Journal of Algebra and Related Topics Vol. 7, No 2, (2019), pp 9-18

SEMI *n*-ABSORBING IDEALS IN THE SEMIRING \mathbb{Z}_0^+

J. N. CHAUDHARI*, M. D. SURYAWANSHI AND D. R. BONDE

ABSTRACT. In this paper, all principal (m, n)-closed ideals and principal semi *n*-absorbing ideals in the semiring of non-negative integers are investigated.

1. INTRODUCTION

The concept of 2-absorbing ideals in a commutative ring R with $1 \neq 0$ was introduced by Avman Badawi [2] and extended to *n*-absorbing ideals in R by Anderson and Badawi [3]. Chaudhari [4] introduced the concept of 2-absorbing ideals in commutative semiring R with $1 \neq 0$, which is a generalization of prime ideals in R. All 2-absorbing ideals in the semiring of non-negative integers are investigated by Chaudhari [5]. Chaudhari and Ingale [8] have introduced the notion of n-absorbing ideals in commutative semiring R with $1 \neq 0$ and investigated all *n*-absorbing ideals in the semiring $(\mathbb{Z}_0^+, gcd, lcm)$ and all *n*-absorbing principal ideals in the semiring of non-negative integers. Several other authors used these concepts and some other relative concepts which are generalizations of prime ideals. Anderson and Ayman Badawi [1] introduced the concept of semi-*n*-absorbing ideal and (m, n)-closed ideal in a commutative ring R with $1 \neq 0$ which are generalizations of nabsorbing ideals in R. Chaudhari and Ingale [7] have characterized prime ideals, semi prime ideals, irreducible k-ideals and irreducible principal T-ideals in the ternary semiring of non-positive integers. For

MSC(2010): 16Y60

Keywords: Semiring, n-absorbing ideal, (m, n)-closed ideal, semi-n-absorbing ideal. Received: 1 August 2019.

^{*}Corresponding author .

the definition of semiring we refer [9]. We assume throughout that all semirings are commutative with $1 \neq 0$.

Denote the sets of all non-negative integers, positive integers and non-negative real numbers respectively by \mathbb{Z}_0^+ , \mathbb{N} and \mathbb{R}_0^+ . Then under usual addition and multiplication of nonnegative integers, \mathbb{Z}_0^+ forms a commutative semiring with identity 1 but it is not a ring.

In this paper we introduce the concept of (m, n)-closed ideal and semi *n*-absorbing ideal in commutative semiring R with $1 \neq 0$ and study some generalizations of *n*-absorbing ideals in the semiring \mathbb{Z}_0^+ .

Throughout this paper we use the following notations: $a \mid b \ (a \nmid b)$: a divides $b \ (a$ does not divide b) where $a, b \in \mathbb{Z}_0^+$. $\langle a \rangle$: the principal ideal generated by a where $a \in \mathbb{Z}_0^+$. $\langle m_1, m_2, \dots, m_k \rangle$: the ideal generated by m_1, m_2, \dots, m_k in \mathbb{Z}_0^+ , where $m_1 < m_2 < \dots < m_k$ and $m_i \nmid m_j$ for all i < j. (m_1, m_2, \dots, m_k) : the gcd of m_1, m_2, \dots, m_k in \mathbb{Z}_0^+ , where $m_1 < m_2 < \dots < m_k$.

 $[x]_l$: the largest integer $\leq x$, where $x \in \mathbb{R}_0^+$.

 $[x]_s$: the smallest integer $\geq x$, where $x \in \mathbb{R}^+_0$.

 $a_1 a_2 \cdots \widehat{a_i} \cdots a_n$: the term a_i is excluded from the product $a_1 a_2 \cdots a_i \cdots a_n$ If $a \in \mathbb{Z}_0^+$ and $a \ge 2$, then $a = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$ is the prime power factorization (ppf) of a where p_1, p_2, \cdots, p_k are pair wise distinct primes, $r_i \ge 1, k \ge 1$ and $p_1 < p_2 < \cdots < p_k$.

Definition 1.1. A proper ideal I of a semiring R is called semi-n-absorbing ideal of R, if $x^{n+1} \in I$ implies $x^n \in I$, where $n \in \mathbb{N}, x \in R$.

Clearly an *n*-absorbing ideal of a semiring R is a semi-*n*-absorbing ideal of R and a semi-1-absorbing ideal of R is just a semi prime ideal of R. The following example shows that the converse is not true.

Example 1.2. Let $I = 18\mathbb{Z}_0^+ = \langle 2 \cdot 3^2 \rangle$. Then I is a semi-2-absorbing ideal of \mathbb{Z}_0^+ but not a 2-absorbing ideal of \mathbb{Z}_0^+ as $2 \times 3 \times 3 = 18 \in I$ and $2 \times 3 = 6 \notin I$, $3 \times 3 = 9 \notin I$.

Example 1.3. Let $I = 4\mathbb{Z}_0^+ = \langle 4 \rangle$. Then I is a semi-2-absorbing ideal of \mathbb{Z}_0^+ but not a semiprime ideal of \mathbb{Z}_0^+ as $2^2 = 4 \in I$ and $2 \notin I$.

Clearly an *n*-absorbing ideal of a semiring R is also an (n + 1)absorbing ideal of R but this may not be true for semi *n*-absorbing ideals of R.

Example 1.4. Let $I = 16\mathbb{Z}_0^+ = \langle 16 \rangle$. Then I is a semi-2-absorbing ideal of \mathbb{Z}_0^+ but it is not a semi 3-absorbing ideal of \mathbb{Z}_0^+ as $2^4 = 16 \in I$ and $2^3 = 8 \notin I$.

10

Now the following theorem gives a characterization of non-zero principal semi *n*-absrobing ideals of the type $\langle p^k \rangle$ where *p* is a prime number and $k \in \mathbb{N}$, in the semirng \mathbb{Z}_0^+ .

Theorem 1.5. Let $I = \langle p^k \rangle$ where p is a prime number and $k \in \mathbb{N}$. Then I is a semi-n-absorbing ideal of \mathbb{Z}_0^+ if and only if k = (n+1)a + rwhere a, r are integers such that $a \ge 0, 1 \le r \le n$ and $a + r \le n$.

Proof. Let $I = \langle p^k \rangle$ be a semi-*n*-absorbing ideal of \mathbb{Z}_0^+ , where p is a prime number and $k \in \mathbb{N}$. By applying division algorithm to k and n+1 there exist integers a and r such that $a \ge 0, 0 \le r \le n$ and k = (n+1)a + r. If r = 0, then k = (n+1)a. Therefore a > 0as k > 0 and n + 1 > 0. Therefore $(p^{a})^{n+1} = (p^{n+1})^{a} = p^{(n+1)a} = p^{(n+1)a}$ $p^k \in I$ and hence $(p^a)^n = p^{na} \in I$, since I is semi-n-absorbing ideal. It is a contradiction as $n < n+1 \Rightarrow na < (n+1)a = k$. Therefore $r \neq 0$. Hence $1 \leq r \leq n$ and n+1 < k as k = (n+1)a + r. Choose the smallest positive integer d such that $p^{d(n+1)} \in I$. Now (n+1)(a+1) = (n+1)a + (n+1) = k - r + n + 1 = k + n + 1 - r > kas $r \leq n < n + 1$. So choose d = a + 1. Now d = a + 1 is the smallest positive integer such that $p^{d(n+1)} \in I$. That is $(p^{a+1})^{n+1} \in I$. Now $p^{(a+1)n} = (p^{a+1})^n \in I$, since I is a semi-n-absorbing ideal. Therefore $(a+1)n = na + n \ge k = (n+1)a + r$ and hence $na + n \ge na + a + r$. Therefore, $n \ge a + r$. Thus k = (n + 1)a + r where a, r are integers such that $a \ge 0, 1 \le r \le n$ and $a + r \le n$.

Conversely, suppose that k = (n+1)a+r, where a and r are integers such that $a \ge 0$, $1 \le r \le n$ and $a+r \le n$. To show that $I = \langle p^k \rangle$ is a semi-n-absorbing ideal of \mathbb{Z}_0^+ . Let $x^{n+1} \in I$.

Case (I): a = 0. Then k = r and hence $1 \leq k \leq n$. Now, $x^{n+1} \in I = \langle p^k \rangle \Rightarrow p \mid x$. So $p^k \mid x^k$ and hence $p^k \mid x^n$ as $k \leq n$. Thus $x^n \in \langle p^k \rangle = I$.

Case (II): $a \neq 0$. Then a > 0. Now we have $p^k | x^{n+1}$ as $x^{n+1} \in I = \langle p^k \rangle$. If $p^k | x$, then $p^k | x^n$ and hence $x^n \in I$. Assume that $p^k \nmid x$. Choose the largest positive integer i such that $p^i | x, 1 \leq i < k$. Then (n+1)i is the largest positive integer such that $p^{(n+1)i} | x^{n+1}$. Now $x^{n+1} \in I = \langle p^k \rangle \Rightarrow n+1 \geq k$. Therefore $(n+1)i \geq n+1 \geq k$. This implies $0 \geq k - (n+1)i = (n+1)a + r - (n+1)i = (n+1)(a-i) + r$. Therefore i > a, since $1 \leq r \leq n$. Thus i = a + b for some $b \geq 1$. Then k = (n+1)a + r gives $\frac{k}{n} = \frac{(n+1)a+r}{n} = \frac{na+a+r}{n} = a + \frac{a+r}{n} \leq a+1$ as $a + r \leq n$. Since $b \geq 1$, we have $i = a + b \geq a + 1 \geq \frac{k}{n}$. Therefore $ni \geq k$. Thus $p^{ni} | x^n$ as $p^i | x$ and hence $p^k | x^n$ as $ni \geq k$. Thus $x^n \in I$ and hence I is a semi-n-absorbing ideal. 12

Definition 1.6. Let $m, n \in \mathbb{N}$. A proper ideal I of a semiring R is called an (m, n)-closed ideal of R if $x^m \in I$ where $x \in R$ implies that $x^n \in I$.

Thus an ideal I of a semiring R is a semi n-absorbing ideal of R if and only if it is a (n+1, n)-closed ideal of R and I is a semiprime ideal of R if and only if it is a (2, 1)-closed ideal of R. Clearly, every proper ideal of R is an (m, n)-closed ideal for $1 \le m \le n$. Thus we generally assume that $1 \le n < m$. Clearly if I is an n-absorbing ideal of R, then it is (m, n)-closed for every $m \in \mathbb{N}$.

Now the following theorem gives a characterization of non-zero principal (m, n)-closed ideals of the type $\langle p^k \rangle$ where p is a prime number and $k \in \mathbb{N}$, in the semiring \mathbb{Z}_0^+ .

Theorem 1.7. Let $I = \langle p^k \rangle$ be an ideal in \mathbb{Z}_0^+ , where p is a prime number and $k \in \mathbb{N}$. Let $1 \leq n < m$. Then I is an (m, n)-closed ideal if and only if k = ma + r, where $a, r \in \mathbb{Z}_0^+, 1 \leq r \leq n$ and $ac + r \leq n$, where $c \equiv m(modn)$. Further if $a \neq 0$, then m = n + cwhere $1 \leq c \leq n - 1$.

Proof. Let $I = \langle p^k \rangle$ be an (m, n)-closed ideal, $k \in \mathbb{N}$ and p is a prime number. By division algorithm, $k = ma + r, a \in \mathbb{Z}_0^+$ and $0 \le r < m$. If r = 0, a > 0 as $k \in \mathbb{N}$. Now $(p^a)^m = p^{ma} = p^k \in I$ implies

 $(p^a)^n \in I$, since I is an (m, n)-closed ideal. Therefore, $p^{na} \in I = \langle p^k \rangle$ implies $na \ge k$ a contradiction as $n < m \Rightarrow na < ma = k$. Therefore, $r \neq 0$ and hence $1 \leq r \leq m-1$. Choose the smallest positive integer d such that $(p^d)^m \in I$. Then m(a+1) = ma + m = k - r + m > kas r < m. Also, ma < k as r > 0. Therefore ma < k < ma + m =m(a+1). Thus d = a+1 is the smallest positive integer such that $p^{m(a+1)} = (p^{a+1})^m \in I$ implies $(p^{a+1})^n \in I$ as I is an (m, n)-closed ideal. Therefore $n(a+1) = na + n \ge k = ma + r$. This implies $n \ge ma + r - na = a(m-n) + r \ge r$ as $a(m-n) \ge 0$. Thus $1 \le r \le n$. Now, since n < m, by division algorithm, we have m = bn + c where $b \ge 1, 0 \le c \le n-1$. Therefore $n \ge a(bn+c-n)+r = a(b-1)n+ac+r$ where $ac + r \ge 1$. Since $n \ge a(b-1)n + ac + r$ and $ac + r \ge 1$, we have a(b-1) = 0. For if $a(b-1) \neq 0$, b > 1, then $ac + r \ge 1$ implies $a(b-1)n + ac + r \ge a(b-1)n + 1$ and this implies $n \ge a(b-1)n + 1$ which is not true. Thus a(b-1) = 0 and hence n > ac + r where $c \equiv m(modn)$. Now if $a \neq 0, b-1 = 0$. i.e. b = 1. Thus m = n + cwhere $a \leq c \leq n-1$ as n < m.

Conversely, assume that $k = ma + r, a \in \mathbb{Z}_0^+, 1 \le r \le n$ and $ac + r \le n$ where $c \equiv m(modn)$. Also, assume that if $a \ne 0$, then m = n + c where $1 \le c \le n - 1$. To show that I is an (m, n)-closed ideal. Let $x^m \in I$ Case (I): a = 0. Then $k = r, 1 \le r \le n$. Therefore $1 \le k \le n$. Now, $x^m \in I = \langle p^k \rangle \Rightarrow p | x$ as p is a prime number. Therefore $p^k | x^k$. This implies $p^k | x^n$ as $k \le n$. Therefore $x^n \in I$.

Case (II): $a \neq 0$. We have $x^m \in I = \langle p^k \rangle$. So that $p^k | x^m$ implies p | x. If $p^k | x$, then $p^k | x^n$ and hence $x^n \in I$. Assume that $p^k \nmid x$. Choose the largest positive integer i such that $p^{i} | x, 1 \leq i < k$. Then mi is the largest positive integer such that $p^{mi} | x^m$. Therefore $mi \geq k$ i.e. $0 \geq k - mi = ma + r - mi = m(a - i) + r$. Therefore a < i, thus i = a + b for some integer $b \geq 1$. Now, k = ma + r and m = n + c gives k = (n + c)a + r = na + ca + r. Therefore $\frac{k}{n} = a + \frac{ca + r}{n} \leq a + 1$ as $ca + r \leq n$. Therefore $i = a + b \geq a + 1 \geq \frac{k}{n}$ as $b \geq 1$. Therefore $ni \geq k$. Now, $p^i | x \Rightarrow p^{ni} | x^n \Rightarrow p^k | x^n$ as $ni \geq k$ and hence $x^n \in I = \langle p^k \rangle$. Therefore I is an (m, n)-closed ideal of \mathbb{Z}_0^+ .

Theorem 1.8. Let $I = \langle p^k \rangle$ be an ideal in \mathbb{Z}_0^+ , where p is a prime number and $k \in \mathbb{N}$. Then following statements are equivalent:

- (1) I is an (m, n)-closed ideal
- (2) Exactly one of the following statements holds
 - (i) $1 \le k \le n$,
 - (ii) There is a positive integer a such that k = ma + r = na + dfor integers r and d with $1 \le r, d \le n - 1$,
 - (iii) There is a positive integer a such that k = ma + r = n(a+1)for an integer r with $1 \le r \le n-1$.

Proof. (1) \Rightarrow (2) Suppose that *I* is an (m, n)-closed ideal of \mathbb{Z}_0^+ . Then by Theorem 1.7, k = ma + r, where $a, r \in \mathbb{Z}_0^+, 1 \le r \le n$ and $ac + r \le n$, where $c \equiv m(modn)$. Further if $a \ne 0$, then m = n + c with $1 \le c \le n - 1$.

Thus, if a = 0, then k = r and thus $1 \le k \le n$. This proves (i).

If $a \neq 0, a > 0$ and k = ma + r. Also, since $c \equiv m(modn), c \neq 0$ as n < m. Next $ac + r \leq n, 1 \leq r \leq n$. Now, k = ma + r and m = n + c $\Rightarrow k = (n + c)a + r = na + ca + r = na + d$ where $d = ac + r \leq n$. If d < n, then k = ma + r = na + d with $1 \leq r, d \leq n - 1$. This proves *(ii)*.

Now if d = n, then k = ma + r = na + n = n(a+1) with $1 \le r \le n-1$. This proves (*iii*).

 $(2) \Rightarrow (1)$ First suppose that $1 \leq k \leq n$. Let $x^m \in \langle p^k \rangle = I$. Therefore $p^k | x^m \Rightarrow p | x \Rightarrow p^k | x^n$ as $k \leq n$. Therefore $x^n \in \langle p^k \rangle = I$, and hence I is an (m, n)-closed ideal of \mathbb{Z}_0^+ .

Now, suppose that $a \ge 1$ such that $k = ma + r = na + d, 1 \le r, d \le n-1$. Then ma = na + d - r or $m = n + \left(\frac{d-r}{a}\right) = n + c$, where $c = \left(\frac{d-r}{a}\right)$ is an integer with $1 \le c \le n-1$. Thus, m = n + c with $1 \le c \le n-1$. Therefore by Theorem 1.7, I is (m, n)-closed ideal of \mathbb{Z}_0^+ .

Finally, suppose that there is an integer $a \ge 1$ such that k = ma + r = n(a+1), where $1 \le r \le n-1$. Now, $m = \frac{n(a+1)-r}{a} = n + \frac{n-r}{a} = n+c$ for an integer $c = \frac{n-r}{a} \le n-1$ as $a \ge 1$ and hence by theorem 1.7, I is an (m, n)-closed ideal.

Now we give the following lemma which will be used in the subsequent theorem.

Lemma 1.9. Intersection of finite number of (m, n)-closed ideals in the semirng R is an (m, n)-closed ideal.

Proof. Trivial.

Now the following theorem gives a characterization of non-zero principal (m, n)-closed ideals in the semiring \mathbb{Z}_0^+ .

Theorem 1.10. Let $I = \langle p_1^{r_1} p_2^{r_2} \dots p_k^{r_k} \rangle$ be an ideal in \mathbb{Z}_0^+ and let $1 \leq n < m$, where $n, m \in \mathbb{N}$, p_1, p_2, \dots, p_k are prime numbers such that $p_1 < p_2 < \dots < p_k$ and r_1, r_2, \dots, r_k are positive integers. Then the following statements are equivalent:

(1) I is an (m, n)-closed ideal of \mathbb{Z}_0^+ , (2) $\langle p_i^{r_j} \rangle$ is an (m, n)-closed ideal of \mathbb{Z}_0^+ , for every $1 \le j \le k$.

Proof. (1) \Rightarrow (2)

Suppose that I is an (m, n)-closed ideal of \mathbb{Z}_0^+ . Let $x^m \in \langle p_j^{r_j} \rangle$ where $x \in \mathbb{Z}_0^+$. Let $y = xp_1^{r_1}p_2^{r_2}...\widehat{p_j^{r_j}}...p_k^{r_k}$. Then $y^m = x^m \left(p_1^{r_1}p_2^{r_2}...\widehat{p_j^{r_j}}...p_k^{r_k}\right)^m \in I$. Since I is an (m, n)-closed ideal, $y^n \in I$. Therefore $x^n \left(p_1^{r_1}p_2^{r_2}...\widehat{p_j^{r_j}}...p_k^{r_k}\right)^n \in I = \langle p_1^{r_1}p_2^{r_2}...p_k^{r_k} \rangle \Rightarrow p_1^{r_1}p_2^{r_2}...p_k^{r_k} \mid x^n \left(p_1^{r_1}p_2^{r_2}...p_j^{r_j}...p_k^{r_k}\right)^n \Rightarrow p_j^{r_j}|x^n \Rightarrow x^n \in \langle p_j^{r_j} \rangle$. Therefore $\langle p_j^{r_j} \rangle$ is an (m, n)-closed ideal, $1 \leq j \leq k$. (2) $\Rightarrow (1)$

Now suppose that each $\langle p_j^{r_j} \rangle$ is an (m, n) closed ideal of \mathbb{Z}_0^+ , $1 \leq j \leq k$. By Lemma 1.9, $\langle p_1^{r_1} \rangle \cap \langle p_2^{r_2} \rangle \cap \ldots \cap \langle p_k^{r_k} \rangle$ is an (m, n)-closed ideal and hence $I = \langle p_1^{r_1} p_2^{r_2} \ldots p_k^{r_k} \rangle$ is an (m, n)- closed ideal of \mathbb{Z}_0^+ .

Lemma 1.11. Let I be a semi-n-absorbing ideal in the semiring \mathbb{Z}_0^+ . If $a \in \mathbb{Z}_0^+$ and m is the smallest positive integer such that $a^m \in I$, then $m \in \mathbb{N} \setminus \{rn + t : r \ge 1, 1 \le t \le r\}.$

Proof. Let I be a semi-*n*-absorbing ideal in the semiring \mathbb{Z}_0^+ . Let $a \in \mathbb{Z}_0^+$ and m be the smallest positive integer such that $a^m \in I$. Suppose that $m \in \{rn + t : r \geq 1, 1 \leq t \leq r\}$. Now $a^m \in I$. Therefore, m = rn + t for some $r \geq 1$ and $1 \leq t \leq r$. So $rn + t \leq rn + r$. Now $a^{r(n+1)} \in I$ as $a^{rn+t} \in I$. Since I is a semi *n*-absorbing ideal $a^{rn} \in I$,

a contradiction to rn < rn + t = m and m is the smallest such that $a^m \in I$. Hence $m \in \mathbb{N} \setminus \{rn + t : r \ge 1, 1 \le t \le r\}$. \Box

Lemma 1.12. Let $I = \langle a^m \rangle$ be a principal ideal in the semiring \mathbb{Z}_0^+ . If I is a semi n-absorbing ideal, then $m \in \mathbb{N} \setminus \{rn+t : r \geq 1, 1 \leq t \leq r\}$.

Proof. Since m is the least positive integer such that $a^m \in I$, by Lemma 1.11, $m \in \mathbb{N} \setminus \{rn + t : r \ge 1, 1 \le t \le r\}$.

Corollary 1.13. Let I be a semi-3-absorbing ideal in the semiring \mathbb{Z}_0^+ . If $a \in \mathbb{Z}_0^+$ and m is the smallest positive integer such that $a^m \in I$, then $m \in \{1, 2, 3, 5, 6, 9\}$.

Proof. Let I be a semi-3-absorbing ideal in the semiring \mathbb{Z}_0^+ . Let $a \in \mathbb{Z}_0^+$ and m be the smallest positive integer such that $a^m \in I$. Suppose that $m \notin \{1, 2, 3, 5, 6, 9\}$.

Case i): m = 4. Now $a^4 \in I$ but $a^3 \notin I$, a contradiction.

Case ii): m = 7. Now $a^7 \in I$. Then $a^{12} = (a^3)^4 \in I$ but $(a^3)^3 \notin I$, a contradiction.

Case iii): m = 8. Now $a^8 = (a^2)^4 \in I$ but $(a^2)^3 = a^6 \notin I$, a contradiction.

Case iv): m = 10. Now $a^{10} \in I$. Then $a^9 \in I$, a contradiction.

Case v): m = 11. Now $a^{11} \in I$. Then $a^{12} = (a^3)^4 \in I$ but $(a^3)^3 \notin I$, a contradiction.

Case vi): If $m \ge 12$ and $4 \mid m$, then m = 4t for some $t \ge 3$. Take $b = a^{\frac{m}{4}} = a^t$. Now $b^4 = (a^{\frac{m}{4}})^4 = a^m \in I \Rightarrow b^3 = (a^{\frac{m}{4}})^3 = a^{\frac{3m}{4}} \in I$ as I is a semi-3-absorbing ideal, a contradiction, since $\frac{3m}{4} < m$.

Case vii): m > 12 and $4 \nmid m$, then m = 4t + r with $r = 1, 2, 3, t \ge 3$. Clearly, $\left[\frac{m}{4}\right]_l = t$ Take $b = a^{t+1}$. Now $b^4 = (a^{t+1})^4 = a^{4t+4} \in I \Rightarrow b^3 = (a^{t+1})^3 = a^{3(t+1)} \in I$ as I is a semi-3-absorbing ideal, a contradiction, since 3(t+1) < m.

Theorem 1.14. Let $I = \langle p^m \rangle$ be an ideal in the semiring \mathbb{Z}_0^+ where p is a prime number and $m \in \mathbb{N}$. Then I is a semi-n-absorbing ideal if and only if $\left[\frac{m}{n}\right]_s = \left[\frac{m}{n+1}\right]_s$.

Proof. First suppose that $\left[\frac{m}{n}\right]_s = \left[\frac{m}{n+1}\right]_s$. Let $x^{n+1} \in I$ for some $x \in \mathbb{Z}_0^+$. Now $p^m \mid x^{n+1}$. Therefore $p \mid x^{n+1}$ as p is a prime number. Choose largest $r \in \mathbb{N}$ such that $p^r \mid x$. Then $x = p^r y$ where $y \in \mathbb{Z}_0^+$ and y is relatively prime to p. Now $p^m \mid x^{n+1} \Rightarrow p^m \mid (p^r y)^{n+1} \Rightarrow m \leq r(n+1)$ $\Rightarrow \frac{m}{n+1} \leq r \Rightarrow \left[\frac{m}{n+1}\right]_s \leq r$. Now $\frac{m}{n} \leq \left[\frac{m}{n}\right]_s = \left[\frac{m}{n+1}\right]_s \leq r$. Therefore $m \leq rn$. Therefore $p^m \mid (p^r y)^n$. Now $p^m \mid x^n$. Hence I is an semi n-absorbing ideal. Conversely, suppose that I is an semi n-absorbing ideal and suppose that $\left[\frac{m}{n}\right]_s > \left[\frac{m}{n+1}\right]_s$. Take $b = \left[\frac{m}{n+1}\right]_s$ and $x = p^b$. Now $\begin{array}{l} \frac{m}{n+1} \leq \left[\frac{m}{n+1}\right]_s = b \Rightarrow m \leq (n+1)b \Rightarrow x^{n+1} \in I. \text{ Now } \left[\frac{m}{n+1}\right]_s < \left[\frac{m}{n}\right]_s \Rightarrow \\ b+1 = \left[\frac{m}{n+1}\right]_s + 1 \leq \left[\frac{m}{n}\right]_s \text{ and } bn+n \leq \left[\frac{m}{n}\right]_s n < m+n. \text{ This shows} \\ \text{that } bn < m, \text{ so } p^m \nmid x^n, \text{ a contradiction to } I \text{ is an semi } n\text{-absorbing} \\ \text{ideal. Hence } \left[\frac{m}{n}\right]_s = \left[\frac{m}{n+1}\right]_s. \end{array}$

Theorem 1.15. Let $I = \langle a \rangle$ be an ideal in the semiring \mathbb{Z}_0^+ and $p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$ be the ppf of a. Then I is a semi-n-absorbing ideal if and only if $\left[\frac{r_i}{n}\right]_s = \left[\frac{r_i}{n+1}\right]_s$ for all i.

 $\begin{array}{l} Proof. \mbox{ First suppose that } \left[\frac{r_i}{n}\right]_s = \left[\frac{r_i}{n+1}\right]_s \mbox{ for all } i. \mbox{ Let } x^{n+1} \in I \mbox{ for some } x \in \mathbb{Z}_0^+. \mbox{ Now } p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k} \mid x^{n+1} \Rightarrow p_1 p_2 \cdots p_k \mid x^{n+1} \Rightarrow p_1 \mid x, p_2 \mid x, \\ \cdots p_k \mid x \mbox{ as each } p_i \mbox{ is a prime number. Therefore } x = p_1^{\beta_1} p_2^{\beta_2} \cdots p_k^{\beta_k} \cdot y \\ \mbox{ for some } y \in \mathbb{Z}_0^+ \mbox{ such that } y \mbox{ is relatively prime to each } p_i. \mbox{ Now } a \mid x^{n+1} \\ \Rightarrow p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k} \mid (p_1^{\beta_1} p_2^{\beta_2} \cdots p_k^{\beta_k} \cdot y)^{n+1} \Rightarrow r_i \leq (n+1)\beta_i \Rightarrow \frac{r_i}{n+1} \leq \beta_i \Rightarrow \\ \left[\frac{r_i}{n+1}\right]_s \leq \beta_i, \mbox{ for all } i. \mbox{ Now } \frac{r_i}{n} \leq \left[\frac{r_i}{n}\right]_s = \left[\frac{r_i}{n+1}\right]_s \leq \beta_i. \mbox{ Therefore } \\ r_i \leq n\beta_i, \mbox{ for all } i. \mbox{ Therefore } p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k} \mid (p_1^{\beta_1} p_2^{\beta_2} \cdots p_k^{\beta_k} \cdot y)^n. \mbox{ Now } \\ a \mid x^n. \mbox{ Hence } I \mbox{ is an semi } n\mbox{-absorbing ideal. Conversely suppose that } \\ I \mbox{ is an semi } n\mbox{-absorbing ideal and suppose that } \left[\frac{r_i}{n+1}\right]_s > \left[\frac{r_i}{n+1}\right]_s = b_i \\ \mbox{ implies } r_i \leq (n+1)b_i, \mbox{ and hence } x^{n+1} \in I. \mbox{ Now } \left[\frac{r_i}{n+1}\right]_s < \left[\frac{r_i}{n}\right]_s \Rightarrow \\ b_i + 1 = \left[\frac{r_i}{n+1}\right]_s + 1 \leq \left[\frac{r_i}{n}\right]_s \mbox{ and } b_in + n \leq \left[\frac{r_i}{n}\right]_s n < r_i + n. \mbox{ This shows that } \\ b_in < r_i, \mbox{ so } p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k} \nmid x^n, \mbox{ a contradiction to } I \mbox{ is an semi } n\mbox{-absorbing ideal. Hence } \left[\frac{r_i}{n}\right]_s \mbox{ for all } i. \end{taligned} \end{tabular} \$

Theorem 1.16. Let I be an ideal of the semiring \mathbb{Z}_0^+ and $I = \langle p^m \rangle$ where p is a prime number and $m \in \mathbb{N}$. Then I is a semi n-absorbing ideal if and only if $m \in \mathbb{N} \setminus \{rn + t : r \ge 1, 1 \le t \le r\}$.

Proof. Let I be a semi n-absorbing ideal of \mathbb{Z}_0^+ and $I = \langle p^m \rangle$ where p is a prime number and $m \in \mathbb{N}$. By Lemma 1.12, $m \in \mathbb{N} \setminus \{rn + t : r \geq 1, 1 \leq t \leq r\}$. Conversely, let $I = \langle p^m \rangle$ where $m \in \mathbb{N} \setminus \{rn + t : r \geq 1, 1 \leq t \leq r\}$. If $m = 1, 2, 3, \dots n$, then I is a n-absorbing ideal (Theorem 2.5, [8]) and hence it is a semi n-absorbing ideal. Now assume that m = r'n + t' where $1 \leq r' \leq n - 1$ and $r'n \leq t' \leq (r' + 1)n$. Then $\left[\frac{m}{n}\right]_s = r' + 1 = \left[\frac{m}{n+1}\right]_s$ and hence I is a semi n-absorbing ideal of R.

Theorem 1.17. (Theorem 2.4, [6]) Let I be a non-zero principal ideal in the semiring \mathbb{Z}_0^+ . Then I is an irreducible ideal if and only if $I = \langle p^m \rangle$ for some prime number p and some $m \in \mathbb{N}$. From Theorem 1.16 and Theorem 1.17, we have the following corollary in which a characterization of principal irreducible semi *n*-absorbing ideals in the semiring \mathbb{Z}_0^+ is obtained.

Corollary 1.18. Let I be a non-zero principal ideal in the semiring \mathbb{Z}_0^+ . Then following statements are equivalent:

- 1) I is irreducible and semi n-absorbing ideal;
- 2) $I = \langle p^m \rangle$ for some prime number p where $m \in \mathbb{N} \setminus \{rn + t : r \ge 1, 1 \le t \le r\}$.

Now the following Theorem gives a characterization of principal semi n-absorbing ideals in the semiring \mathbb{Z}_0^+ .

Theorem 1.19. A principal ideal I of \mathbb{Z}_0^+ is semi *n*-absorbing if and only if $I = \{0\}$ or $I = \langle m \rangle$ where $m = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$ is the ppf of m and $r_i \in \mathbb{N} \setminus \{rn + t : r \ge 1, 1 \le t \le r\}$ for all i.

Proof. Let I be a principal semi n-absorbing ideal of \mathbb{Z}_0^+ and $I \neq \{0\}$. Let $I = \langle m \rangle$ where $m = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$ is the ppf of m. Suppose that $r_i \notin \mathbb{N} \setminus \{rn + t : r \ge 1, 1 \le t \le r\}$ for some i. We may assume that $r_1 \notin \mathbb{N} \setminus \{rn + t : r \ge 1, 1 \le t \le r\}$

Case i): $r_1 = rn + t$ where $1 \leq r \leq n-1$ and $1 \leq t \leq r$. Now $a = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k} \in \mathbb{Z}_0^+$ is such that $a^{n+1} \in I$ but $a^n \notin I$, a contradiction.

Case ii): $n^2 < r_1 \le n(n+1)$. Now $a = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k} \in \mathbb{Z}_0^+$ is such that $a^{n(n+1)} = (a^n)^{n+1} \in I$ but $(a^n)^n = a^{n^2} \notin I$, a contradiction.

Case iii): If $r_1 > n(n+1)$ and $(n+1) | r_1$, then $r_1 = (n+1)t$. Now $a = p_1^t p_2^{r_2} \cdots p_k^{r_k} \in \mathbb{Z}_0^+$ is such that $a^{n+1} \in I$ but $a^n \notin I$, a contradiction. Case iv): If $r_1 > n(n+1)$ and $(n+1) \nmid r_1$, then $r_1 = (n+1)t + r$ where $1 \le r \le n$ and $t \ge n$. Clearly $[\frac{r_1}{n+1}]_l = t$. Now $(n+1)([\frac{r_1}{n+1}]_l+1) = (n+1)(t+1) = (n+1)t + (n+1) > r_1$ and $n([\frac{r_1}{n+1}]_l+1) = n(t+1) = nt + n < nt + t + 1 = (n+1)t + 1 \le r_1$. Then $a = p_1^{[\frac{r_1}{n+1}]_l+1} p_2^{r_2} \cdots p_k^{r_k} \in \mathbb{Z}_0^+$ is such that $a^{n+1} = (p_1^{[\frac{r_1}{n+1}]_{l+1}})^{n+1} p_2^{(n+1)r_2} \cdots p_k^{(n+1)r_k} = p_1^{(n+1)([\frac{r_1}{n+1}]_{l+1}]_l})^{n+1} p_2^{(n+1)r_2} \cdots p_k^{(n+1)r_k} = p_1^{(n+1)([\frac{r_1}{n+1}]_{l+1}]_l})^{n} p_2^{nr_2} \cdots p_k^{nr_k} = p_1^{n([\frac{r_1}{n+1}]_{l+1}]_l} p_2^{nr_2} \cdots p_k^{nr_k} \notin I$ as $n([\frac{r_1}{n+1}]_{l+1}] < r_1$, a contradiction. Thus in any case we get a contradiction. Hence $r_i \in \mathbb{N} \setminus \{rn + t : 1 \le r \le n-1, 1 \le t \le r\}$ for all *i*. Conversely, if $I = \{0\}$, then clearly *I* is a semi *n*-absorbing ideal. Now suppose that $I = \langle m \rangle$ where $m = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$ is the ppf of *m* and $r_i \in \mathbb{N} \setminus \{rn + t : 1 \le r \le n-1, 1 \le t \le r\}$ for all *i*. If $r_i \in \{1, 2, 3, \cdots n\}$, then $[\frac{r_i}{n}]_s = 1 = [\frac{r_i}{n+1}]_s$. Now we may assume that $r_i = ln + m$ where $1 \le l \le n-1$ and $l+1 \le m \le (l+1)m$.

Then $\left[\frac{r_i}{n}\right]_s = l + 1 = \left[\frac{r_i}{n+1}\right]_s$. Thus $\left[\frac{r_i}{n}\right]_s = \left[\frac{r_i}{n+1}\right]_s$ for all *i* and hence by theorem 1.14, *I* is a semi *n*-absorbing ideal of *R*.

Acknowledgement: The authors are thankful to the referee for his helpful suggestions.

References

- D. F. Anderson and A. Badawi, On (m, n)- closed ideals of commutative rings, J. Algebra Appl. (1) 60 (2017), 1750013.
- A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007), 417-429.
- D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra. 39 (2011), 1646 - 1672.
- J. N. Chaudhari, 2-absorbing ideals in semirings, International Journal of Algebra, (6) 6 (2012), 265 270.
- J. N. Chaudhari, 2-absorbing ideals in the semiring of non-negative integers, J. Indian Math. Soc, (3-4) 80 (2013), 235 - 241.
- J. N. Chaudhari and K. J. Ingale, A note on the ideal of semiring Z0+, J. Indian Math. Soc. 79 (2012), 33-39.
- J. N. Chaudhari and K. J. Ingale, *Ideals in the ternary semiring of non-positive integers*, Bull. Malays. Math. Sci. Soc. (4)37(2014),1149-1156.
- J. N. Chaudhari and K. J. Ingale , on n-absorbing ideals of the semiring Z⁺₀, JAPRM, , (1) 6 (2014), 25-31.
- J. S. Golan, Semiring and their applications, Kluwer Academic publisher Dordrecht, 1999.

J. N. Chaudhari

18

Department of Mathematics, M. J. College, Jalgaon-425 002, India. Email: jnchaudhari@rediffmail.com

M. D. Suryawanshi

Department of Mathematics, SSVPS' L. K. Dr. P. R. Ghogrey Science College, Dhule-424 005, India.

Email: manoharsuryawanshi65@gmail.com

D. R. Bonde

Department of Mathematics, ACS College, Dharangaon-425 105, India. Email: drbonde@rediffmail.com