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Abstract. In this paper, a new two-parameter estimator is proposed. This
estimator is a generalization of two-parameter (TP) estimator introduced
by Özakle and Kaçiranlar (The restricted and unrestricted two-parameter
estimator, Commun. Statist. Theor. Meth. 36 (2007) 2707–2725) and in-
cludes the ordinary least squares (OLS), the ridge and the generalized Liu
estimators, as special cases. Here, the performance of this new estimator
over the TP estimator is theoretically investigated in terms of quadratic
bias (QB) criterion and its performance over the OLS and TP estimators
is also studied in terms of mean squared error matrix (MSEM) criterion.
Furthermore, the estimation of the biasing parameters is obtained, a nu-
merical example is given and a simulation study is done as well.
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estimator, two-parameter estimator.
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1 Introduction

Consider the linear regression model with

Y = Xβ + ε, (1)

where Y is an n × 1 vector of responses, X is an n × p matrix of the
explanatory variables and of full rank p (p ≤ n), β is a p × 1 vector of
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unknown parameters and ε is an n×1 vector of error terms with expectation
E(ε) = 0 and covariance matrix Cov(ε) = σ2I.

The OLS estimator, that is,

β̂OLS =
(
X ′X

)−1
X ′Y,

is often used to estimate β in model (1). In regression analysis, researchers
often face the problem of multicollinearity. In the presence of multicollinear-
ity, the OLS estimator performs weakly. Multicollinearity is defined as
the existence of nearly linear dependency between explanatory variables.
When there is multicollinearity, we have |X ′X| → 0. This causes the vec-
tor β̂OLS to have entries with big absolute value. As well, with regard to

Cov
(
β̂
)

= σ2(X ′X)−1, the multicollinearity causes the variance of the es-

timators for regression parameters to be very big, which in turn will results
in wide confidence intervals for parameters. To solve this problem, various
biased estimators have been presented.

Stein [11] and James and Stein [5] suggested a biased estimator, named
Stein-James estimator or the shrunk least squares estimator. Massy [9]
introduced the principal component regression (PCR) estimator. For mini-
mizing (Y −Xβ)′(Y −Xβ), Hoerl and Kennard [4] considered the restriction
of β′β = c, in which c is a constant value, to overcome the problem of mul-
ticollinearity. That is, using the Lagrange method, they minimized the
following expression

(Y −Xβ)′ (Y −Xβ) + k
(
β′β − c

)
,

where k ≥ 0 is the Lagrangian multiplier. As a result, they achieved the
ridge regression (RR) estimator as follows

β̂(k) =
(
X ′X + kI

)−1
X ′Y.

Parameter k ≥ 0 is also called biasing parameter.
Liu [7] obtained the estimator of β by shrinking β̂OLS , namely, by con-

sidering the following equation

dβ̂OLS = β + ε1,

where 0 < d < 1. Instead of minimizing just the expression (Y −Xβ)′

(Y −Xβ), he recommended to minimize the following expression,

(Y −Xβ)′ (Y −Xβ) + ε′1ε1 = (Y −Xβ)′ (Y −Xβ)

+
(
dβ̂OLS − β

)′ (
dβ̂OLS − β

)
.
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Consequently, he achieved the following estimator

β̂d =
(
X ′X + I

)−1 (
X ′Y + dβ̂OLS

)
.

He also introduced the generalized formula for this estimator by considering
the following equation,

Dβ̂OLS = β + ε2,

where D = diag (d1, d2, . . . , dp), di ≥ 0. That is, by minimizing the follow-
ing expression,

(Y −Xβ)′ (Y −Xβ) +
(
Dβ̂OLS − β

)′ (
Dβ̂OLS − β

)
,

he achieved the generalized estimator as follows

β̂GD =
(
X ′X + I

)−1 (
X ′Y +Dβ̂OLS

)
.

Özakle and Kaçiranlar [10] combined ridge and Liu estimators and achieved
the two-parameter (TP) estimator. They recommended to minimize the
following objective function,

(Y −Xβ)′ (Y −Xβ) + k

[(
dβ̂OLS − β

)′ (
dβ̂OLS − β

)
− c
]
.

The estimator they proposed is as follows

β̂(k, d) =
(
X ′X + kI

)−1 (
X ′Y + kdβ̂OLS

)
.

where k > 0 and 0 < d < 1. In this paper, the above-mentioned estimator
will be generalized.

The rest of the paper is as follows. In Section 2 the generalized two-
parameter (GTP) estimator is introduced. The performance of the pro-
posed estimator with respect to quadratic bias (QB) and mean squared
error matrix (MSEM) criteria is discussed in Section 3 and a method was
presented to choose the biasing parameters in Section 4. To compare this
estimator with TP and OLS estimators, a numerical example is given and
a simulation study is done in Sections 5 and 6, respectively. The conclusion
is given in Section 7.
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2 The proposed estimator

To simplify the consideration about the linear model, the canonical form
is often used. A symmetric matrix S = X ′X has a spectral decomposition
of the form S = PΛP ′, where P is an orthogonal matrix and Λ is a real
diagonal matrix. The diagonal elements of Λ are the eigenvalues of S and
the column vectors of P are eigenvectors of S. The orthogonal version of
the standard multiple linear regression model is

Y = XPP ′β + ε = Zα+ ε,

where Z = XP , α = P ′β and Z ′Z = Λ. The ordinary LS estimator of α is
given by

α̂OLS =
(
Z ′Z

)−1
Z ′Y = Λ−1Z ′Y. (2)

The two-parameter estimator introduced by Özakle and Kaçiranlar [10] is
defined as

α̂(k, d) = (Λ + kI)−1
(
Z ′Y + kdα̂OLS

)
= (Λ + kI)−1(Λ + kdI)α̂OLS . (3)

This estimator is derived by minimizing (Y − Zα)′ (Y − Zα) subject to
(α− dα̂OLS)′ (α− dα̂OLS) = c, that is by minimizing

(Y − Zα)′ (Y − Zα) + k
[
(α− dα̂OLS)′ (α− dα̂OLS)− c

]
,

where c is a constant and k is a the Lagrangian multiplier.
Here, by replacing d with D = diag (d1, d2, . . . , dp), the GTP estimator

will be obtained. That is, the following expression will be minimized

(Y − Zα)′ (Y − Zα) + k
[
(α−Dα̂OLS)′ (α−Dα̂OLS)− c

]
. (4)

Differentiating function (4) with respect to α will lead to(
Z ′Z + kI

)
α = Z ′Y + kDα̂OLS .

Consequently,

α̂(k,D) = (Λ + kI)−1
(
Z ′Y + kDα̂OLS

)
= (Λ + kI)−1 (Λ + kD) α̂OLS , (5)

where k > 0 and 0 < di < 1, i = 1, 2, . . . , p.
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Different estimators are derived from α̂(k,D) as follows

(I) lim
D→I

α̂(k,D) = α̂OLS .

(II) lim
k→0

α̂(k,D) = α̂OLS .

(III) lim
D→0

α̂(k,D) = (Λ + kI)−1Λα̂OLS = (Λ + kI)−1Z ′Y , which is RR

estimator.

(IV) α̂ (k, dI) = α̂ (k, d), which is TP estimator.

(V) α̂(1, D) = (Λ + I)−1 (Λ +D) α̂OLS = α̂GD, which is generalized Liu
estimator.

(VI) α̂(1, dI) = (Λ + I)−1 (Λ + dI) α̂OLS = α̂d, which is Liu estimator.

3 The performance of the new estimator by QB
and MSEM criteria

3.1 QB criterion

The QB of an estimator such as α̂ is defined as

QB(α̂) = Bias(α̂)′Bias(α̂), (6)

where Bias(α̂) = E(α̂)− α.

Theorem 1. If d < min{di, i = 1, 2, . . . , p}, then

QB (α̂ (k,D)) < QB (α̂ (k, d)) .

Proof. From Eqs. (3) and (5), it is concluded that

Bias (α̂(k, d)) = k(d− 1)(Λ + kI)−1α, (7)

Bias (α̂(k,D)) = k(D − I)(Λ + kI)−1α. (8)

Then, from Eq. (6), it is deduced that

QB (α̂ (k, d)) = k2(d− 1)2
p∑
i=1

α2
i

(λi + k)2

QB (α̂ (k,D)) = k2
p∑
i=1

(di − 1)2α2
i

(λi + k)2
. (9)
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Consequently,

QB (α̂ (k, d))−QB (α̂ (k,D)) = k2
p∑
i=1

[
(d− 1)2 − (di − 1)2

]
α2
i

(λi + k)2
.

Noticing that 0 < d < 1, 0 < di < 1, i = 1, . . . , p, the proof is completed.

3.2 MSEM criterion

The MSEM of an estimator such as α̂ is defined as

MSEM(α̂) = Cov(α̂) + Bias(α̂)Bias(α̂)′ (10)

Lemma 1. (Farebrother [2]) Let M be a positive definite matrix, namely
M > 0, and let l be a some vector, then M − ll′ > 0 if and only if l′M−1l <
1.

Lemma 2. (Trenkler and Toutenburg [12]) Let α̂j = AjY , j = 1, 2 be two
competing estimators of α. Suppose that E = Cov(α̂1) − Cov(α̂2) > 0,
where Cov(α̂j), j = 1, 2 denotes the covariance matrix of α̂j, j = 1, 2, then
∆(α̂1, α̂2) = MSEM(α̂1)−MSEM(α̂2) > 0 if and only if b′2(E+b1b

′
1)b2 < 1,

where MSEM(α̂j) and bj denote the mean squared error matrix and bias
vector of α̂j, respectively.

Theorem 2. If k > 0 and 0 < di < 1, i = 1, . . . , p, then

MSEM(α̂OLS)−MSEM(α̂(k,D)) > 0,

if and only if

kα′
[
2I + k(I +D)Λ−1

]−1
(I −D)α < σ2.

Proof. It is well-known that

Bias(α̂OLS) = 0, (11)

Cov(α̂OLS) = σ2Λ−1. (12)

From Eqs. (5) and (12), it is concluded that

Cov(α̂(k,D)) = σ2(Λ + kI)−1(Λ + kD)Λ−1(Λ + kD)(Λ + kI)−1. (13)
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Now, from Eqs. (12) and (13), the following equation is obtained:

E = Cov(α̂OLS)− Cov(α̂(k,D))

= σ2(Λ + kI)−1
[
(Λ + kI)Λ−1(Λ + kI)

− (Λ + kD)Λ−1(Λ + kD)
]
(Λ + kI)−1

= kσ2(Λ + kI)−1(I −D)
[
2I + k(I +D)Λ−1

]
(Λ + kI)−1. (14)

Consequently, using the equations (8), (11), (14) and Lemma 2, the proof
is completed.

Theorem 3. Let k > 0, 0 < d < 1, 0 < di < 1, i = 1, . . . , p and d >
max{di, i = 1, . . . , p}. Then

MSEM(α̂(k, d))−MSEM(α̂(k,D)) > 0,

if

kα′(I −D)(dI −D)
[
2I + k(dI +D)Λ−1

]
(I −D)α < σ2.

Proof. From Eqs. (3), (12), it is concluded that

Cov(α̂(k, d)) = σ2(Λ + kI)−1(Λ + kdI)Λ−1(Λ + kdI)(Λ + kI)−1. (15)

Now, from Eqs. (7), (10) and (15), it is derived that

MSEM(α̂(k, d)) = σ2(Λ + kI)−1(Λ + kdI)Λ−1(Λ + kdI)(Λ + kI)−1

− k2(d− 1)2(Λ + kI)−1αα′(Λ + kI)−1. (16)

On the other hand, from Eqs. (8), (10) and (13), it is resulted that

MSEM(α̂(k,D)) = σ2(Λ + kI)−1(Λ + kD)Λ−1(Λ + kD)(Λ + kI)−1

− k2(D − I)(Λ + kI)−1αα′(Λ + kI)−1(D − I). (17)

Consequently, from Eqs. (16) and (17), it is concluded that

MSEM(α̂(k, d))−MSEM(α̂(k,D))

= (Λ + kI)−1
{
σ2
[
(Λ + kdI)Λ−1(Λ + kdI)− (Λ + kD)Λ−1(Λ + kD)

]
+ k2(d− 1)2αα′ − k2(D − I)αα′(D − I)

}
(Λ + kI)−1.

It is obvious that k2(d− 1)2αα′ > 0. Therefore,

MSEM(α̂(k, d))−MSEM(α̂(k,D)) > 0,
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if

σ2
[
(Λ + kdI)Λ−1(Λ + kdI)− (Λ + kD)Λ−1(Λ + kD)

]
− k2(D − I)αα′(D − I) > 0. (18)

Denoting

M = σ2
[
(Λ + kdI)Λ−1(Λ + kdI)− (Λ + kD)Λ−1(Λ + kD)

]
= σ2diag

{
(λi + kd)2 − (λi + kdi)

2

λi

}p
i=1

,

if d > max{di, i = 1, . . . , p}, then M > 0. Consequently, using Lemma 1,
condition (18) is valid if and only if

k2α′(D − I)M−1(D − I)α < 1.

Therefore, the proof is completed.

4 Selection of the parameters k and di, i = 1, 2, . . . , p

The optimal values for the parameters of an estimator such as α̂ can be
derived by minimizing the scalar mean squared error (MSE) of α̂, which is
defined as

MSE(α̂) = E
[
(α̂− α)′(α̂− α)

]
= tr [MSEM(α̂)] . (19)

Then Eqs. (6), (10) and (19) will result in

MSE(α̂) = tr [Cov(α̂)] + QB(α̂). (20)

Consequently, from equations (9), (13) and (20), it is concluded that

MSE (α̂ (k,D)) =

p∑
i=1

σ2(λi + kdi)
2 + k2(di − 1)2α2

iλi

λi(λi + k)2
.

Now, the optimal values for k and di, i = 1, . . . , p, from the following
function will be obtained

f(k, d1, d2, . . . , dp) = MSE(α̂(k,D)).

The values of di, i = 1, 2, . . . , p, which minimize f (k, d1, d2, . . . , dp) for fixed
k value can be obtained by differentiating f (k, d1, d2, . . . , dp) with respect
to di, i = 1, 2, . . . , p.

∂f (k, d1, d2, . . . , dp)

∂di
=

2σ2k (λi + kdi) + 2k2(di − 1)α2
iλi

λi(λi + k)2
, i = 1, 2, . . . .p,
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and equating them to zero. After the unknown parameters σ2 and αi’s
are replaced with their unbiased estimators, the optimal estimator of di,
i = 1, 2, . . . , p for fixed k value, will be obtained as follows

d̂iopt =

(
kα̂2

i − σ̂2
)
λi

k
(
σ̂2 + α̂2

iλi
) , i = 1, 2, . . . , p. (21)

The k value, which minimizes the function f (k, d1, d2, . . . , dp), can be
found by differentiating f (k, d1, d2, . . . , dp) with respect to k when di’s,
i = 1, 2, . . . , p, are fixed

∂f (k, d1, d2, . . . , dp)

∂k
=

p∑
i=1

2σ2(λi + kdi)(di − 1) + 2k(di − 1)α2
iλi

(λi + k)3
,

and equating it to zero. Using the idea suggested by Hoerl and Kennard [4],

by equating the numerator of
∂f(k,d1,d2,...,dp)

∂k to zero, the value of k can be
derived as follows

k =
σ2

α2
i − di

(
σ2

λi
+ α2

i

) , i = 1, 2, . . . , p.

By replacing αi, i = 1, 2, . . . , p, and σ2 values with their unbiased esti-
mators, the optimal values of k for fixed di, i = 1, 2, . . . , p, values will be
obtained as follows

k̂ =
σ̂2

α̂2
i − di

(
σ̂2

λi
+ α̂2

i

) , i = 1, 2, . . . , p.

Using the idea suggested by Kiabria [6], the arithmetic mean of above-
mentioned k̂ values, the optimal estimator of k for fixed di, i = 1, 2, . . . , p
values, will be obtained as follows

k̂opt =
1

p

p∑
i=1

σ̂2

α̂2
i − di

(
σ̂2

λi
+ α̂2

i

) . (22)

Theorem 4. If

d̂i <
α̂2
i

σ̂2

λi
+ α̂2

i

, i = 1, 2, . . . , p, (23)

then k̂opt is always positive.
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Proof. From (22), it is concluded.

The selection of the estimators of the parameters k and di, i = 1, 2, . . . , p,
in β̂(k,D) can be obtained by applying the following iterative method.
Step 1. Calculate d̂i, i = 1, 2, . . . , p from (23).
Step 2. Estimate k̂opt from (22) by using d̂i, i = 1, 2, . . . , p, in Step 1.

Step 3. Obtain d̂iopt, i = 1, 2, . . . , p from (21) by using k̂opt in Step 2.

Step 4. If d̂iopt, i = 1, 2, . . . , p is negative, use d̂iopt = d̂i, i = 1, 2, . . . , p.

5 Numerical example

In order to illustrate the performance of the new estimator, the dataset
originally due to Gruber [3], and later discussed by Akdeniz and Erol [1],
is considered. Data found in economics are often multicollinear. Table 1
gives Total National Research and Development Expenditures-as a percent
of Gross National Product by country: 1972-1986. It represents the re-
lationship between the dependent variable Y , the percentage spent by the
United States, and the four other independent variables X1, X2, X3 and X4.
The variables X1, X2, X3 and X4, respectively, represent the percentage
spent by France, the percentage spent by West Germany, the percentage
spent by Japan, and the percentage spent by the former Soviet Union.

Table 1: The percentage of Gross National Product.

Year Y X1 X2 X3 X4

1972 2.3 1.9 2.2 1.9 3.7
1975 2.2 1.8 2.2 2.0 3.8
1979 2.2 1.8 2.4 2.1 3.6
1980 2.3 1.8 2.4 2.2 3.8
1981 2.4 2.0 2.5 2.3 3.8
1982 2.5 2.1 2.6 2.4 3.7
1983 2.6 2.1 2.6 2.6 3.8
1984 2.6 2.2 2.6 2.6 4.0
1985 2.7 2.3 2.8 2.8 3.7
1986 2.7 2.3 2.7 2.8 3.8

By considering X = [1, X1, X2, X3, X4], where 1 is a 10 × 1 vector in
which all elements are 1, the eigenvalues of X ′X are obtained as follows

λ1 = 312.9320, λ2 = 0.7536, λ3 = 0.0453, λ4 = 0.0372, λ5 = 0.0019

with σ̂2 = 0.0016. Consequently, the condition number is obtained 1.647×
105, which suggests the presence of very severe collinearity.
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In Table 2, the estimated QB and MSE of OLS, TP and GTP estimators
are presented. To obtain these values, first the theoretical values of the QB
and MSE of the estimators were used and then σ2 and αi, i = 1, . . . , p were
replaced with their unbiased estimators and at last the estimated optimal
of their other parameters were used.

Table 2: Comparing the estimators.

EMSE EQB

OLS 0.9566 0
TP 0.4278 0.2342

GTP 0.3472 0.2182

6 The Monte Carlo simulation

The explanatory variables are generated following McDonald [8]

xij = (1− ρ2)
1
2Zij + ρZi p+1, i = 1, 2, . . . , n, j = 1, 2, . . . , p,

where Zij ’s are independent standard normal pseudo-random numbers and
ρ is specified so that the theoretical correlation between any two explana-
tory variables is given by ρ2. Six different sets of correlations are considered
corresponding to ρ = 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, and twenty different values
of σ2 = 0.01, 0.05, . . . , 4, 5, will be studied, too.

Dependent variables yi, i = 1, 2, . . . , n, are generated by the following
equation:

yi = β1xi1 + β2xi2 + · · ·+ βpxip + εi, i = 1, 2, . . . , n.

Here, n = 30, p = 4, β1 = 0.2, β2 = 0.3, β3 = 0.4 and β4 = 0.5 are
considered. Also εi’s are independent normal Pseudo-random numbers with
mean 0 and variance σ2. For a choice of ρ and σ2, the simulation is repeated
10000 times. The estimated mean squared error (EMSE) is calculated for
α̂OLS , α̂(k, d) and α̂(k,D) as follows

EMSE(α̂) =
1

10000

10000∑
r=1

(α̂(r) − α)′(α̂(r) − α).

The estimated bias (EB) is calculated for α̂(k, d) and α̂(k,D) as follows

EB(α̂) =
1

10000

10000∑
r=1

(α̂(r) − α).
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Table 3: EMSE, ρ = 0.5.

σ2

0.01 0.05 0.1 0.2 0.3

OLS 0.0018 0.0091 0.0183 0.0367 0.0555
TP 0.0018 0.0090 0.0181 0.0357 0.0532

GTP 0.0019 0.0092 0.0176 0.0330 0.0468

σ2

0.4 0.5 0.6 0.7 0.8

OLS 0.0733 0.0914 0.1100 0.1264 0.1458
TP 0.0689 0.0843 0.0996 0.1127 0.1267

GTP 0.0595 0.0711 0.0830 0.0942 0.1057

σ2

0.9 1 1.25 1.5 1.75

OLS 0.1652 0.1858 0.2287 0.2738 0.3262
TP 0.1420 0.1567 0.1854 0.2127 0.2447

GTP 0.1182 0.1302 0.1555 0.1826 0.2138

σ2

2 2.5 3 4 5

OLS 0.3622 0.4604 0.5556 0.7180 0.9053
TP 0.2634 0.3129 0.3626 0.4298 0.5071

GTP 0.2326 0.2874 0.3434 0.4284 0.5276

For each replication, the values k and di, i = 1, 2, . . . , p, and the corre-
sponding α̂(k,D) are estimated by using the method in Section 4. Also
the values k, d and the corresponding α̂(k, d) are estimated by using the
method presented by Özakle and Kaçiranlar [10].

The estimated MSE (EMSE) of the OLS, TP and GTP estimators for
different values of ρ and σ2 are presented in Tables 3–8. Also the estimated
QB (EQB), obtained from EB, corresponding to α̂(k, d) and α̂(k,D), for
different values of ρ and σ2, are presented in Tables 9–14.

In Tables 3 and 4, when ρ = 0.5 and ρ = 0.6, respectively, the GTP
estimator has a better performance than the TP estimator for 0.1 ≤ σ2 ≤ 4
and has a better performance than the OLS estimator for 0.1 ≤ σ2 ≤ 5.

In Tables 5 and 6, when ρ = 0.7 and ρ = 0.8, respectively, the GTP
estimator has a better performance than the TP estimator for 0.05 ≤ σ2 ≤ 4
and has a better performance than the OLS estimator for 0.05 ≤ σ2 ≤ 5.

In Table 7, when ρ = 0.9, the GTP estimator has a better performance
than the TP estimator for 0.05 ≤ σ2 ≤ 2.5 and has a better performance
than the OLS estimator for 0.05 ≤ σ2 ≤ 5.

In Table 8, when ρ = 0.95, the GTP estimator has a better performance
than the TP estimator for 0.01 ≤ σ2 ≤ 1.5 and has a better performance
than the OLS estimator for 0.01 ≤ σ2 ≤ 5.
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Table 4: EMSE, ρ = 0.6.

σ2

0.01 0.05 0.1 0.2 0.3

OLS 0.0021 0.0103 0.0208 0.0411 0.0619
TP 0.0021 0.0102 0.0204 0.0396 0.0585

GTP 0.0022 0.0103 0.0193 0.0347 0.0487

σ2

0.4 0.5 0.6 0.7 0.8

OLS 0.0824 0.1045 0.1254 0.1437 0.1636
TP 0.0761 0.0941 0.1108 0.1245 0.1391

GTP 0.0613 0.0749 0.0870 0.0970 0.1078

σ2

0.9 1 1.25 1.5 1.75

OLS 0.1845 0.2073 0.2560 0.3094 0.3610
TP 0.1537 0.1700 0.2009 0.2337 0.2614

GTP 0.1199 0.1332 0.1600 0.1893 0.2157

σ2

2 2.5 3 4 5

OLS 0.4133 0.5141 0.6268 0.8169 1.0440
TP 0.2911 0.3362 0.3926 0.4719 0.5679

GTP 0.2456 0.2973 0.3595 0.4582 0.5807

Table 5: EMSE, ρ = 0.7.

σ2

0.01 0.05 0.1 0.2 0.3

OLS 0.0025 0.0125 0.0250 0.0494 0.0760
TP 0.0025 0.0124 0.0243 0.0469 0.0699

GTP 0.0026 0.0122 0.0221 0.0387 0.0545

σ2

0.4 0.5 0.6 0.7 0.8

OLS 0.1005 0.1246 0.1505 0.1766 0.1989
TP 0.0899 0.1087 0.1285 0.1475 0.1627

GTP 0.0684 0.0814 0.0952 0.1098 0.1214

σ2

0.9 1 1.25 1.5 1.75

OLS 0.2265 0.2501 0.3175 0.3815 0.4366
TP 0.1812 0.1959 0.2366 0.2727 0.2994

GTP 0.1356 0.1480 0.1845 0.2179 0.2437

σ2

2 2.5 3 4 5

OLS 0.5012 0.6235 0.7578 0.9966 1.2540
TP 0.3329 0.3896 0.4515 0.5509 0.6530

GTP 0.2771 0.3409 0.4113 0.5336 0.6657
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Table 6: EMSE, ρ = 0.8.

σ2

0.01 0.05 0.1 0.2 0.3

OLS 0.0035 0.0174 0.0345 0.0696 0.1049
TP 0.0034 0.0170 0.0330 0.0640 0.0929

GTP 0.0036 0.0162 0.0281 0.0493 0.0682

σ2

0.4 0.5 0.6 0.7 0.8

OLS 0.1399 0.1719 0.2054 0.2418 0.2779
TP 0.1194 0.1421 0.1652 0.1893 0.2109

GTP 0.0864 0.1024 0.1191 0.1378 0.1557

σ2

0.9 1 1.25 1.5 1.75

OLS 0.3130 0.3529 0.4329 0.5196 0.6963
TP 0.2327 0.2554 0.2985 0.3413 0.3826

GTP 0.1744 0.1946 0.2328 0.2767 0.3173

σ2

2 2.5 3 4 5

OLS 0.6905 0.8631 1.0451 1.3872 1.7167
TP 0.4201 0.4941 0.5738 0.7076 0.8322

GTP 0.3584 0.4447 0.5348 0.7056 0.8693

Table 7: EMSE, ρ = 0.9.

σ2

0.01 0.05 0.1 0.2 0.3

OLS 0.0063 0.0323 0.0634 0.1277 0.1926
TP 0.0063 0.0310 0.0585 0.1097 0.1556

GTP 0.0065 0.0266 0.0446 0.0778 0.1093

σ2

0.4 0.5 0.6 0.7 0.8

OLS 0.2605 0.3171 0.3907 0.4493 0.5133
TP 0.1996 0.2326 0.2741 0.3048 0.3374

GTP 0.1429 0.1682 0.2062 0.2328 0.2642

σ2

0.9 1 1.25 1.5 1.75

OLS 0.5746 0.6318 0.8073 0.9640 1.1204
TP 0.3669 0.3928 0.4726 0.5399 0.6031

GTP 0.2927 0.3185 0.4053 0.4799 0.5540

σ2

2 2.5 3 4 5

OLS 1.2873 1.6007 1.9231 2.5386 3.2162
TP 0.6738 0.7895 0.9195 1.1399 1.3935

GTP 0.6358 0.7789 0.9314 1.2235 1.5529
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Table 8: EMSE, ρ = 0.95.

σ2

0.01 0.05 0.1 0.2 0.3

OLS 0.0125 0.0628 0.1242 0.2466 0.3708
TP 0.0123 0.0579 0.1066 0.1899 0.2620

GTP 0.0120 0.0439 0.0751 0.1338 0.1920

σ2

0.4 0.5 0.6 0.7 0.8

OLS 0.4951 0.6261 0.7319 0.8592 1.0028
TP 0.3284 0.3938 0.4420 0.4966 0.5580

GTP 0.2527 0.3166 0.3632 0.4241 0.4915

σ2

0.9 1 1.25 1.5 1.75

OLS 1.1372 1.2399 1.5273 1.8669 2.1765
TP 0.6164 0.6570 0.7662 0.8982 1.0131

GTP 0.5541 0.6013 0.7372 0.8965 1.0440

σ2

2 2.5 3 4 5

OLS 2.4564 3.1136 3.7396 4.9859 6.2105
TP 1.1211 1.3606 1.5950 2.0464 2.4761

GTP 1.1773 1.4913 1.7899 2.3847 2.9546

Table 9: EQB, ρ = 0.5.

σ2

0.01 0.05 0.1 0.2

TP 3.3577× 10−6 6.7450× 10−5 2.8859× 10−4 9.5487× 10−5

GTP 7.3560× 10−7 7.9619× 10−6 1.9536× 10−5 4.1078× 10−5

σ2

0.3 0.4 0.5 0.6

TP 0.0021 0.0031 0.0043 0.0058
GTP 7.1923× 10−5 9.2023× 10−5 1.3334× 10−4 1.6937× 10−4

σ2

0.7 0.8 0.9 1

TP 0.0072 0.0084 0.0098 0.0115
GTP 2.4676× 10−4 2.8040× 10−4 3.7432× 10−4 4.4332× 10−4

σ2

1.25 1.5 1.75 2

TP 0.0141 0.0164 0.0198 0.0223
GTP 6.7685× 10−4 8.9358× 10−4 0.0013 0.0015

σ2

2.5 3 4 5

TP 0.0250 0.0312 0.0358 0.0393
GTP 0.0024 0.0032 0.0048 0.0061
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In Table 9, when ρ = 0.5, for 0.01 ≤ σ2 ≤ 5,

2.32 ≤ EQB(α̂TP )

EQB(α̂GTP )
≤ 34.24,

and

mean

(
EQB(α̂TP )

EQB(α̂GTP )

)
= 18.71.

Table 10: EQB, ρ = 0.6.

σ2

0.01 0.05 0.1 0.2

TP 5.8584× 10−6 1.3871× 10−4 5.0453× 10−4 0.0018
GTP 3.0249× 10−6 3.0536× 10−5 6.3256× 10−5 1.1362× 10−4

σ2

0.3 0.4 0.5 0.6

TP 0.0035 0.0057 0.0078 0.0099
GTP 1.7377× 10−4 2.0933× 10−4 2.6146× 10−4 2.9586× 10−4

σ2

0.7 0.8 0.9 1

TP 0.0124 0.0146 0.0172 0.0195
GTP 3.7222× 10−4 4.2906× 10−4 5.5307× 10−4 6.8264× 10−4

σ2

1.25 1.5 1.75 2

TP 0.0249 0.0294 0.0340 0.0377
GTP 9.5795× 10−4 0.0012 0.0014 0.0020

σ2

2.5 3 4 5

TP 0.0439 0.0497 0.0586 0.0635
GTP 0.0028 0.0038 0.0058 0.0080

In Table 10, when ρ = 0.6, for 0.01 ≤ σ2 ≤ 5,

1.94 ≤ EQB(α̂TP )

EQB(α̂GTP )
≤ 34.03,

and

mean

(
EQB(α̂TP )

EQB(α̂GTP )

)
= 20.42.

In Table 11, when ρ = 0.7, for 0.01 ≤ σ2 ≤ 5,

1.36 ≤ EQB(α̂TP )

EQB(α̂GTP )
≤ 39.03,
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Table 11: EQB, ρ = 0.7.

σ2

0.01 0.05 0.1 0.2

TP 1.0332× 10−5 2.4312× 10−4 8.6973× 10−4 0.0031
GTP 7.5740× 10−6 7.4227× 10−5 1.3660× 10−4 2.4667× 10−4

σ2

0.3 0.4 0.5 0.6

TP 0.0060 0.0091 0.0125 0.0159
GTP 3.3316× 10−4 3.5397× 10−4 3.7043× 10−4 4.5644× 10−4

σ2

0.7 0.8 0.9 1

TP 0.0194 0.0229 0.0263 0.0293
GTP 5.6417× 10−4 6.2990× 10−4 7.3330× 10−4 7.5062× 10−4

σ2

1.25 1.5 1.75 2

TP 0.0361 0.0425 0.0482 0.0534
GTP 9.8979× 10−4 0.0013 0.0015 0.0019

σ2

2.5 3 4 5

TP 0.0621 0.0668 0.0796 0.0861
GTP 0.0026 0.0041 0.0059 0.0080

Table 12: EQB, ρ = 0.8.

σ2

0.01 0.05 0.1 0.2

TP 2.1964× 10−5 4.8116× 10−4 0.0017 0.0055
GTP 1.8833× 10−5 1.0045× 10−4 2.5618× 10−4 3.0485× 10−4

σ2

0.3 0.4 0.5 0.6

TP 0.0104 0.0153 0.0202 0.0254
GTP 3.9374× 10−4 4.9255× 10−4 4.9342× 10−4 5.8792× 10−4

σ2

0.7 0.8 0.9 1

TP 0.0305 0.0345 0.0386 0.0425
GTP 6.8475× 10−4 6.8511× 10−4 7.3412× 10−4 7.7025× 10−4

σ2

1.25 1.5 1.75 2

TP 0.0515 0.0592 0.0658 0.0715
GTP 9.9231× 10−4 0.0012 0.0014 0.0020

σ2

2.5 3 4 5

TP 0.0807 0.0872 0.0977 0.1060
GTP 0.0027 0.0031 0.0050 0.0068
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and

mean

(
EQB(α̂TP )

EQB(α̂GTP )

)
= 23.76.

In Table 12, when ρ = 0.8, for 0.01 ≤ σ2 ≤ 5,

1.16 ≤ EQB(α̂TP )

EQB(α̂GTP )
≤ 55.18,

and

mean

(
EQB(α̂TP )

EQB(α̂GTP )

)
= 32.6.

Table 13: EQB, ρ = 0.9.

σ2

0.01 0.05 0.1 0.2

TP 7.1488× 10−5 0.0015 0.0049 0.0140
GTP 5.8316× 10−5 2.4421× 10−4 3.3347× 10−4 4.7426× 10−4

σ2

0.3 0.4 0.5 0.6

TP 0.0235 0.0324 0.0409 0.0478
GTP 4.9281× 10−4 5.0516× 10−4 5.7657× 10−4 5.8582× 10−4

σ2

0.7 0.8 0.9 1

TP 0.0542 0.0605 0.0649 0.0706
GTP 5.9802× 10−4 6.3600× 10−4 6.5398× 10−4 7.3646× 10−4

σ2

1.25 1.5 1.75 2

TP 0.0801 0.0883 0.0943 0.0993
GTP 9.5805× 10−4 0.0011 0.0012 0.0015

σ2

2.5 3 4 5

TP 0.1075 0.1144 0.1216 0.1277
GTP 0.0017 0.0025 0.0040 0.0054

In Table 13, when ρ = 0.9, for 0.01 ≤ σ2 ≤ 5,

1.23 ≤ EQB(α̂TP )

EQB(α̂GTP )
≤ 99.24,

and

mean

(
EQB(α̂TP )

EQB(α̂GTP )

)
= 58.43.

In Table 14, when ρ = 0.95, for 0.01 ≤ σ2 ≤ 5,

1.73 ≤ EQB(α̂TP )

EQB(α̂GTP )
≤ 128.94,
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Table 14: EQB, ρ = 0.95.

σ2

0.01 0.05 0.1 0.2

TP 2.6593× 10−4 0.0047 0.0133 0.0313
GTP 1.5399× 10−4 3.7387× 10−4 4.3908× 10−4 4.6131× 10−4

σ2

0.3 0.4 0.5 0.6

TP 0.0468 0.0594 0.0691 0.0783
GTP 4.7877× 10−4 6.5256× 10−4 6.5815× 10−4 7.0489× 10−4

σ2

0.7 0.8 0.9 1

TP 0.0848 0.0902 0.0950 0.0993
GTP 7.2367× 10−4 7.4055× 10−4 7.7354× 10−4 9.1609× 10−4

σ2

1.25 1.5 1.75 2

TP 0.1082 0.1145 0.1197 0.1239
GTP 8.3913× 10−4 9.2828× 10−4 0.0013 0.0014

σ2

2.5 3 4 5

TP 0.1302 0.1337 0.1391 0.1429
GTP 0.0021 0.0024 0.0038 0.0050

and

mean

(
EQB(α̂TP )

EQB(α̂GTP )

)
= 80.16.

From Tables 3–14, it is concluded that, for each value of ρ, as σ2 in-
creases, the EMSE and EQB of the estimators will increase. From Tables
9–14, it is concluded that the relative superiority of the α̂GTP over the α̂TP ,
in the sense of EQB, mostly increases as ρ increases.

7 Conclusion

In this paper, a two type parameter estimator was introduced and then its
performance over the two-parameter (TP) estimator in terms of QB crite-
rion was theoretically investigated and it was theoretically compared with
the TP and OLS estimators in terms of MSEM criterion. Moreover, the
estimation of the biasing parameters was presented, a numerical example
was given, and a simulation study was done to compare the performance of
the GTP estimator with the TP estimator in terms of EQB criterion, and
to compare the performance with the TP and OLS estimators in terms of
EMSE criterion.
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