
Journal of Algebra and Related Topics

Vol. 7, No 1, (2019), pp 65-72

A NEW GAUSSIAN FIBONACCI MATRICES AND ITS
APPLICATIONS

B. PRASAD ∗

Abstract. In this paper, we introduced a new Gaussian Fibonacci
matrix, Gn whose elements are Gaussian Fibonacci numbers and
we developed a new coding and decoding method followed from
this Gaussian Fibonacci matrix, Gn. We established the relations
between the code matrix elements, error detection and correction
for this coding theory. Correction ability of this method is 93.33%.

1. Introduction

The Fibonacci numbers are defined by the recurrence relation:

Fn = Fn−1 + Fn−2 for n > 2 (1.1)

with initial seeds
F1 = F2 = 1. (1.2)

The Fibonacci numbers, Fn and golden mean,

τ = lim
n−→∞

Fn

Fn−1
=

1 +
√

5

2
(1.3)

have appeared in arts, sciences, high energy physics, information and
coding theory [3-7].
The Gaussian Fibonacci numbers [1] are defined by the recurrence re-
lation:

Gn = Fn + iFn−1 for n > 2 (1.4)
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with initial seeds

G0 = i, G1 = 1 (1.5)

where i is the imaginary unit which satisfies i2 = −1.
We defined a new Gaussian Fibonacci matrix, G

G =

(
G2 G1

G1 G0

)
=

(
1 + i 1

1 i

)
(1.6)

and

G2 = (1 + 2i)

(
1 1
1 0

)
= (1 + 2i)

(
F2 F1

F1 F0

)
,

G3 = (1 + 2i)

(
G3 G2

G2 G1

)
= (1 + 2i)[

(
F3 F2

F2 F1

)
+ i

(
F2 F1

F1 F0

)
].

In general,

G2k = (1 + 2i)k
(
Fk+1 Fk

Fk Fk−1

)
where k = 1, 2, 3, · · · . and DetG2k = (1 + 2i)k(−1)k.

G2k+1 = (1 + 2i)k[

(
Fk+2 Fk+1

Fk+1 Fk

)
+ i

(
Fk+1 Fk

Fk Fk−1

)
]

where k = 0, 1, 2, 3, · · · . and DetG = −(2−i), DetG2k+1 = (1+2i)k(2−
i) where k = 1, 2, 3, · · · .

2. Gaussian Fibonacci coding and decoding method

In this paper, we introduced a new coding theory, Gaussian Fi-
bonacci coding and decoding, which is the extension of Fibonacci cod-
ing and decoding method and it is applicable for a complex plane also.
In this method, we represent the message in the form of nonsingular
square matrix, M of order 2 and we represent the Gaussian matrix, Gn

of order 2 as coding matrix and its inverse matrix (Gn)−1 as a decod-
ing matrix. We represent a transformation M × Gn = E as Gaussian
Fibonacci coding and a transformation E × (Gn)−1 = M as Gaussian
Fibonacci decoding. We represent the matrix, E as code matrix.
Note
The code matrix, E is defined by the following formula E = M ×Gn.
According to the matrix theory [2] we have

Det E = Det(M ×Gn) = Det M ×Det Gn. (2.1)
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3. Main results

Case I
When n = 2k.
We can write the code matrix, E and the initial message, M as the
following

E = M×(G2k) =

(
m1 m2

m3 m4

)
(1+2i)k

(
Fk+1 Fk

Fk Fk−1

)
=

(
e1 e2
e3 e4

)
and

M = E × (G2k)−1 =

(
e1 e2
e3 e4

)
1

(1 + 2i)k(−1)k

(
Fk−1 −Fk

−Fk Fk+1

)
=

1

(1 + 2i)k(−1)k

(
e1Fk−1 − e2Fk −e1Fk + e2Fk+1

e3Fk−1 − e4Fk −e3Fk + e4Fk+1

)
.

Since m1, m2, m3, m4 are positive integers, we have

m1 =
e1Fk−1 − e2Fk

(1 + 2i)k(−1)k
> 0, (3.1)

m2 =
−e1Fk + e2Fk+1

(1 + 2i)k(−1)k
> 0, (3.2)

m3 =
e3Fk−1 − e4Fk

(1 + 2i)k(−1)k
> 0, (3.3)

m4 =
−e3Fk + e4Fk+1

(1 + 2i)k(−1)k
> 0. (3.4)

From (3.1) and (3.2) we get

Fk

Fk−1
<
e1
e2
<
Fk+1

Fk

. (3.5)

From (3.3) and (3.4) we get

Fk

Fk−1
<
e3
e4
<
Fk+1

Fk

. (3.6)

Therefore, for large value of k we get

e1
e2
≈ µ,

e3
e4
≈ µ where µ =

1 +
√

5

2
. (3.7)

Case II
When n = 2k + 1.
We will get the same result as above in (3.7).
The main aim of the coding theory are the detection and correction of



68 B. PRASAD

errors arising in the code message, E under influence of noise in the
communication channel. The most important idea is using the property
of determinant of the matrix as the check criterion of the transmitted
message, E. Let the initial message, M is given by

M =

(
m1 m2

m3 m4

)
(3.8)

where all elements m1, m2, m3, m4 of the matrix, M are positive
integers.
Now determinant of M is

Det M = m1m4 −m2m3 (3.9)

and the code message, E

E = (M × (Gn)). (3.10)

So,
Det E = Det (M × (Gn)) = Det M ×Det (Gn). (3.11)

This shows that the determinant of the initial message, M is connected
with the determinant of the code message, E by the relation (3.11). The
value of the determinant of the message, E depends on the number n
is even or an odd. The essence of the method consists that the sender
calculates the determinant of the initial message, M represented in the
matrix form (3.8) and sends it to the channel after the code message, E
(3.10). The receiver calculates the determinant of the code message, E
(3.11) and compares the determinant of the initial message of M (3.9)
received from the channel. If this comparison corresponds to (3.11)
it means that the code message, E (3.10) is correct and the receiver
can decode the code message, E (3.10) otherwise the code message, E
(3.10) is not correct. Error detection is the first step in communication
of messages.
The possibility of restoration of the code message, E can be done by
using the property of the Gaussian Fibonacci Gn matrix. For selecting
n = 4, Gaussian Fibonacci Gn matrix will be

G4 = (1 + 2i)2
(
F3 F2

F2 F1

)
= (1 + 2i)2

(
2 1
1 1

)
. (3.12)

Then the Gaussian Fibonacci coding of the message (3.8) consists of
the multiplication of the initial matrix (3.12) that is

M ×G4 =

(
m1 m2

m3 m4

)
(1 + 2i)2

(
2 1
1 1

)
=

(1 + 2i)2
(

2m1 +m2 m1 +m2

2m3 +m4 m3 +m4

)
=

(
e1 e2
e3 e4

)
= E (3.13)
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where e1 = (1 + 2i)2(2m1 + m2), e2 = (1 + 2i)2(m1 + m2), e3 =
(1 + 2i)2(2m3 +m4), e4 = (1 + 2i)2(m3 +m4).
After constructing the code matrix, E we calculate the determinant of
the initial matrix, M (3.8). The determinant is sent to the communica-
tion channel after the code message, E = e1, e2, e3, e4. Assume that the
communication channel has the special means for the error detection in
each of elements e1, e2, e3, e4 of the code message, E. Assume that the
first element e1 of E is received with the error. Then, we can represent
the code message in the matrix form

E ′ =

(
x e2
e3 e4

)
(3.14)

where x is the destroyed element of the code message, E but the rest
matrix entries must be correct and equal to the following:

e2 = (1 + 2i)2(m1 +m2); e3 = (1 + 2i)2(2m3 +m4);

e4 = (1 + 2i)2(m3 +m4). (3.15)

Then, according to the properties of the Gaussian Fibonacci coding
method, we can write the following equation for calculation of x

xe4 − e2e3 =

x(1 + 2i)2(m3 +m4)−
(1 + 2i)2(m1 +m2)(1 + 2i)2(2m3 +m4) =

(1 + 2i)2(m1m4 −m2m3). (3.16)

From (3.16), we get

x = (1 + 2i)2(2m1 +m2). (3.17)

Comparing the calculated value (3.17) with the entry e1 of the code
matrix, E given with (3.13) we conclude that x = e1. Thus, we have
restored the code message, E using the property of determinant of
the Gaussian Fibonacci Gn matrix. But in the real situation usually
we do not know what element of the code message is destroyed. In
this case, we suppose different hypotheses about the possible destroyed
elements and then we test these hypotheses. However, we have one
more condition for the elements of the code matrix, E that all its
elements are integers. Our first hypothesis is that we have the case of
single error in the code matrix, E received from the communication
channel. It is clear that there are four variants of the single errors in
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the code matrix, E:

(a)

(
x e2
e3 e4

)
(b)

(
e1 y
e3 e4

)
(c)

(
e1 e2
z e4

)
(d)

(
e1 e2
e3 t

)
(3.18)

where x, y, z, t are destroyed elements. In this case we can check
different hypotheses (3.18). For checking the hypothesis (a), (b), (c),
(d) we can write the following algebraic equations based on the checking
relation (3.11):

xe4 − e2e3 =

Det GnDet M(a possible single error is in the element e1), (3.19)

e1e4 − ye3 =

Det GnDet M(a possible single error is in the element e2), (3.20)

e1e4 − e2z =

Det GnDet M(a possible single error is in the element e3), (3.21)

e1t− e2e3 =

Det GnDet M(a possible single error is in the element e4). (3.22)

It follows from (3.19)-(3.22) four variants for calculation of the possible
single errors.

x =
Det GnDet M + e2e3

e4
, (3.23)

y =
−Det GnDet M + e1e4

e3
, (3.24)

z =
−Det GnDet M + e1e4

e2
, (3.25)

t =
Det GnDet M + e2e3

e1
. (3.26)

The formula (3.23)-(3.26) give four possible variants of single error
but we have to choice the correct variant only among the cases of the
integer solutions x, y, z, t; besides, we have to choice such solutions,
which satisfies to the additional checking relations (3.11). If calcula-
tions by formulas (3.23)-(3.26) do not give an integer result we have to
conclude that our hypothesis about single error is incorrect or we have
error in the checking element Det M . For the latter case we can use
the approximate equalities (3.7) for checking a correctness of the code
matrix, E. By analogy we can check all hypotheses of double error
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in the code matrix. As example let us consider the following case of
double errors in the code matrix, E(

x y
e3 e4

)
(3.27)

where x, y are the destroyed elements of the code message. Using
the first checking relation (3.11) we can write the following algebraic
equation for the matrix (3.27):

xe4 − ye3 = Det GnDet M. (3.28)

However, according to the second checking relation (3.7) there is the
following relation between x and y :

x ≈ µy. (3.29)

It is important to emphasize that (3.28) is Diophantine one. As the
Diophantine equation (3.28) has many solutions we have to choice such
solutions x, y which satisfy to the checking relation (3.29). By analogy
one may prove that using checking relations (3.7), (3.11) by means of
solution of the Diophantine equation similar to (3.28) we can correct
all possible double errors in the code matrix. However, we can show
by using such approach there is a possibility to correct all possible

triple errors in the code matrix E, for example

(
x y
z e4

)
etc. where

x, y, z are destroyed elements. Thus, our method of error correction
is based on the verification of different hypotheses about errors in the
code matrix by using the checking relations (3.7), (3.11) and by using
the fact that the elements of the code matrix are integers. If all our
solutions do not bring to integer solutions it means that the checking
element Det M is erroneous or we have the case of fourfold error in the
code matrix, E and we have to reject the code matrix, E as defective
and not correctable. Our method allows to correct 14 cases among
(4C1 +4 C2 +4 C3 +4 C4) = 24 − 1 = 15 cases. It means that correction
ability of the method is 14

15
= 0.9333 = 93.33%.

4. Conclusion

The Gaussian Fibonacci coding method is based on matrix approach
which possess many peculiarities and advantages in comparison to clas-
sical (algebraic) coding method. The use of matrix theory for design-
ing new error-correction codes is the first peculiarity of the Gaussian
Fibonacci coding method. The large information units, in particular
matrix elements, are objects of detection and correction of errors in
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the Gaussian Fibonacci coding method. There is no theoretical restric-
tions for the value of the numbers that can be matrix elements whereas
in algebraic coding theory there are very small information elements,
bits and their combinations are the objects of detection and correction.
Gaussian Fibonacci coding method has very high correction ability in
comparison to classical (algebraic) coding method. The Gaussian Fi-
bonacci coding method is the main application of the Gn matrix. The
Gaussian Fibonacci coding method reduces to matrix multiplication, a
well-known algebraic operation, which is realized very well in modern
computers. The main practical peculiarity of this method is that large
information units, in particular, matrix elements, are objects of de-
tection and correction of errors. The elements of the initial matrix, M
and therefore the elements of the code matrix, E can be the numbers of
unlimited value. This means that theoretically the Gaussian Fibonacci
coding method allows to correct the numbers of unlimited value. The
correction ability of this method is 93.33% that exceeds essentially all
well-known correcting codes.
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