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Abstract. In the present paper, we propose a new method for solving large-
scale generalized differential Sylvester equations, by projecting the initial
problem onto the extended block Krylov subspace with an orthogonality
Galerkin condition. This projection gives rise to a low-dimensional general-
ized differential Sylvester matrix equation. The low-dimensional equations
is then solved by Rosenbrock or BDF method. We give some theoretical
results and report some numerical experiments to show the effectiveness of
the proposed method.
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1 Introduction

In the present paper, we consider the generalized differential Sylvester ma-
trix equation (GDSME) of the form Ẋ(t) = AX(t) +X(t)BT +

k∑
i=1

NiX(t)MT
i − EF T , t ∈ [t0, Tf ]

X(t0) = X0,
(1)
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where A,Ni ∈ Rn×n, B,Mi ∈ Rp×p, and E ∈ Rn×s, F ∈ Rp×s, with
s � n, p. The matrices A and B are assumed to be large, sparse, and
nonsingular.

Generalized differential Sylvester matrix equations play a fundamen-
tal role in many problems in control, filter design theory, model reduc-
tion problems, differential equations and robust control problems; see,
[1–3,5,6,9,11,12,16,20,23] and the references therein. For small or medium-
sized differential Sylvester matrix equations, there are several methods to
solve this equation, for example Backward Differentiation Formula (BDF)
method and Rosenbrock method [6, 10, 16, 22]. For large generalized dif-
ferential Sylvester matrix equations, we propose a new method based on
projection onto extended block Krylov subspaces [3,7,8,14,17,18,24] with
an orthogonality Galerkin condition.

The rest of the paper is organized as follows. In Section 2, we recall
the extended block Arnoldi process with some of its properties. In Section
3, we give a low-rank method for solving large-scale generalized differen-
tial Sylvester equations, by using projections onto extended block Krylov
subspaces Kem(A,E) and Kem(B,F ), and Galerkin orthogonality condition.
Then, in Section 4, we give some iterative methods for solving the ob-
tained low dimensional problem. Finally, Section 5 is devoted to numerical
experiments.

Throughout the paper, we use the following notations. The Frobenius
inner product of the matrices X and Y is defined by 〈X,Y 〉F = tr(XTY ),
where tr(Z) denotes the trace of a square matrix Z. The associated norm
is the Frobenius norm denoted by ‖.‖F .

2 The extended block Arnoldi process

We will consider the extended block Krylov subspaces associated to the
pair (A,E) which is defined as follows

Kem(A,E) = range{E,A−1E,AE,A−2E,A2E, . . . , Am−1E,A−mE}.

We recall the extended block Arnoldi (EBA) [3, 7, 8, 17] algorithm, when
applied to the pair (A,E). The extended block Arnoldi is described in
Algorithm 1 as follows:

After m steps, Algorithm 1 builds an orthonormal basis Vm = [V1, . . . ,
Vm] of the extended block Krylov subspace Kem(A,E). Let Tm,A = VTmAVm
be a 2s × 2s block upper Hessenberg matrix. Then we have the following
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Algorithm 1 The extended block Arnoldi algorithm (EBA)

Inputs: A an n× n matrix, E an n× s matrix and m an integer.

1. Compute the QR decomposition of [E,A−1E], i.e, [E,A−1E] = V1Λ;

2. Set V0 = [ ];

3. For j = 1, 2, 3, . . . ,m

4. Set V
(1)
j = Vj(:, 1 : s) et V

(2)
j = Vj(:, s+ 1 : 2s)

5. Vj = [Vj−1, Vj ]; V̂j+1 = [AV
(1)
j , A−1V

(2)
j ];

6. For i = 1, . . . , j

7. Hi,j = V T
i V̂j+1;

8. V̂j+1 = V̂j+1 − ViHi,j ;

9. End For i

10. Compute the QR decomposition of U i.e., V̂j+1 = Vj+1Hj+1,j ;

11. End For j.

Output: Vm = [V1, . . . , Vm].

relations

AVm = VmTm,A + Vm+1T
A
m+1,mE

T
m = Vm+1

[
Tm,A

TAm+1,mE
T
m

]
,

where ETm = [02s×2s(m−1), I2s] is the matrix formed by the last 2s columns
of the 2ms× 2ms identity matrix I2ms.

3 Low rank approximate solutions

In this section, we show how to obtain low rank approximate solutions
to the generalized differential Sylvester equation (1) by first projecting di-
rectly the initial problem onto extended block Krylov subspaces and then
solve the obtained low dimensional differential problem. We first apply the
extended block Arnoldi algorithm to the pairs (A,E) and (B,F ) to get the
orthonormal matrices Vm andWm, whose columns form orthonormal bases
of the extended block Krylov subspaces Kem(A,E) and Kem(B,F ), respec-
tively. We also get the upper block Hessenberg matrices Tm,A = VTmAVm
and Tm,B = WT

mBWm. After m iterations, we consider the low rank ap-
proximate solutions Xm(t) of exact solution X(t) to equation (1) of the
form

Xm(t) = VmYm(t)WT
m. (2)

The matrix Ym(t) can be obtained by the Petrov-Galerkin orthogonality
condition

VTmRm(t)Wm = 0, t ∈ [t0, Tf ], (3)
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where

Rm(t) = Ẋm(t)−AXm(t)−Xm(t)BT −
k∑
i=1

NiXm(t)MT
i + EF T . (4)

Using this condition and the relation (2), we obtain the reduced generalized
differential Sylvester matrix equation

Ẏm(t) = Tm,AYm(t) + Ym(t)TTm,B +
k∑
i=1

Ni,mYm(t)MT
i,m − ẼmF̃ Tm, (5)

where 
Ni,m = VTmNiVm,
Mi,m = WT

mMiWm,

Ẽm = VTmE,
F̃m = WT

mF.

Next, we give a result that allows us the computation of the norm of the
residual without forming the approximation Xm(t) at each step m of the
extended block Arnoldi process. The approximation Xm(t) is computed in
a factored form only when convergence is achieved.

Theorem 1. Let Xm(t) = VmYm(t)WT
m be the approximation obtained at

step m by extended block Arnoldi process. Then, the Frobenius norm of the
residual Rm(t) associated to the approximation Xm(t) satisfies the relation

‖Rm(t)‖F =

√
‖TAm+1,mY

(1)
m (t)‖2F + ‖TBm+1,mY

(2)
m (t)‖2F , (6)

where Y
(1)
m (t) and Y

(2)
m (t) are the 2s×2ms matrix corresponding to the last

2s rows of Ym(t) and Y T
m (t) and respectively.

Proof. We have

Rm(t) =VmẎm(t)WT
m −AVmYm(t)WT

m − VmYm(t)WT
mB

T

+
k∑
i=1

NiVmYm(t)WT
mM

T
i − EF T .

Using the relations

AVm = Vm+1

[
Tm,A

TAm+1,mE
T
m

]
,

WT
mB

T =
[
TTm,B Em(TBm+1,m)T

]
WT
m+1,

Vm = Vm+1

[
I2sm

02s×2ms

]
,
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and Ym(t) is the solution of reduced generalized differential Sylvester equa-
tion (5), we get

Rm(t) = Vm+1

[
02ms×2ms −Ym(t)Em

(
TBm+1,m

)T
−TAm+1,mE

T
mYm(t) 02s×2s

]
WT
m+1.

Let Y
(1)
m (t) := ETmYm(t) and Y

(2)
m (t) := ETm (Ym(t))T , so

Rm(t) = Vm+1

 02ms×2ms −
(
Y

(2)
m (t)

)T (
TBm+1,m

)T
−TAm+1,mY

(1)
m (t) 02s×2s

WT
m+1.

Since Vm+1 and Wm+1 are the orthonormal matrices, we have

‖Rm(t)‖F =

√
‖TAm+1,mY

(1)
m (t)‖2F + ‖TBm+1,mY

(2)
m (t)‖2F , (7)

which completes the proof.

To save memory, the solution Xm(t) = VmYm(t)WT
m can be given as

a product of two matrices of low-rank. For that, we consider the singular
value decomposition of the 2ms × 2ms matrix Ym = UDV T , where D is
the diagonal matrix of the singular values of Ym(t) sorted in decreasing
order. Let Ul and Vl be the 2ms × l matrix of the first l columns of U
and V respectively, corresponding to the l singular values of magnitude
greater than some tolerance dtol. We obtain the truncated singular value
decomposition Ym ≈ UlDlV

T
l where Dl = diag[λ1, . . . , λl]. Setting Z̃m,1 =

VmUlD
1
2
l and Z̃m,2 =WmVlD

1
2
l it follows that

Xm = Z̃m,1Z̃
T
m,2. (8)

The following result shows that the approximation Xm(t) is an exact solu-
tion of a perturbed generalized Sylvester differential equation.

Theorem 2. Let Xm(t) = VmYm(t)WT
m be the approximate solution ob-

tained after running m steps of the extended block Arnoldi process. Then
we have

Ẋm(t) = (A− Fm,A)Xm(t) +Xm(t)(B − Fm,B)T

+
k∑
i=1

NiXm(t)MT
i − EF T , (9)

where Fm,A = Vm+1T
A
m+1,mV

T
m and Fm,B = Wm+1T

B
m+1,mW

T
m.
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Proof. By multiplying from the left Eq. (5) by Vm and from the right by
WT
m, we obtain

Ẋm(t) = (AVm − Vm+1T
A
m+1,mE

T
m)Ym(t)WT

m + VmYm(t)(BWm

−WmT
B
m+1,mEm)T +

k∑
i=1

NiXm(t)MT
i − EF T .

On the other hand, since VTmVm = I2ms, and ETmVTm = V T
m , we have

ETmYm(t) = V T
mVmYm(t). Then, we have

Ẋm(t) = (A−Fm,A)Xm(t) +Xm(t)(B−Fm,B)T +
k∑
i=1

NiXm(t)MT
i −EF T ,

where Fm,A = Vm+1T
A
m+1,mV

T
m and Fm,B = Wm+1T

B
m+1,mW

T
m.

The following result indicates that the error matrix Em(t) = X(t) −
Xm(t) satisfies a generalized differential Sylvester equation.

Theorem 3. Let Xm(t) = VmYm(t)WT
m and Em(t) = X(t)−Xm(t). Then

we have

Ėm(t) = AEm(t) + Em(t)BT +
k∑
i=1

NiEm(t)MT
i −Rm(t). (10)

Proof. According to (1) and (4), we obtain

Ėm(t) = Ẋ(t)− Ẋm(t)

= AX(t) +X(t)BT +
k∑
i=1

NiX(t)MT
i − EF T −AXm(t)−Xm(t)BT

−
k∑
i=1

NiXm(t)MT
i + EF T −Rm(t)

= A(X(t)−Xm(t)) + (X(t)−Xm(t))BT +
k∑
i=1

Ni(X(t)−Xm(t))MT
i

−Rm(t)

= AEm(t) + Em(t)BT +
k∑
i=1

NiEm(t)MT
i −Rm(t).

So the proof is complete.
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The error Em(t) satisfies in the following differential equation

Ėm(t) = AEm(t) + Em(t)BT +
k∑
i=1

NiEm(t)MT
i −Rm(t).

Equation (10) is equivalent to{
Ėm(t) = AEm(t)− bm(t),
E0 = vec(Em(t0)).

(11)

where 
A = Ip ⊗A+B ⊗ In +

k∑
i=1

Mi ⊗Ni,

Em(t) = vec(Em(t)),
bm(t) = vec(Rm(t)),

The solution of (11) is given by (see for example [1, 23])

Em(t) = e(t−t0)AE0 −
∫ t

t0

e(t−τ)Abm(τ)dτ, t ∈ [t0, Tf ].

The 2-logarithmic norm of the matrix A is defined by µ2(A) = λmax(A +
AT )/2. The 2-logarithmic norm satisfies the following property for the ma-
trix exponential ‖etA‖2 ≤ eµ2(A)t, t ≥ 0. In the following result, we give
an upper bound for the norm of the error Em(t) = X(t)−Xm(t):

‖Em(t)‖2 ≤ ‖e(t−t0)AE0 −
∫ t

t0

e(t−τ)Abm(τ)dτ‖2

≤ ‖e(t−t0)AE0‖2 + ‖
∫ t

t0

e(t−τ)Abm(τ)dτ‖2

≤ e(t−t0)µ2(A)‖E0‖2 +

∫ t

t0

e(t−τ)µ2(A)‖bm(τ)‖2dτ

≤ e(t−t0)µ2(A)‖E0‖2 + max
τ∈[t0,t]

‖bm(τ)‖2
∫ t

t0

e(t−τ)µ2(A)dτ

≤ e(t−t0)µ2(A)‖E0‖2 + max
τ∈[t0,t]

‖bm(τ)‖2
e(t−t0)µ2(A) − 1

µ2(A)

≤ e(t−t0)µ2(A)‖E0‖2 + max
τ∈[t0,t]

‖vec(Rm(τ))‖2
e(t−t0)µ2(A) − 1

µ2(A)
.

As ‖vec(Em(t))‖2 = ‖Em(t)‖F , so

‖Em(t)‖F ≤ e(t−t0)µ2(A)‖Em(t0)‖F + max
τ∈[t0,t]

‖Rm(τ)‖F
e(t−t0)µ2(A) − 1

µ2(A)
.
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Since

max
τ∈[t0,t]

‖Rm(τ)‖F ≤
√
‖TAm+1,m‖2F + ‖TBm+1,m‖2F

×max

{
max
τ∈[t0,t]

‖Y (1)
m (τ)‖F , max

τ∈[t0,t]
‖Y (2)

m (τ)‖F
}
.

Then, we have the following upper bound for the norm of the error,

‖Em(t)‖F ≤ e(t−t0)µ2(A)‖Em(t0)‖F + αmρm
e(t−t0)µ2(A) − 1

µ2(A)
,

where

αm = max

{
max
τ∈[t0,t]

‖Y (1)
m (τ)‖F , max

τ∈[t0,t]
‖Y (2)

m (τ)‖F
}
,

ρm =
√
‖TAm+1,m‖2F + ‖TBm+1,m‖2F .

In the next section, we give some iterative methods for solving the
reduced order differential Sylvester matrix equation (5).

4 Methods for solving the reduced generalized
differential Sylvester equation

4.1 Rosenbrock method

In this section, we apply the Rosenbrock method [10, 22] to the low di-
mensional generalized differential Sylvester matrix equation (5). The new
approximation Ym,j+1 of Ym(tj+1) obtained at step j + 1 is defined, by the
relation

Ym,j+1 = Ym,j +
3

2
K1 +

1

2
K2, (12)

where K1 and K2 solve the following generalized Sylvester matrix equations

Tm,AK1 +K1T Tm,B +

k∑
i=1

VTmNiVmK1WT
mM

T
i Wm = g(Ym,j), (13)

and

Tm,AK2 +K2T Tm,B +
k∑
i=1

VTmNiVmK2WT
mM

T
i Wm = g(Ym,j +K1) +

2

h
K1,

(14)



Extended Krylov method for generalized Sylvester equation 197

where
Tm,A = 1

2hI2ms − γTm,A,
Tm,B = 1

2hI2ms − γTm,B,

g(Y ) = Tm,AY + Y TTm,B +

k∑
i=1

VTmNiVmYWT
mM

T
i Wm − VTmEF TWm.

The equations (13) and (14) are written as the form

AmX +XBT
m +

k∑
i=1

NmiXM
T
mi = Cm. (GSME) (15)

Let Am = QAUAQ
T
A and Bm = QBUBQ

T
B be the real Schur decompositions

of the matrices Am and Bm, respectively. Then, to solve the small or
medium size of generalized Sylvester matrix equation (15) we will apply
the following algorithm

Algorithm 2 The GSME-small method for solving (15)

Input: Matrices Am, Bm, Nm1. . . , Nmk, Mm1,. . . , Mmk and Cm.

1. Choose a tolerance tol > 0.

2. Compute: Am = QAUAQ
T
A.

3. Compute: Bm = QBUBQ
T
B.

4. Compute: Ni = QTANmiQA, Mi = QTBMmiQB for i = 1, . . . , k.

5. Compute: C = QTACmQB.

6. Solve UAY0 + Y0U
T
B = C.

7. Set Z = Y0
8. For j = 0, 1, . . . untill convergence do

(a) Solve UAYj+1 + Yj+1U
T
B = −

k∑
i=1

NiYjMT
i .

(b) Set Z = Z + Yj+1.

(c) If ‖R(j+1)‖F ≤ tol then

(d) Set l = j + 1

(e) Break

(f) End

9. End For j

10. Return X(l) = QAZQ
T
B.

Output: X(l).

For more details on this approach to solve generalized Sylvester ma-
trix equation (15) see [4, 5, 15, 19]. Now, we summarize the steps of the
Rosenbrock in the following algorithm
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Algorithm 3 The (Ros-2) method for solving reduced GDSE (5)

Input: Tm,A,Tm,B,Vm,Wm, E, F, t0, Tf , Ni and Mi, for i = 1, . . . , k.

1. Choose h.

2. Compute: r =
Tf−t0
h

3. Compute: Tm,A = 1
2hI2ms − Tm,A

4. Compute: Tm,B = 1
2hI2ms − Tm,B

5. Compute: Ni,m = VTmNiVm
6. Compute: Mi,m =WT

mMiWm

7. For j = 1 : r

(a) Apply GSME–small (Algorithm 2) to (13)

(b) Apply GSME–small (Algorithm 2) to (14)

(c) Calculate Ym,j+1 by (12)

8. End For j.

Output: Ym,j+1.

We summarize the steps of this approach extended block Arnoldi and
Rosenbrock method to solving the generalized differential Sylvester matrix
equation (1) in the following algorithm.

Algorithm 4 The extended block Arnoldi–Rosenbrock (EBA-Ros) method
for Solving GDSE

Input: X0, A, B, E and F an matrix.

1. Choose a tolerance tol > 0 and an integer mmax.

2. For m = 1 : mmax

(a) Apply EBA (Algorithm 1) to (A,E) and (B,F ) to get Vm,Wm,
Tm,A and Tm,B.

(b) Apply the Ros-2 method (Algorithm 3) to solve the low dimen-
sional generalized differential Sylvester equation (5).

(c) If ‖Rm‖F < tol, stop.

3. End For m

4. Compute the approximate solution Xm in the factored form given
by the relation (8).

Output: Xm.
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4.2 BDF method

We use the Backward Differentiation Formula (BDF) method for solving
the reduced generalized differential Sylvester matrix equation (5). At each
time tj , let Ym,j of the approximation of Ym(tj), where Ym is a solution
of (5). Then, the new approximation Ym,j+1 of Ym(tj+1) obtained at step
j + 1 by BDF2 is defined by the implicit relation

Ym,j+1 =
4

3
Ym,j −

1

3
Ym,j−1 +

2h

3
f(Ym,j+1), (16)

where h = tj+1 − tj is the step size, and f(Y ) is given by

f(Y ) = Tm,AY + Y TTm,B +
k∑
i=1

Ni,mYM
T
i,m − VTmEF TWm.

The approximate Ym,j+1 solves the following matrix equation

− Ym,j+1 +
2h

3
f(Ym,j+1) +

4

3
Ym,j −

1

3
Ym,j−1 = 0. (17)

Let 
Tm,A = 2h

3 Tm,A − 1
2I2ms and Tm,B = 2h

3 Tm,B − 1
2I2ms,

Qm,j+1 = −2h
3 V

T
mEF

TWm + 4
3Ym,j −

1
3Ym,j−1,

Ni,m =
√

2h
3 V

T
mNiVm and Mi,m =

√
2h
3 W

T
mMiWm,

Therefore, we can write equation (17) as the following generalized Sylvester
matrix equation:

Tm,AYm,j+1 + Ym,j+1T Tm,B +

k∑
i=1

Ni,mYm,j+1M
T
i,m + Qm,j+1 = 0. (18)

To solve this equation we will apply the GSME–small algorithm (Algorithm
2). We summarize the steps of the BDF2 method in the following algorithm

Algorithm 5 The BDF2 method for reduced GDSE (5)

Input: Tm,A,Tm,B,Vm,Wm, E, F,Ni,m,Mi,m, t0, Tf .

1. Choose h.

2. Compute: r =
Tf−t0
h .

3. Compute: Tm,A,Tm,B, Ni,m, Mi,m.

4. For j = 1 : r

(a) Compute: Qj+1.
(b) Apply GSME–small (Algorithm 2) for Solving the GSME (18).

5. End For j.

Output: Ym,Tf .
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We summarize the steps of this approach extended block Arnoldi and
BDF2 method for Solving the generalized differential Sylvester matrix equa-
tion (1) in the following algorithm

Algorithm 6 The extended block Arnoldi–BDF (EBA-BDF2) method for
GDSE
Input: X0, A, B, E and F an matrix.

1. Choose a tolerance tol > 0 and an integer mmax.

2. For m = 1 : mmax

3. Apply EBA (Algorithm 1) to (A,E) and (B,F ) to get Vm, Wm,
Tm,A and Tm,B.

4. Apply BDF2 (Algorithm 5) to find the approximate solution of
equation (5).

5. If ‖Rm‖F < tol.

6. End For m

7. Compute the approximate solution Xm by using (8).

Output: Xm.

5 Numerical experiments

In this section, we present some numerical experiments of large and sparse
generalized differential Sylvester matrix equations. We give approach to
low-rank approximate solutions by extended block Arnoldi algorithm via
Rosenbrock method (EBA–Ros) and BDF method (EBA–BDF). The algo-
rithms are coded in Matlab R2018b. All the experiments were performed
on a Laptop with an Intel Core i3 processor and 4GB of RAM. In all of the
examples, the matrices E and F were generated randomly and their coef-
ficients were uniformly distributed in [0, 1]. The time interval considered
was [1, 2] and the initial condition X0 = 0.

Example 1. For the first experiment, we considered the generalized dif-
ferential Sylvester equation of the form

Ẋ(t) = AX(t) +X(t)BT + γ2NX(t)NT − EF T .

In Figure 1, we compared the componentX11 of the solution obtained by the
EBA-Ros and EBA-BDF methods, to the solution provided by the ode23s
method from Matlab. And on the left, the graph shows the variation of the
residual norm with the number of iterations, where A = tridiag(2,−5, 2),
B = tridiag(1,−4, 1), N = tridiag(3,−7, 3), h = 0.005, s = 2, γ = 1

6 , the
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Figure 1: Residual norms vs the number of extended block Arnoldi itera-
tions m(left plot) and values of X(1,1)(t) for t ∈ [1, 2] computed by ode23s,
EBA-Ros and EBA-BDF methods(right plot).

dimension of the matrices A and B are n = p = 36 and the tolerance was
set to 10−9 for the stopping criterion on the residual.

In Table 1, we give the obtained runtimes in seconds, the number of
iterations and the Frobenius residual norm at final time. We also used the
matrices add32, thermal from the Harwell Boeing collection [13] and fdm
matrix extracted from the Lyapack package [21] with h = 0.1.

Example 2. In this second example, we considered the particular case
general differential Lyapunov equation{

Ẋ(t) = AX(t) +X(t)AT +NX(t)NT − EET ,
X(0) = 0n,n,

(19)

In Figure 2, we plotted the Frobenius residual norm at final time Tf in
function of the number m of iterations for the EBA–Ros and EBA–BDF
methods, with A = tridiag(2,−5, 2), N = tridiag( 1

12 , 1,
1
12), the tolerance

was set to 10−9 for the stop test on the residual, we used a constant time
step h = 0.01. Their rank were set to s = 2.

In Table 2, we give the obtained runtimes in seconds, the number of
iterations and the Frobenius residual norm at final time, for both methods
EBA–BDF and EBA–Ros applied to Eq. (19), with A = tridiag(2,−5, 2),
N = tridiag( 1

12 , 1,
1
12), the tolerance was set to 10−9 for the stop test on
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Table 1: Runtimes and the Frobenius residual norms for Example 1.

Test Methods CPU time Iterations ‖Rm(Tf )‖F
A = tridiag(2,−5, 2), n = 6400 EBA–BDF 1.98s 12 4.04× 10−10

B = tridiag(1,−4, 1), p = 6400 EBA–Ros 0.58s 12 5.19× 10−10

N = tridiag(3,−7, 3), γ = 1
6

A = thermal.mtx , n = 3456 EBA–BDF 10.48 9 2.85× 10−10

B = tridiag(1,−4, 1), p = 3456 EBA–Ros 0.26s 9 2.14× 10−10

N = In, γ = 1
6

A = tridiag(2,−5, 2), n = 4960 EBA–BDF 30.75s 13 4.75× 10−10

B = add32.mtx, p = 4960 EBA–Ros 0.50s 13 8.53× 10−10

N = In, n = 4960, γ = 1

A = fdm(cos(xy), exy, 10) EBA–BDF 23.12s 12 5.56× 10−10

B = fdm(xy, x2 + y2, 1), γ = 1
5 EBA–Ros 0.45s 11 9.63× 10−10

N = tridiag(1, 0, 1), n = p = 3000
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Figure 2: Residual norm vs number m of extended block Arnoldi iterations
for Example 2.
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Table 2: Results for Example 2.

Test Methods CPU time Iterations ‖Rm(Tf )‖F
n = 3600 EBA–BDF 3.66s 13 1.32× 10−10

EBA–Ros 2.42s 13 2.50× 10−10

n = 6400 EBA–BDF 8.12s 13 4.26× 10−10

EBA–Ros 2.37s 13 4.39× 10−10

n = 8100 EBA–BDF 8.65s 13 6.04× 10−10

EBA–Ros 4.98s 13 5.71× 10−10

n = 36100 EBA–BDF 15.50s 14 1.97× 10−10

EBA–Ros 4.48s 14 2.00× 10−10

Table 3: Runtimes and the Frobenius residual norms for Example 3.

Test Methods CPU time Iterations ‖Rm(Tf )‖F
n = p = 1600 EBA–BDF 8.88s 13 9.36× 10−11

EBA–Ros 5.72s 13 8.49× 10−11

n = 6400, p = 3600 EBA–BDF 9.16s 12 5.73× 10−10

EBA–Ros 5.85s 12 5.00× 10−10

n = 10000, p = 8100 EBA–BDF 9.90s 13 2.00× 10−10

EBA–Ros 3.06s 13 2.14× 10−10

n = 14400, p = 12100 EBA–BDF 10.61s 13 3.00× 10−10

EBA–Ros 3.27s 13 3.05× 10−10

the residual, we used a constant time step h = 0.01. Their rank were set
to s = 2, for the EBA–Ros and EBA–BDF methods.

Example 3. In this example, we considered the generalized differential
Sylvester equation of the form

Ẋ(t) = AX(t) +X(t)BT +N1X(t)MT
1 +N2X(t)MT

2 − EF T .

In Table 3, we give the obtained runtimes in seconds, the number of itera-
tions and the Frobenius residual norm at final time, for solving equation (1),
where A = tridiag(2,−5, 2), B = tridiag(1,−4, 1), N1 = 1

5tridiag(3,−7, 3),
N2 = 1

5tridiag(1,−2, 1), M1 = 1
5tridiag(2, 5, 2), M2 = 1

5tridiag(3, 4, 3),
h = 0.01, s = 2 and the tolerance was set to 10−9 for the stop test on
the residual.
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6 Conclusion

We presented a new approach for computing approximate solutions to
large scale general differential Sylvester matrix equations. The approach
is based on projecting the initial problem onto a extended block Krylov
subspace to obtain a low dimensional general differential Sylvester equation
which is solved by using the well known BDF or Rosenbrock methods. We
gave some theoretical results such as the exact expression of the residual
norm. Numerical experiments show that the proposed method is effective
for large-scale problems.
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