〈prjj 〉 is an (m,n)-closed ideal, 1 ≤ j ≤ k.
(2) ⇒ (1)

Now suppose that each 〈prjj 〉 is an (m,n) closed ideal of Z+
0 , 1 ≤ j ≤

k. By Lemma 1.9, 〈pr11 〉∩ 〈pr22 〉∩ ...∩〈p
rk
k 〉 is an (m,n)-closed ideal and

hence I = 〈pr11 pr22 ...p
rk
k 〉 is an (m,n)- closed ideal of Z+

0 . �

Lemma 1.11. Let I be a semi-n-absorbing ideal in the semiring Z+
0 .

If a ∈ Z+
0 and m is the smallest positive integer such that am ∈ I, then

m ∈ N \ {rn+ t : r ≥ 1, 1 ≤ t ≤ r}.

Proof. Let I be a semi-n-absorbing ideal in the semiring Z+
0 . Let a ∈

Z+
0 and m be the smallest positive integer such that am ∈ I. Suppose

that m ∈ {rn + t : r ≥ 1, 1 ≤ t ≤ r}. Now am ∈ I. Therefore,
m = rn + t for some r ≥ 1 and 1 ≤ t ≤ r. So rn + t ≤ rn + r. Now
ar(n+1) ∈ I as arn+t ∈ I. Since I is a semi n-absorbing ideal arn ∈ I,
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a contradiction to rn < rn + t = m and m is the smallest such that
am ∈ I. Hence m ∈ N \ {rn+ t : r ≥ 1, 1 ≤ t ≤ r}. �

Lemma 1.12. Let I = 〈am〉 be a principal ideal in the semiring Z+
0 . If

I is a semi n-absorbing ideal, then m ∈ N \ {rn+ t : r ≥ 1, 1 ≤ t ≤ r}.

Proof. Since m is the least positive integer such that am ∈ I, by Lemma
1.11, m ∈ N \ {rn+ t : r ≥ 1, 1 ≤ t ≤ r}. �

Corollary 1.13. Let I be a semi-3-absorbing ideal in the semiring Z+
0 .

If a ∈ Z+
0 and m is the smallest positive integer such that am ∈ I, then

m ∈ {1, 2, 3, 5, 6, 9}.

Proof. Let I be a semi-3-absorbing ideal in the semiring Z+
0 . Let a ∈ Z+

0

and m be the smallest positive integer such that am ∈ I. Suppose that
m /∈ {1, 2, 3, 5, 6, 9}.
Case i): m = 4. Now a4 ∈ I but a3 /∈ I, a contradiction.
Case ii): m = 7. Now a7 ∈ I. Then a12 = (a3)4 ∈ I but (a3)3 /∈ I, a
contradiction.
Case iii): m = 8. Now a8 = (a2)4 ∈ I but (a2)3 = a6 /∈ I, a contradic-
tion.
Case iv): m = 10. Now a10 ∈ I. Then a9 ∈ I, a contradiction.
Case v): m = 11. Now a11 ∈ I. Then a12 = (a3)4 ∈ I but (a3)3 /∈ I, a
contradiction.
Case vi): If m ≥ 12 and 4 | m, then m = 4t for some t ≥ 3. Take

b = a
m
4 = at. Now b4 = (a

m
4 )4 = am ∈ I ⇒ b3 = (a

m
4 )3 = a

3m
4 ∈ I as I

is a semi-3-absorbing ideal, a contradiction, since 3m
4
< m.

Case vii): m > 12 and 4 - m, then m = 4t + r with r = 1, 2, 3, t ≥ 3.
Clearly,

[
m
4

]
l

= t Take b = at+1. Now b4 = (at+1)4 = a4t+4 ∈ I ⇒
b3 = (at+1)3 = a3(t+1) ∈ I as I is a semi-3-absorbing ideal, a contradic-
tion, since 3(t+ 1) < m. �

Theorem 1.14. Let I = 〈pm〉 be an ideal in the semiring Z+
0 where p

is a prime number and m ∈ N. Then I is a semi-n-absorbing ideal if
and only if

[
m
n

]
s

=
[
m
n+1

]
s
.

Proof. First suppose that
[
m
n

]
s

=
[
m
n+1

]
s
. Let xn+1 ∈ I for some x ∈

Z+
0 . Now pm | xn+1. Therefore p | xn+1 as p is a prime number. Choose

largest r ∈ N such that pr | x. Then x = pry where y ∈ Z+
0 and y is

relatively prime to p. Now pm | xn+1 ⇒ pm | (pry)n+1 ⇒ m ≤ r(n+ 1)
⇒ m

n+1
≤ r ⇒

[
m
n+1

]
s
≤ r. Now m

n
≤
[
m
n

]
s

=
[
m
n+1

]
s
≤ r. Therefore

m ≤ rn. Therefore pm | (pry)n. Now pm | xn. Hence I is an semi n-
absorbing ideal. Conversely, suppose that I is an semi n-absorbing ideal
and suppose that

[
m
n

]
s
>
[
m
n+1

]
s
. Take b =

[
m
n+1

]
s

and x = pb. Now
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m
n+1
≤
[
m
n+1

]
s

= b⇒ m ≤ (n+ 1)b⇒ xn+1 ∈ I. Now
[
m
n+1

]
s
<
[
m
n

]
s
⇒

b + 1 =
[
m
n+1

]
s

+ 1 ≤
[
m
n

]
s

and bn + n ≤
[
m
n

]
s
n < m + n. This shows

that bn < m, so pm - xn, a contradiction to I is an semi n-absorbing
ideal. Hence

[
m
n

]
s

=
[
m
n+1

]
s
. �

Theorem 1.15. Let I = 〈a〉 be an ideal in the semiring Z+
0 and

pr11 p
r2
2 · · · p

rk
k be the ppf of a. Then I is a semi-n-absorbing ideal if

and only if
[
ri
n

]
s

=
[
ri
n+1

]
s

for all i.

Proof. First suppose that
[
ri
n

]
s

=
[
ri
n+1

]
s

for all i. Let xn+1 ∈ I for some

x ∈ Z+
0 . Now pr11 p

r2
2 · · · p

rk
k | xn+1 ⇒ p1p2 · · · pk | xn+1 ⇒ p1 | x, p2 | x,

· · · pk | x as each pi is a prime number. Therefore x = pβ11 p
β2
2 · · · p

βk
k · y

for some y ∈ Z+
0 such that y is relatively prime to each pi. Now a | xn+1

⇒ pr11 p
r2
2 ...p

rk
k | (pβ11 p

β2
2 ...p

βk
k · y)n+1 ⇒ ri ≤ (n + 1)βi ⇒ ri

n+1
≤ βi ⇒[

ri
n+1

]
s
≤ βi, for all i. Now ri

n
≤
[
ri
n

]
s

=
[
ri
n+1

]
s
≤ βi. Therefore

ri ≤ nβi, for all i. Therefore pr11 p
r2
2 ...p

rk
k | (pβ11 p

β2
2 ...p

βk
k · y)n. Now

a | xn. Hence I is an semi n-absorbing ideal. Conversely suppose that
I is an semi n-absorbing ideal and suppose that

[
ri
n

]
s
>
[
ri
n+1

]
s

for

some i. Take bi =
[
ri
n+1

]
s

and x = pbii
∏
j 6=i

p
rj
j . Now ri

n+1
≤
[
ri
n+1

]
s

= bi

implies ri ≤ (n + 1)bi, and hence xn+1 ∈ I. Now
[
ri
n+1

]
s
<
[
ri
n

]
s
⇒

bi + 1 =
[
ri
n+1

]
s

+ 1 ≤
[
ri
n

]
s

and bin + n ≤
[
ri
n

]
s
n < ri + n. This

shows that bin < ri, so pr11 p
r2
2 · · · p

rk
k - xn, a contradiction to I is an

semi n-absorbing ideal. Hence
[
ri
n

]
s

=
[
ri
n+1

]
s

for all i. �

Theorem 1.16. Let I be an ideal of the semiring Z+
0 and I = 〈pm〉

where p is a prime number and m ∈ N. Then I is a semi n-absorbing
ideal if and only if m ∈ N \ {rn+ t : r ≥ 1, 1 ≤ t ≤ r}.

Proof. Let I be a semi n-absorbing ideal of Z+
0 and I = 〈pm〉 where p

is a prime number and m ∈ N. By Lemma 1.12, m ∈ N \ {rn + t :
r ≥ 1, 1 ≤ t ≤ r}. Conversely, let I = 〈pm〉 where m ∈ N \ {rn + t :
r ≥ 1, 1 ≤ t ≤ r}. If m = 1, 2, 3, · · ·n, then I is a n-absorbing ideal
(Theorem 2.5, [8]) and hence it is a semi n-absorbing ideal. Now assume
that m = r′n+ t′ where 1 ≤ r′ ≤ n− 1 and r′n ≤ t′ ≤ (r′ + 1)n. Then[
m
n

]
s

= r′ + 1 =
[
m
n+1

]
s

and hence I is a semi n-absorbing ideal of
R. �

Theorem 1.17. (Theorem 2.4, [6]) Let I be a non-zero principal ideal
in the semiring Z+

0 . Then I is an irreducible ideal if and only if I =
〈pm〉 for some prime number p and some m ∈ N.
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From Theorem 1.16 and Theorem 1.17, we have the following corol-
lary in which a characterization of principal irreducible semi n-absorbing
ideals in the semiring Z+

0 is obtained.

Corollary 1.18. Let I be a non-zero principal ideal in the semiring
Z+

0 . Then following statements are equivalent:

1) I is irreducible and semi n-absorbing ideal;
2) I = 〈pm〉 for some prime number p where m ∈ N \ {rn+ t : r ≥

1, 1 ≤ t ≤ r}.

Now the following Theorem gives a characterization of principal semi
n-absorbing ideals in the semiring Z+

0 .

Theorem 1.19. A principal ideal I of Z+
0 is semi n-absorbing if and

only if I = {0} or I = 〈m〉 where m = pr11 p
r2
2 · · · p

rk
k is the ppf of m and

ri ∈ N \ {rn+ t : r ≥ 1, 1 ≤ t ≤ r} for all i.

Proof. Let I be a principal semi n-absorbing ideal of Z+
0 and I 6= {0}.

Let I = 〈m〉 where m = pr11 p
r2
2 · · · p

rk
k is the ppf of m. Suppose that

ri /∈ N \ {rn + t : r ≥ 1, 1 ≤ t ≤ r} for some i. We may assume that
r1 /∈ N \ {rn+ t : r ≥ 1, 1 ≤ t ≤ r}
Case i): r1 = rn + t where 1 ≤ r ≤ n − 1 and 1 ≤ t ≤ r. Now
a = pr11 p

r2
2 · · · p

rk
k ∈ Z+

0 is such that an+1 ∈ I but an /∈ I, a contradic-
tion.
Case ii): n2 < r1 ≤ n(n + 1). Now a = pr11 p

r2
2 · · · p

rk
k ∈ Z+

0 is such that

an(n+1) = (an)n+1 ∈ I but (an)n = an
2
/∈ I, a contradiction.

Case iii): If r1 > n(n + 1) and (n + 1) | r1, then r1 = (n + 1)t. Now
a = pt1p

r2
2 · · · p

rk
k ∈ Z+

0 is such that an+1 ∈ I but an /∈ I, a contradiction.
Case iv): If r1 > n(n+ 1) and (n+ 1) - r1, then r1 = (n+ 1)t+ r where
1 ≤ r ≤ n and t ≥ n. Clearly [ r1

n+1
]l = t. Now (n+1)([ r1

n+1
]l+1) = (n+

1)(t+1) = (n+1)t+(n+1) > r1 and n([ r1
n+1

]l+1) = n(t+1) = nt+n <

nt+ t+1 = (n+1)t+1 ≤ r1. Then a = p
[

r1
n+1

]l+1

1 pr22 · · · p
rk
k ∈ Z+

0 is such

that an+1 = (p
[

r1
n+1

]l+1

1 )n+1p
(n+1)r2
2 · · · p(n+1)rk

k = p
(n+1)([

r1
n+1

]l+1)

1 p
(n+1)r2
2

· · · p(n+1)rk
k ∈ I as (n+1)([ r1

n+1
]+1) > r1 but an = (p

[
r1

n+1
]l+1

1 )npnr22 · · · p
nrk
k

= p
n([

r1
n+1

]l+1)

1 pnr22 · · · p
nrk
k /∈ I as n([ r1

n+1
]l+1) < r1, a contradiction. Thus

in any case we get a contradiction. Hence ri ∈ N \ {rn + t : 1 ≤ r ≤
n−1, 1 ≤ t ≤ r} for all i. Conversely, if I = {0}, then clearly I is a semi
n-absorbing ideal. Now suppose that I = 〈m〉 where m = pr11 p

r2
2 · · · p

rk
k

is the ppf of m and ri ∈ N \ {rn+ t : 1 ≤ r ≤ n− 1, 1 ≤ t ≤ r} for all
i. If ri ∈ {1, 2, 3, · · ·n}, then

[
ri
n

]
s

= 1 =
[
ri
n+1

]
s
. Now we may assume

that ri = ln + m where 1 ≤ l ≤ n − 1 and l + 1 ≤ m ≤ (l + 1)m.
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Then
[
ri
n

]
s

= l + 1 =
[
ri
n+1

]
s
. Thus

[
ri
n

]
s

=
[
ri
n+1

]
s

for all i and hence
by theorem 1.14, I is a semi n-absorbing ideal of R. �
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