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Abstract.An amperometric biosensor in trigger mode is a type of biosen-
sor which is used to improve the sensitivity and specificity of the detection
event by coupling different enzymes. In this paper, we study a numeri-
cal scheme to solve the one-dimensional diffusion-reaction equations with a
nonlinear term related to Michaelis-Menten kinetics of the enzymatic reac-
tions. In order to simulate numerically the model under study, we discretize
the time variable with a semi-implicit backward Euler approach. Also, we
use the meshfree collocation method based on thin plate spline radial basis
function for the discretization of the spatial derivative. The biosensor re-
sponse with and without amplification has been compared. The influence
of the normalized Michaelis constant, the maximal enzymatic rate and sub-
strate concentration on the triggering biosensor response is investigated.

Keywords: Biosensor, trigger mode, Michaelis-Menten kinetics, thin plate spline

radial basis function.
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1 Introduction

A biosensor is an analytical device that contains a biological material such
as tissues, micro-organism and cell receptors [17]. The enzyme in the
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biosensor discerns the substrate to be measured and specifically converts
it into a product of the biochemical reaction [21]. Amperometric biosensor
is a type of biosensor which converts a biochemical reaction process into a
measurable signal using transducer [2]. These low-cost biosensors are used
in biotechnology, medicine and environmental monitoring [12]. However,
amperometric biosensor possess a number of serious drawbacks. One of the
most important drawbacks is the short linear range of the calibration curve
that restricts wider use of the biosensors [6]. In terms of increasing the
range of analytes that may be detected, and the sensitivity and specificity
of the detection event have to couple diffrent enzymes. Chemical ampli-
fication is known as a powerful approach for increasing the sensitivity of
biosensors [8,9,24]. We can achieve this by cyclic conversion of substrates.
If a biosensor contains an enzyme that starts analyte conversion following
the cyclic product conversion the scheme of the biosensor action can be
called as ”triggering”. In this paper, we study the numerical simulation
of two mathematical models of biosensors acting, CCE and CEC schemes,
in a trigger mode. While the CCE scheme is applied as a framework to
investigate the behaviour of biosensors utilizing a trigger enzymatic reac-
tion following enzymatic and electrochemical conversion of the product, the
other model (CEC scheme) expresses the behaviour of biosensors utilizing
a trigger enzymatic reaction following the electrochemical and enzymatic
product cyclic conversion [1, 2, 16].

As far as we know, there are not too much work relating to the numer-
ical simulation of the models under study. Baronas et al. studied the finite
difference method for these biosensors [1,2].The main aim of this paper is to
show that the meshfree collocation method based on thin plate spline (TPS)
radial basis function (RBF) is also suitable for the numerical simulation of
the biosensors in a trigger mode. The RBFs method is known as a powerfull
tool for scattered data interpolation and is used actively for solving partial
differential equations [4, 10, 11, 15, 18, 19]. Since the numerical modeling
of biosensors with complex geometry such as biosensor based on heteroge-
neous microreactor, plate-gap biosensor and biosensor with selectived and
perforated membranes are very important problems [3,13,14,20,22,23], this
study can be useful for further research on the models under investigation.

The layout of the article is as follows: In Section 2, we provide a brief
review of the radial basis function collocation method based on TPS ra-
dial basis function. In Section 3, we describe two mathematical models of
biosensors acting in a trigger mode. In this section, we also discretize the
obtained non-linear diffusion-reaction equations by using the semi-implicit
backward Euler approch in time and the radial basis function collocation
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method based on TPS in space. The numerical simulation for both schemes,
CEC and CCE, are investigated in Section 4. Finally, the conclusion is pre-
sented in Section 5.

2 The radial basis function collocation method

Let x∗ ∈ Rd(d = 1, 2, 3). The radial basis function φ : Rd −→ R is an
invariant function whose value at any point x ∈ Rd depends only on the
distance from the fixed point x∗. This function can be written φ(r) =
φ(‖x − x∗‖) where ‖.‖ is the Euclidian norm and x∗ is the center of RBF
φ. Some classical choices of φ, such as multiquadrics, inverse multiquadrics
and Gaussian basis functions are dependent on a free shape parameter.
This shape parameter has an important role in the approximation of the
RBF method. In this study, we use TPS radial basis function since it does
not require a free shape parameter and its solution is not dependent on the
shape parameter [5]. More details on RBFs can be found in [7]. The TPS
function can be defined as φ(r) = r2 log(r). In TPS RBF interpolation on
N scattered nodes, the approximation of a function u(x) can be expressed
as follows

u(x) ≈
N∑
j=1

αjφ(‖x− xj‖) +
d+1∑
j=1

αN+jPj(x), (1)

where
∑N

j=1 αjPNj (xj) = 0, Nj = 1, . . . , d + 1, and {Pj(x)}d+1
j=1 are the

monomial basis functions in d-dimensions of total degree ≤ 1. The con-
cept of RBF interpolation can also be implemented for solving elliptic PDE
problems. We assume the solution in the form of Eq. (1). Then the coeffi-
cients αj are determined by enforcing the PDE and boundary conditions.
Let us consider the following equation

Lu(x) = f(x), x ∈ Ω, (2)

where L is differential operator. f is known function and the function u is
unknown. The boundary condition is

Bu(x) = g(x), x ∈ ∂Ω, (3)

where B is linear boundary operator, g is known function and Ω is a region
in Rd. Consider X = {x1,x2, . . . ,xN} as radial basis functions centers
and N = NI +NB where x1,x2, . . . ,xNI

∈ Ω, xNI+1,xNI+2, . . . ,xN ∈ ∂Ω.
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Now, by (1) into Eqs. (2) and (3), we have

N∑
j=1

αjLφ(‖x− xj‖) +
d+1∑
j=1

αN+jLPj(x) = f(x), x ∈ Ω, (4)

N∑
j=1

αjBφ(‖x− xj‖) +
d+1∑
j=1

αN+jBPj(x) = g(x), x ∈ ∂Ω. (5)

The collocation method is used by applying Eq. (4) at every point NI and
Eq. (5) at every point NB as follows:

N∑
j=1

αjLφ(‖xi − xj‖) +
d+1∑
j=1

αN+jLPj(xi) = f(xi), 1 6 i 6 NI ,

N∑
j=1

αjBφ(‖xi − xj‖) +
d+1∑
j=1

αN+jBPj(xi) = g(xi), NI + 1 6 i 6 N.

This technique leads to a linear system of algebraic equations with the
unknown vector of α = [α1, α2, . . . , αN+d+1]

T . By finding the unknown
vector of α, we can obtain a suitable approximation for Eq. (2).

3 Mathematical formulation

3.1 Mathematical model of biosensor in CCE scheme

In the CCE scheme, the substrate (Ŝ) is enzymatically E1 transformed into
the product (P̂1) followed by the enzymatic E2 conversion of first product
into another product that is electrochemically converted back to the first
product. This scheme is

Ŝ
E1−→ P̂1,

P̂1
E2−→ P̂2,

P̂2 −→ P̂1,

which by Fick’s law leads to the following system of equations [2]

∂Ŝ

∂t̂
= DŜ

∂2Ŝ

∂x̂2
−
Vmax(1)Ŝ

KM + Ŝ
,

∂P̂1

∂t̂
= DP̂1

∂2P̂1

∂x̂2
+
Vmax(1)Ŝ

KM + Ŝ
−
Vmax(2)P̂1

KM + P̂1

,

∂P̂2

∂t̂
= DP̂2

∂2P̂2

∂x̂2
+
Vmax(2)P̂1

KM + P̂1

, x̂ ∈ (0, d), t̂ > 0,

(6)
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where DŜ and DP̂i
(i = 1, 2) are the diffusion coefficients. Vmax(i) and KM

are the maximal enzymatic rate and the Michaelis constant, respectively.
Let x̂ = 0 represent the electrode surface and x̂ = d is interface of the bulk
solution and the enzyme membrane. The initial conditions are defined as
follows: 

Ŝ(x̂, 0) = 0, x̂ ∈ [0, d),

Ŝ(d, 0) = Ŝ0,

P̂i(x̂, 0) = 0, x̂ ∈ [0, d], i = 1, 2.

(7)

The substrate is electro-inactive substance at the electrode surface

∂Ŝ

∂x̂
(0, t̂) = 0, t̂ > 0. (8)

The electrode potential is chosen to keep zero concentration of the product
P̂2 at the electrode surface

P̂2(0, t̂) = 0, t̂ > 0. (9)

Due to the electrochemical reaction, the generation rate of the product P̂2

at the electrode surface is proportional to the generation rate of the product
P̂1, so we have

−DP̂2

∂P̂2

∂x̂
(0, t̂) = DP̂1

∂P̂1

∂x̂
(0, t̂), t̂ > 0. (10)

Assume the diffusion layer remains at a constant thickness, the concentra-
tions of the substrate and of both products over the enzyme surface remain
constant, then we have 

Ŝ(d, t̂) = Ŝ0,

P̂1(d, t̂) = 0,

P̂2(d, t̂) = 0.

(11)

The biosensor current depends upon the flux of the product P̂2 at the
electrode surface. From Fick and Faraday law we have [2]:

îCCE(t̂) = neFDP̂2

∂P̂2

∂x̂
(0, t̂). (12)
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In order to simulation of this scheme, Eqs. (6)- (11), can be written in
dimensionless form as follows:

∂S

∂t
=
∂2S

∂x2
− µ1S

K + S
,

∂P1

∂t
= r1

∂2P1

∂x2
+

µ1S

K + S
− µ2P1

K + P1
,

∂P2

∂t
= r2

∂2P2

∂x2
+

µ2P1

K + P1

(13)

with the initial conditions
S(x, 0) = 0, x ∈ [0, 1),

S(1, 0) = 1,

Pi(x, 0) = 0, x ∈ [0, 1], i = 1, 2,

(14)

and the boundary conditions
∂S
∂x (0, t) = 0,

r1
∂P1
∂x (0, t) = −r2 ∂P2

∂x (0, t),

P2(0, t) = 0,

S(1, t) = 1, Pi(1, t) = 0, t ∈ [0, T ], i = 1, 2,

(15)

where the normalized parameters are as follows

S =
Ŝ

Ŝ0
, Pi =

P̂i

Ŝ0
, x =

x̂

d
, t =

DŜ t̂

d2
, ri =

DP̂i

DŜ

, µi =
Vmax(i)d

2

DŜŜ0
, K =

KM

Ŝ0
.

(16)
We can also write Eq. (12) as follows:

iCCE(t) =
∂P2

∂x
(0, t). (17)

To solve Eqs. (13)- (17), we discrete the time variable using the semi-
implicit backward Euler method at first. So we divide [0, T ] into a finite
number of intervals [tn, tn+1] with length ∆t. Thus, in each time step we
have

Sn+1 − Sn

∆t
=
∂2Sn+1

∂x2
− µ1S

n+1

K + Sn
,

Pn+1
1 − Pn

1

∆t
= r1

∂2Pn+1
1

∂x2
+
µ1S

n+1

K + Sn
− µ2P

n+1
1

K + Pn
1

, (18)

Pn+1
2 − Pn

2

∆t
= r2

∂2Pn+1
2

∂x2
+
µ2P

n+1
1

K + Pn
1

,
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where Sn := Sh(x, tn), Pn
i := Pih(x, tn)(i = 1, 2) are known values and

Sn+1 := Sh(x, tn+1), P
n+1
i := Pih(x, tn+1)(i = 1, 2) are unknown values.

Now considering

Sh(x, t) =
N∑
j=1

λj(t)φ(‖x− xj‖) + λN+1x+ λN+2,

P1h(x, t) =

N∑
j=1

αj(t)φ(‖x− xj‖) + αN+1x+ αN+2

P2h(x, t) =
N∑
j=1

βj(t)φ(‖x− xj‖) + βN+1x+ βN+2,

the system (18) can be written as follows:

N∑
j=1

[−∆tφxx(‖xi − xj‖) + (1 +
µ1∆t

K + Sh(xi, tn)
)φ(‖xi − xj‖)]λn+1

j

+ (1 +
µ1∆t

K + Sh(xi, tn)
)(λn+1

N+1xi + λn+1
N+2) = Sh(xi, tn), i = 2, . . . , N − 1,

N∑
j=1

[−r1∆tφxx(‖xi − xj‖) + (1 +
µ2∆t

K + P1h(xi, tn)
)φ(‖xi − xj‖)]αjn+1

+ (1 +
µ2∆t

K + P1h(xi, tn)
)(αn+1

N+1xi + αn+1
N+2)

− µ1∆t

K + Sh(xi, tn)
(

N∑
j=1

φ(‖xi − xj‖)λn+1
j + λn+1

N+1xi + λn+1
N+2)

= P1h(xi, tn), i = 2, . . . , N − 1,

N∑
j=1

[−r2∆tφxx(‖xi − xj‖) + φ(‖xi − xj‖)]βn+1
j + βn+1

N+1xi + βn+1
N+2

− µ2∆t

K + P1h(xi, tn)
(

N∑
j=1

αn+1
j φ(‖xi − xj‖) + αn+1

N+1xi + αn+1
N+2)

= P2h(xi, tn), i = 2, . . . , N − 1.

(19)

By applying boundry conditions (15) in x1, xN and considering conditions

N∑
j=1

λn+1
j =

N∑
j=1

λn+1
j xj =

N∑
j=1

αn+1
j =

N∑
j=1

αn+1
j xj

=
N∑
j=1

βn+1
j =

N∑
j=1

βn+1
j xj = 0,
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we obtain a linear algebraic system with the unknown vector [λn+1
1 , λn+1

2 , . . . ,
λn+1
N+2, α

n+1
1 , αn+1

2 , . . . , αn+1
N+2, β

n+1
1 , βn+1

2 , . . . , βn+1
N+2]

T .

3.2 Mathematical model of biosensor in CEC scheme

In this scheme, the substrate is enzymatically converted to the product P̂1

followed by the electrochemical conversion of the product P̂1 to another
product P̂2 that in turn is enzymatically converted back to P̂1 as follows

Ŝ
E1−→ P̂1,

P̂1 −→ P̂2,

P̂2
E2−→ P̂1.

With the Fick’s law, we have [2]

∂Ŝ

∂t̂
= DŜ

∂2Ŝ

∂x̂2
−
Vmax(1)Ŝ

KM + Ŝ
,

∂P̂1

∂t̂
= DP̂1

∂2P̂1

∂x̂2
+
Vmax(1)Ŝ

KM + Ŝ
+
Vmax(2)P̂2

KM + P̂2

,

∂P̂2

∂t̂
= DP̂2

∂2P̂2

∂x̂2
−
Vmax(2)P̂2

KM + P̂2

, x̂ ∈ (0, d), t̂ > 0.

(20)

The notations are the same as in the model of a biosensor acting in the CCE
scheme. The initial conditions are the same as in the case of CCE scheme.
When the biosensor acts in the CEC mode, the electrode potential is chosen
to keep zero concentration of the product P̂1 at the electrode surface, i.e.,

P̂1(0, t̂) = 0, t̂ > 0. (21)

The dimensionless equations are as follows:

∂S

∂t
=
∂2S

∂x2
− µ1S

K + S
,

∂P1

∂t
= r1

∂2P1

∂x2
+

µ1S

K + S
+

µ2P2

K + P2
,

∂P2

∂t
= r2

∂2P2

∂x2
− µ2P2

K + P2
,

(22)

with the initial conditions
S(x, 0) = 0, x ∈ [0, 1),

S(1, 0) = 1,

Pi(x, 0) = 0, x ∈ [0, 1], i = 1, 2,

(23)
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and the boundry conditions
∂S
∂x (0, t) = 0,

−r1 ∂P1
∂x (0, t) = r2

∂P2
∂x (0, t),

P1(0, t) = 0,

S(1, t) = 1, Pi(1, t) = 0, t ∈ [0, T ].

(24)

The biosensor current depends upon the flux of the product P1 at the
electrode surface:

iCEC(t) =
∂P1

∂x
(0, t). (25)

To solve Eqs. (22)-(25), in the CEC mode, the governing equations can be
approximated similarly as in the case of the CCE mode. Then (22) can be
discretized as follows:

N∑
j=1

[−∆tφxx(‖xi − xj‖) + (1 +
µ1∆t

K + Sh(xi, tn)
)φ(‖xi − xj‖)]λn+1

j

+ (1 + µ1∆t
K+Sh(xi,tn) )(λn+1

N+1xi + λn+1
N+2) = Sh(xi, tn), i = 2, . . . , N − 1,

N∑
j=1

[−r1∆tφxx(‖xi − xj‖) + φ(‖xi − xj‖)]αjn+1 + αn+1
N+1xi + αn+1

N+2

− µ1∆t

K + Sh(xi, tn)
(

N∑
j=1

φ(‖xi − xj‖)λn+1
j + λn+1

N+1xi + λn+1
N+2)

− µ2∆t

K + P2h(xi, tn)
(

N∑
j=1

φ(‖xi − xj‖)βn+1
j + βn+1

N+1xi + βn+1
N+2)

= P1h(xi, tn), i = 2, . . . , N − 1,

N∑
j=1

[−r2∆tφxx(‖xi − xj‖) + (1 +
µ2∆t

K + P2h(xi, tn)
)φ(rij)]β

n+1
j

+ (1 + µ2∆t
K+P2h(xi,tn) )(βn+1

N+1xi + βn+1
N+2) = P2h(xi, tn), i = 2, . . . , N − 1.

(26)

By applying boundry conditions (15) in x1, xN and considering conditions

N∑
j=1

λn+1
j =

N∑
j=1

λn+1
j xj =

N∑
j=1

αn+1
j =

N∑
j=1

αn+1
j xj

=

N∑
j=1

βn+1
j =

N∑
j=1

βn+1
j xj = 0,

we get a linear algebraic system with the unknown vector [λn+1
1 , λn+1

2 , . . . ,
λn+1
N+2, α

n+1
1 , αn+1

2 , . . . , αn+1
N+2, β

n+1
1 , βn+1

2 . . . , βn+1
N+2]

T .
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4 Numerical Simulation

In this section, we will report the numerical simulation of biosensors includ-
ing two schemes CCE and CEC. Our numerical experiments are carried
out in Matlab software. For calculations, N = 201, ∆t = 0.05, d =
100µm, Dŝ = DP̂1

= DP̂2
= 300µm2/s, KM = 100µM and Ŝ0 = 100µM

are chosen. In Figures 1 and 2, the profiles of the substrate concentration
as well as the products concentration in the enzyme layer are presented for
biosensors acting in CCE and CEC modes.

Figure 1: The profile of the substrate and the products concentration in
enzyme layer acting in CCE mode.

In these figures, we consider the maximal enzymatic rate Vmax(1) =
Vmax(2) = 100µM/s. For both biosensors, the concentration of the substrate
at steady-state condition is approximately the same. In both figures, the
results are similar to those obtained in [1, 2].

At the steady state, t −→∞, S(x, t)+P1(x, t)+P2(x, t) = 1 is valid for
all x ∈ [0, 1] [2]. In order to efficient performance of the proposed method,
since there is not exact solution for the study models, the absolute residual
error function is given as δ(T ) = |S(x, T ) +P1(x, T ) +P2(x, T )− 1| in both
CCE and CEC modes. Figures 3 and 4 report the graph of the absolute
residual error function in CCE and CEC modes, respectively.

4.1 The effect of response amplification

One of the most important characteristics of the trigger is response ampli-
fication [2]. The steady-state current is similar for both type of biosensors,
iCCE(4.5) ≈ 4.22, iCEC(4.5) ≈ 4.41. The time of steady-state is also ap-
proximately the same in both modes. In Figure 5, we can observe the
steady-state current with and without amplification. This figure shows the
steady-state current is amplified in triggering mode. In order to compare



Numerical simulation of the biosensors in a trigger mode 133

Figure 2: The profile of the substrate and the products concentration in
enzyme layer acting in CEC mode.

Figure 3: The graph of the absolute residual error function in CCE mode.

Figure 4: The graph of the absolute residual error function in CEC mode.

the biosensor response with and without amplification, the gain of the sen-
sitivity is defined as the ratio of the steady-state current of the trigger
biosensor to the steady-state current of biosensor without amplification as
follows {

GCCE = iCCE
i ,

GCEC = iCEC
i .

(27)
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By using the calculation of GCCE and GCEC , we can see the steady-state
current increases up to about 10 times in both schemes.

Figure 5: The current profile with and without amplification.

4.2 The influence of the normalized Michaelis constant on
the gain of sensitivity.

The most differences in gain of the sensitivity is in high substrate concentra-
tions i.e. (Ŝ0 > KM ). Table 1 shows the steady-state current density for the
various normalized Michaelis constants (K = 0.1, 1, 10) with Ŝ0 = 100µM .
We can see the higher steady-state current in K = 0.1. In the normalized
Michaelis constant K = 0.1, the substrate concentration is 10 times higher
than Michaelis constant.

Table 1: the steady state current for different normalized Michaeelis con-
stants.

K 0.1 1 10

iCCE 6.97E0 4.22E0 7.4E − 1

iCEC 6.96E0 4.41E0 1.26E0

4.3 The influence of maximal enzymatic rates on steady-
state current.

As Tables 2 and 3 show, the steady-state current is monotonously increasing
functions of both arguments Vmax(1) and Vmax(2) in CCE and CEC modes.
In these calculations, Vmax(1) and Vmax(2) varied from 1µM/s to 1000µM/s.
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Table 2: The steady-state current density in Vmax(2) = 1000µM/s for dif-
ferent Vmax(1).

Vmax(1) 1 10 100 1000

iCCE 1.16E-1 1.21E0 8.16E0 1.34E + 1

iCEC 1.37E-1 1.30E0 8.23E0 1.34E + 1

Table 3: The steady-state current density in Vmax(1) = 1000µM/s for dif-
ferent Vmax(2).

Vmax(2) 1 10 100 1000

iCCE 8.16E − 2 7.64E − 1 4.35E0 1.34E + 1

iCEC 1.06E0 1.57E0 4.44E0 1.34E + 1

Table 3 shows that the variations of Vmax(2) has weak effect on current
density in CEC because of high substrate concentration. When Vmax(2) >
0, the enzyme E2 is active. In CCE mode, the active enzyme E2 has a
critical role in biosensor current. We can observe from Table 4 in the
case of Vmax(2) = 0 even if the activity of an enzyme E1 is very high, the
biosensor current would be zero. However, in CEC mode, when Vmax(2) =
0 the biosensor still generate the current if Vmax(1) > 0. In this case,
the biosensor response in CEC mode is the same as biosensor response
without an amplification.To investigate this, the steady-state current of
no-triggering biosensor has been calculated at the same condition as above.

Table 4: The steady-state current in CEC mode in the case of Vmax(2) = 0.

Vmax(1) 1 10 100 1000

iCCE 0 0 0 0

iCEC 7.97E − 2 5.63E − 1 9.91E − 1 1.02E0

ino−triggering 7.97E − 2 5.63E − 1 9.91E − 1 1.02E0

4.4 The influence of substrate concentration on steady state
current

As Table 5 shows, the behavior of the biosensor response versus the sub-
strate concentration is very similar in both schemes. The most differences
is in high substrate concentration.
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Table 5: The steady state current density for different substrate concentra-
tions.

Ŝ0 0.1 10 1000

iCCE 5.46E − 3 5.30E − 1 1.38E + 1

iCEC 5.57E − 3 5.41E − 1 2.16E + 1

5 Conclusions

In this paper, we studied the numerical simulation of biosensors including
two schemes CCE and CEC. The meshfree collocation method based on
TPS radial basis function in space variable and the semi-implicit backward
Euler in time variable were proposed to simulate mathematical modeling
of biosensors. In this study, the behaviour of biosensors versus various pa-
rameters such as normalized Michaelis constant, maximal enzymatic rates
and substrate concentration were carried out. In order to compare the
response of biosensor with and without amplification, the gain of the sen-
sitivity was studied. In this study, we observed that steady-state current
increased up in both scheme. The most differences in gain of the sensitivity
was in high substrate concentration. We concluded that the gain of sensi-
tivity decreased with increase in substrate consentration. As maximal en-
zymatic rates Vmax(1), Vmax(2) have a noticeable role in biosensor response,
we checked them in our simulations. We achieved that the steady-state
current of a triggering biosensor is monotonously increasing functions of
both maximal enzymatic rates. Since in CCE mode, the active enzyme E2

has a critical role in biosensor current, the biosensor response would be zero
at Vmax(2) = 0. We showed that in CEC mode if Vmax(2) = 0, the biosensor
response in CEC mode is the same as biosensor response without an am-
plification. We also investigated that the most differences in the biosensor
response is in high substrate concentration.
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