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CHARACTERIZATION OF φ̂-AMENABILITY AND
φ̂-MODULE AMENABILITY OF SEMIGROUP

ALGEBRAS

S. GRAILOO TANHA ∗

Abstract. For every inverse semigroup S with subsemigroup E
of idempotents, necessary and sufficient conditions are obtained

for the semigroup algebra l1(S) to be φ̂-amenable and φ̂-module
amenable. Also, we characterize the character amenability of semi-
group algebra l1(S).

1. Introduction

Let A be a Banach algebra, ∆(A) be the chracter space of A and
φ ∈ ∆(A). Kaniuth and Lau and Pym [7] have recently introduced and
studied the interesting notion of φ-amenability. Specifically a Banach
algebra A is called left φ-amenable if all continuous derivation from A
into dual Banach A-module X for which the left module action is given
by

a · x = φ(a)x (a ∈ A, x ∈ X),

to be inner. Right φ-amenability is defined similarly by considering
dual Banach A-module X for which the right module action is given
by

x · x = φ(a)x (a ∈ A, x ∈ X),

and A is called φ-amenable if it is both left and right φ-amenable.
More recently, Monfared [9] has introduced and studied the notion

of character amenability. Throughout, a Banach algebra A is called
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character amenable if it has a bounded approximate identity and it
is φ-amenable for all φ ∈ ∆(A). Just as for amenability, there are
many characterization of φ-amenability of Banach algebras. For exam-
ple in [6], the authors characterized φ-amenability of Banach algebras
in terms of the existence of bounded approximate φ-diagonals and φ-
virtual diagonals. It is proved in [9] that character amenability of
L1(G) is equivalent to the amenability of the underlying group G. The
character amenability and φ-amenability of some inverse semigroup al-
gebras investigated in [4]. They characterized character amenability of
l1(S), for Brandt semigroup S.

M. Amini[1] introduced the notion of module amenability for a class
of Banach algebras which could be considered as a generalization of the
Johnson’s amenability. In particular for an inverse semigroup S with
the set of idempotent E, he showed that l1(S) is module amenable, as
a Banach l1(E)-module, if and only if S is amenable. In this case, l1(S)

is considered as a l1(E)-module with actions:α·a = φ̂S(α)a, a·α = a∗α,
which φS is augmentation character on S and ∗ is natural multiplication
of l1(S).

In this paper, we characterize φ-amenability and character amenabil-
ity of the semigroup algebra l1(S), where S is an inverse semigroup.

Also, we consider l1(S) as a l1(E)-module with actions:α ·a = φ̂(α)a, a ·
α = a ∗ α, which φ is a character on S and ∗ is natural multiplication
of l1(S) and we show that how module amenability of l1(S) affects the
structure of S.

LetA and A be Banach algebras such thatA is a Banach A-bimodule
with compatible actions, that is

α · (ab) = (α · a)b, (ab) · α = a(b · α)

for all a, b ∈ A, α ∈ A. Let X be a Banach A-bimodule and a Banach
A-bimodule with compatible actions, that is

α · (a · x) = (α · a) · x, a · (α · x) = (a · α) · x, (α · x) · a = α · (x · a)

for all a ∈ A, α ∈ A, x ∈ X and similarly for the right and two-sided
actions. Then, we say that X is a Banach A-A-module. If moreover
α ·x = x ·α for all α ∈ A and x ∈ X, then X is called a commutative A-
A-module. Note that when A acts on itself by algebra multiplication, it
is not in general a Banach A-A-module. Indeed, if A is a commutative
A-module and acts on itself by multiplication from both sides, then it
is also a Banach A-A-module.

Let A and A be as above and X be a Banach A-A-module. A A-
module derivation is a bounded A-module map D : A −→ X satisfying

D(ab) = D(a) ·b+a ·D(b) D(α ·a) = α ·D(a), D(a ·α) = D(a) ·α,
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for each a, b ∈ A.
One should note that D is not necessarily linear, but its boundedness

(defined as the existence of M > 0 such that ‖D(a)‖ ≤ M‖a‖, for all
a ∈ A) still implies its continuity, as it preserves subtraction. When X
is commutative, each x ∈ X defines a module derivation

Dx(a) = a · x− x · a (a ∈ A).

These are called inner A-module derivations. The Banach algebra A is
called module amenable (as an A-module) if for any commutative Ba-
nach A-A-module X, each A-module derivation D : A −→ X∗ is inner
[1]. Note that if A = C, then the module amenability will absolutely
overlap with Johnson’s amenability [8] for a Banach algebra.

Consider the closed ideal J of A generated by elements of the form
(a · α)b− a(α · b) for α ∈ A, a, b ∈ A. Then, J is an A-submodule and
an A-submodule of A. Also, A/J is a Banach A-A-module with the
compatible actions when A acts on A/J canonically.

An inverse semigroup is a semigroup S so that, for each s ∈ S, there
exists a unique element s∗ ∈ S such that ss∗s = s and s∗ss∗ = s∗. The
element s∗ is termed the inverse of s. The set E(S) (or briefly, E) of
idempotents of S is a commutative subsemigroup; it is ordered by e ≤ f
if and only if ef = e. With this ordering E(S) is a meet semilattice
with the meet given by the product; see [5, Theorem 5.1.1]. We recall
that a semigroup S is a semilattice if S is commutative and E = S.
The order on E extends to S as the so-called natural partial order by
putting s ≤ t if s = et for some idempotent e (or equivalently s = tf
for some idempotent f). This is equivalent to s = ts∗s or s = ss∗t. If
e ∈ E, then the set Ge = {s ∈ S|ss∗ = e = s∗s} is a group, called the
maximal subgroup of S at e.

Let S be a (discrete) inverse semigroup with the set of idempotents
E. We recall that the subsemigroup E of S is a semilattice, and so
l1(E) could be regarded as a commutative subalgebra of l1(S). Thus,
l1(S) is a Banach algebra and a Banach l1(E)-module with compatible
actions [1].

A semi-chracter on S is a nonzero homomorphism φ : S → D̄. The
space of semi-character on S is denoted by ΦS. The semi-character
φS : S → D̄, defined by

φS(t) = 1 (t ∈ S),

is called the augmentation character on S. For each φ ∈ ΦS, we asso-
ciate the map φ̂ : l1(S)→ C defined by

φ̂(f) = Σs∈Sφ(s)f(s) (f ∈ l1(S)).
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It is easily verified that φ̂ ∈ ∆(l1(S)) and every character on l1(S)
arises in this way. Indeed, we have

∆(l1(S)) = {φ̂ : φ ∈ ΦS}.

Let φ ∈ ΦS. We consider the following actions of l1(E) on l1(S):

δe · δs = φ̂(δe)δs, δs · δe = δse = δs ∗ δe (s ∈ S, e ∈ E). (1.1)

If l1(S) is l1(E)-module amenable with actions (1.1), we say that l1(S)

is φ̂-module amenable. Note that it follows from [1] that l1(S) is φ̂S-
module amenable if and only if S is amenable. In this case, the ideal
Jφ is the closed linear span of {δset − φ̂(δe)δst : s, t ∈ S, e ∈ E}. We
consider an equivalence relation on S such that s ∼φ t if and only if
δs − δt ∈ Jφ for s, t ∈ S. It is shown in [2] that the quotient S/∼φS is
a discrete group (see also [2]). Indeed, S/∼φS is homomorphic to the
maximal group homomorphic image GS of S. Moreover, S is amenable
if and only if GS = S/∼φS is amenable ([3]).
Next proposition is a generalization of theorem 3.1 of [1].

Proposition 1.1. l1(S) is φ̂-module amenable if and only if S\ker{φ}
is amenable.

Proof. We firstly suppose that l1(S) is φ̂-module amenable. Consider
l1(ES\ker{φ}) acts on l1(SS\ker{φ}) with the following module actions:

δe·δs = δs = φ̂(δe)δs, δs·δe = δse = δs∗δe (s ∈ S\ker{φ}, e ∈ ES\ker{φ}).

Suppose that X is a commutative Banach l1(S\ker{φ})- l1(ES\ker{φ})-
module. Consider l1(E) acts on l1(S) as 2.1. Then X is a commutative
l1(S)-l1(E)-module such that for each f ∈ l1(ker{φ}), α ∈ l1(Eker{φ}),
we have:

f · x = x · f = 0, α · x = x · α = 0.

If D : l1(S\ker{φ})→ X∗ is a module derivation, then

D̃ = D(f |l1(S\ker{φ})) : l1(S)→ X∗

is well-defined. For each f ∈ l1(S\ker{φ}), g ∈ l1(ker{φ}) we have
D̃(fg) = 0. On the other hand, since g ∈ l1(ker{φ}), g · x = 0. Thus
D̃(f) · g = 0. By definition of D̃, D̃(g) = 0 and so D̃(f) · g + f ·
D̃(g) = 0 = D̃(fg). Hence from the fact D is a module derivation and
D̃|l1(ker{φ}) = 0, we conclude that D̃(fg) = D̃(f) · g+ f · D̃(g). Now for
f ∈ l1(S), α ∈ l1(Eker{φ}) we have f · α ∈ l1(ker{φ}) and

D̃(f · α) = D̃(fα) = 0 = D̃(f) · α.
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It is easy to see that

D̃(α · f) = D̃(φ̂(α)f) = 0 = α · D̃(f).

Also if α ∈ l1(ES\ker{φ}), we have

D̃(α · f) = D(α · f |S\ker{φ}) = α ·D(f |S\ker{φ}) = α · D̃(f).

Similarly D̃(f · α) = D̃(f) · α and D̃ is a module derivation. By as-
sumption, D̃ is inner and so D is inner. Thus l1(S\ker{φ}) is φS\ker{φ}-
module amenable and by theorem 3.1 of [1] S\ker{φ} is amenable.
Conversely, suppose that S\ker{φ} is amenable. If µ is a right invari-
ant mean on S\ker{φ} and M is defined on l∞(S × S) by

M(f) =

∫
S\ker{φ}

f(t∗, t)dµ(t).

Clearly, M is a bounded linear functional such that M(1⊗1) = µ(1) =
1. Also for each s ∈ S and f ∈ l∞(S × S) we have

s ·M(f) = M(f.s) =

∫
S\ker{φ}

f(st∗, t)dµ(t)

=

∫
S\ker{φ}

f(ss∗t∗, ts)dµ(t)

=

∫
S\ker{φ}

f((tss∗)∗, (tss∗)∗s)dµ(t)

=

∫
S\ker{φ}

f(t∗, ts)dµ(t)

= M(s · f) = M · s(f).

Also, for each s ∈ S and f ∈ J⊥ we have

w∗∗(M) · s(f) = w∗∗(M) · (f · s) = M(w∗(f · s))

=

∫
S\ker{φ}

w∗(f · s)(t∗, t)dµ(t)

=

∫
S\ker{φ}

f · s(t∗t)dµ(t)

=

∫
S\ker{φ}

f(st∗t)dµ(t)

= f(s)

∫
S\ker{φ}

dµ(t) = f(s).

�
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2. φ-amenability of semigroup algebras

Any statement about left φ-amenability and left character amenabil-
ity turns in to an analogous statement about right φ-amenability and
right character amenability.

Theorem 2.1. If l1(S) is φ̂-amenable, then S\ker{φ} is amenable and
ker{φ} satisfies condition Dk for some k.

Proof. Let T = S ∪ {1}. It follows from lemma 3.2 of [7] that l1(T )

is φ̂1-amenable which φ1 is the unique extension of φ to an element
of Φ(T ). By corollary 2.7 of [9], kerφ̂1 has a bounded approximate

identity. Put ψ : kerφ̂1 ∪ δ1 → C defined by

ψ(δ1) = 1, ψ(f) = 0 (f ∈ kerφ̂1).

By corollary 2.7 of [9], kerφ̂1 ∪ δ1 is ψ-amenable. Since kerφ̂1 ⊕1

Cδ1 is l1-direct sum of l1(kerφ) ⊕1 Cδ1 and E which E = {f ∈
l1(T\kerφ) : Σt∈T\kerφf(t) = 0}. Now from proposition 3.1 of [4], we
have l1(kerφ)⊕1 Cδ1 is ψ|l1(kerφ)⊕1Cδ1-amenable and by corollary 2.7 of
[9], l1(kerφ) has a bounded approximate identity and so kerφ satisfies

condition Dk for some k. Now by 1.1, it is suffices to show that φ̂-
amenablity of l1(S) implies φ̂|S\ker{φ}-amenablity of l1(S\ker{φ}) and
amenability of S\ker{φ} follows from Theorem 3.1 of [7].
Let X be a l1(S\ker{φ})-module and D : l1(S\ker{φ}) → X∗ be a
derivation. Clearly X is a l1(S)-module with the actions:

f · x = φ̂(f)x, x · f = x · f |l1(S\ker{φ}), (f ∈ l1(S), x ∈ X).

Consider D̂ : l1(S) → X∗ defined by D̂(f) = D(f |l1(S\ker{φ})) for all

f ∈ l1(S). It is clear that D̂ is a derivation and by assumption is

inner. Hence l1(S\ker{φ}) is φ̂|S\ker{φ}-amenable and so S\ker{φ} is
amenable. �

Corollary 2.2. Let S be an inverse semigroup. Then l1(S) is φ̂-
amenable for each φ ∈ Φ(S) if and only if I satisfies condition Dk

for some k and S\I is amenable, for each ideal I of S such that S\I
is a subsemigroup of S.

Proof. It follows from above theorem and theorem 2.6 of [9]. �

Now next corollary chracterize character amenability of l1(S) based
on the structure of S.

Corollary 2.3. Let S be an inverse semigroup such that satisfies con-
dition Dk for some k. Then l1(S) is character amenable if and only
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if I satisfies condition Dk for some k and S\I is amenable, for each
ideal I of S such that S\I is a subsemigroup of S.
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