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Abstract. In this paper second order explicit Galerkin finite element
method based on cubic B-splines is constructed to compute numerical solu-
tions of one dimensional nonlinear forced Burgers’ equation. Taylor series
expansion is used to obtain time discretization. Galerkin finite element
method is set up for the constructed time discretized form. Stability of the
corresponding linearized scheme is studied by using von Neumann analysis.
The accuracy, efficiency, applicability and reliability of the present method
is demonstrated by comparing numerical solutions of some test examples
obtained by the proposed method with the exact and numerical solutions
available in literature.

Keywords: Forced Burgers’ equation, cubic B-splines, Galerkin Finite Element

Method, Taylor series, von Neumann analysis.

AMS Subject Classification: 65M60, 65N30.

1 Introduction

The Burgers’ equation is a one dimensional form of Navier-Stokes equation.
It was firstly introduced by Harry Batman and was taken later by J.M.
Burger as a model of turbulent fluid motion. This equation arises in various
fields such as Fluid Dynamics, Nonlinear Acoustics, Gas Dynamics, Traffic
Flow, etc. In this paper, we consider the one dimensional nonlinear forced
Burgers’ equation,

ut + uux − νuxx = F (x, t), a ≤ x ≤ b, t > 0, (1)
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with the initial condition

u(x, 0) = f(x), a ≤ x ≤ b, (2)

and the boundary conditions,

u(a, t) = g1(t), u(b, t) = g2(t), t > 0, (3)

where ν > 0 is the coefficient of kinematic viscosity, f(x), g1(t), g2(t) and
the forcing term F (x, t) are known functions. The control function F (x, t) is
assumed to be differentiable with respect to time. In the literature one can
see that, several numerical methods are available for Burgers’ equation with
F (x, t) = 0. The Galerkin finite element method based on cubic B-splines
is constructed by [2] to obtain numerical solutions of Eq. (1) with F (x, t) =
0. This method is implicit and unconditionally stable. Time-splitting of
homogeneous form of Eq. (1) is done by [6] to obtain system of partial
differential equations. Galerkin finite element methods based on quadratic
and cubic B-splines are constructed to obtain numerical solution of the
splitting system. Cubic B-spline and modified cubic B-spline collocation
methods are discussed by [7] and [12] respectively. Refs. [15] and [16] set
up least squares algorithms with cubic and quadratic B-splines. Ref. [5]
converted (1) with F (x, t) = 0 to a system of nonlinear ordinary differential
equations by method of discretization in time and space. Quadratic B-
spline Galerkin finite element method is employed on the resulting system.
Weighted avarage differential quadrature method is developed by [11]. The
Crank-Nicolson type finite difference method for Eq. (1) with F (x, t) =
0 is discussed by [14]. In constructing all the methods discussed above,
the homogeneous form of Eq. (1) is converted into system of ordinary
differential equations. The solution to this system of ordinary differential
equations is obtained by constructing first or second order finite difference
schemes.

The numerical solutions of Eq. (1) based on multiquadratic quasi-
interpolation operator and radial basis function network schemes are ob-
tained by [9]. In these methods the solution or its space derivative is quasi
interpolated by using Hardy basis functions. Both the methods are con-
ditionally stable. Stability of both the methods depends upon the shape
parameters and the number of collocation points.

In the present paper we propose unconditionally stable cubic B-spline
Galerkin finite element method for Eqs. (1)-(3). The time discretization of
Eq. (1) is considered at the beginning. The recurrence relation is obtained
by using forward difference approximations. Galerkin finite element method
is then applied to construct a solution. The cubic B-splines has small
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support and therefore many elements of the matrices in the final assembled
system of Galerkin method are zero. In fact matrices in the final assembled
system are septadiagonal and computations with these matrices requires
less computational cost. On the other hand Lagrange polynomials with the
Gauss-Legendre points are defined on the whole domain.

The paper is organized as follows. In Section 2 second order finite dif-
ference scheme is constructed and Galerkin finite element method is applied
to this second order finite difference scheme. Stability analysis of the corre-
sponding linearized method is discussed in Section 3. Numerical solution of
some test examples obtained by proposed method are reported in Section 4.
These solutions are compared with exact solutions and numerical solutions
available in the literature.

2 Method of solution

The domain [a, b] is partitioned uniformly as a = x0 < x1 < x2 < . . . <
xN = b into N number of finite elements with equal length h = (b− a)/N
and xj = x0 + jh, j = 0, 1, 2, . . . , N . The time discretization of Eq. (1) is
obtained by using following forward second order Taylor series formula.

unt =
un+1 − un

∆t
− ∆t

2
untt, (4)

where tn = t0 + n∆t, un = u(x, tn), unt = ut(x, tn) and untt = utt(x, tn).
The discretization of Eq. (1) with F (x, t) = 0 is obtained earlier by [3].
Differentiating Eq. (1) w.r.t. t we get,

utt = −∂x(uut) + ν∂2xut + Ft(x, t), (5)

where ∂x and ∂2x denote the first and second order partial derivatives with
respect to x. Substitution of ut and utt from Eqs. (1) and (5) respectively
into Eq. (4) gives

−un∂xun + ν∂2xu
n + F (x, tn)

=
(un+1 − un)

∆t
− ∆t

2

[
−unt ∂xun − un∂xunt + ν∂2xu

n
t + Ft(x, tn)

]
.

Using forward difference approximation to unt in above equation and after
the simplification we obtain[

1− ∆t

2

(
−∂xun − un∂x + ν∂2x

)] (un+1 − un)

∆t

= −un∂xun + ν∂2xu
n + F (x, tn) +

∆t

2
Ft(x, tn). (6)
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Eq. (6) gives the recurrence relation[
1 +

∆t

2

(
∂xu

n + un∂x − ν∂2x
)]
un+1

=

[
1 +

ν∆t

2
∂2x

]
un + ∆tF (x, tn) +

(∆t)2

2
Ft(x, tn). (7)

The truncation error is given by (T.E.) = PDE−FDE [8]. From Eqs. (1)
and (6) we have

T.E. =
{
unt + ununx − νunxx − F (x, tn)

}
−{[

1− ∆t

2

(
−∂xun − un∂x + ν∂2x

)] (un+1 − un)

∆t
+ un∂xu

n

−ν∂2xun − F (x, tn)− ∆t

2
Ft(x, tn)

}
= −(∆t)2

12
(2unttt + 3unxu

n
tt + 3ununxtt − 3νunxxtt)− · · · .

Therefore Eq. (7) is a second order explicit scheme in the variable t.
Assume that the solution u(x, t) of the Burgers’ equation (1) is of the

form

u(x, t) =

N+1∑
m=−1

δm(t)φm(x), (8)

where δm(t), m = −1, 0, 1, . . . , N + 1 are the time dependent functions to
be determined and φm(x), m = −1, 0, 1, . . . , N+1 are cubic B-splines given
by [10]

φm(x) =
1

h3



(x− xm−2)3, [xm−2, xm−1],

h3 + 3h2(x− xm−1) + 3h(x− xm−1)2

−3(x− xm−1)3, [xm−1, xm],

h3 + 3h2(xm+1 − x) + 3h(xm+1 − x)2

−3(xm+1 − x)3, [xm, xm+1],

(xm+2 − x)3, [xm+1, xm+2],

0, o.w.,

(9)
Using boundary conditions (3) we obtain

δ−1(t) = g1(t)− 4δ0(t)− δ1(t), (10)

δN+1(t) = g2(t)− δN−1(t)− 4δN (t). (11)
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The solution given by Eq. (8) now becomes

u(x, t) = g1(t)φ−1(x) + g2(t)φN+1(x) +

N∑
i=0

δi(t)Bi(x), (12)

where

B0(x) = φ0(x)− 4φ−1(x), B1(x) = φ1(x)− φ−1(x),

Bj(x) = φj(x), for j = 2, 3, . . . , N − 2,

BN−1(x) = φN−1(x)− φN+1(x), BN (x) = φN (x)− 4φN+1(x).

From Eq. (12) we have

ux(x, t) = g1(t)φ
′
−1(x) + g2(t)φ

′
N+1(x) +

N∑
i=0

δi(t)B
′
i(x), (13)

uxx(x, t) = g1(t)φ
′′
−1(x) + g2(t)φ

′′
N+1(x) +

N∑
i=0

δi(t)B
′′
i (x). (14)

Define

hi(x, t) =


g1(t)

[
φ−1(x)Bi(x)

]′
, i = 0, 1, 2,

g2(t)
[
φN+1(x)Bi(x)

]′
, i = N − 2, N − 1, N,

0, otherwise,

(15)

R1(x, tn, tn+1) =
[
g1(tn)− g1(tn+1)

]
φ−1(x)

+
∆t

2

[
ν(g1(tn) + g1(tn+1))φ

′′
−1(x)− 2g1(tn)g1(tn+1)φ−1(x)φ

′
−1(x)

]
, (16)

SN (x, tn, tn+1) =
[
g2(tn)− g2(tn+1)

]
φN+1(x)

+
∆t

2

[
ν(g2(tn) + g2(tn+1))φ

′′
N+1(x)− 2g2(tn)g2(tn+1)φN+1(x)φ

′
N+1(x)

]
.

(17)

Using Eqs. (12)-(16) in Eq. (7), on element [x0, x1] we have

2∑
i=0

[
Bi(x) +

∆t

2

(
hi(x, tn) +

2∑
j=0

δj(tn)(BiBj)
′ − νB′′i

)]
· δi(tn+1)

=
2∑
i=0

[
Bi(x)− ∆t

2

(
hi(x, tn+1)− νB

′′
i (x)

)]
· δi(tn) +R1 + ∆tF (x, tn)

+
(∆t)2

2
Ft(x, tn). (18)
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The solution u(x, t) and its derivatives on the typical element [xl, xl+1] for
l = 1, 2, . . . , N − 2 are

u(x, t) =

l+2∑
i=l−1

δi(t)Bi(x), (19)

ux(x, t) =
l+2∑
i=l−1

δi(t)B
′
i(x), (20)

uxx(x, t) =

l+2∑
i=l−1

δi(t)B
′′
i (x). (21)

On [xl, xl+1] for l = 1, 2, . . . , N − 2, Eq. (7) becomes

l+2∑
i=l−1

[
Bi(x) +

∆t

2

( l+2∑
j=l−1

δj(tn)(BiBj)
′ − νB′′i

)]
· δi(tn+1)

=

l+2∑
i=l−1

[
Bi(x) +

ν∆t

2
B
′′
i (x)

]
· δi(tn) + ∆tF (x, tn) +

(∆t)2

2
Ft(x, tn). (22)

On [xN−1, xN ] Eq. (17) is used in Eq. (7) to obtain

N∑
i=N−2

[
Bi(x) +

∆t

2

(
hi(x, tn) +

N∑
j=N−2

δj(tn)(BiBj)
′ − νB′′i

)]
· δi(tn+1)

=
N∑

i=N−2

[
Bi(x)− ∆t

2

(
hi(x, tn+1)− νB

′′
i (x)

)]
· δi(tn) + SN + ∆tF (x, tn)

+
(∆t)2

2
Ft(x, tn). (23)

The element wise Galerkin weak formulation is obtained by the following
procedure. On multiplying Eq. (18) by the weight function Bk(x), k =
0, 1, 2 and integrating by parts on the interval [x0, x1] we get[

A1 +
∆t

2

(
hn
1 −B1 + νC1

)]
· δn+1

1

=
[
A1 −

∆t

2

(
hn+1
1 + νC1

)]
· δn1 +Rn

1 + Fn
1 , (24)

where δn1 = (δn0 , δ
n
1 , δ

n
2 )T ,

Rn
1 =

140(g1(n∆t)− g1((n+ 1)∆t))

h

49
40
1
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+
∆t

2

{
ν(g1(n∆t) + g1((n+ 1)∆t))

10h

51
54
3

+
2g1(n∆t)g1((n+ 1)∆t))

168

97
70
1

},

Fn
1 = ∆t


∫ x1

x0
F (x, n∆t)B0(x)dx∫ x1

x0
F (x, n∆t)B1(x)dx∫ x1

x0
F (x, n∆t)B2(x)dx

+
(∆t)2

2


∫ x1

x0
Ft(x, n∆t)B0(x)dx∫ x1

x0
Ft(x, n∆t)B1(x)dx∫ x1

x0
Ft(x, n∆t)B2(x)dx

 .
In order to compute Fn

1 , F (x, t) and Ft(x, t) are evaluated at t = n∆t and
then

∫ x1
x0
F (x, n∆t)Bidx,

∫ x1
x0
Ft(x, n∆t)Bidx, i = 0, 1, 2 are computed. We

have also

A1 =
h

140

476 644 56
644 1088 128
56 128 20

 , C1 =
1

10h

222 108 −24
108 192 24
−24 24 18

 ,

hn
1 =

−g1(n∆t)

840

1235 1586 89
758 1244 98
−1 26 5

 ,
and for i, j = 1, 2, 3, (i, j)th element of matrix B1, (B1)ij is computed by
the formula

(B1)ij =

(∫ x1

x0

Bj−1B0B
′
i−1dx,

∫ x1

x0

Bj−1B1B
′
i−1dx,

∫ x1

x0

Bj−1B2B
′
i−1dx

)
δn1 .

Thus the elements of matrix B1 are

(B1)11 =
1

840
(280,−4292,−878)δn1 , (B1)12 =

−1

840
(4292, 13616, 2264)δn1 ,

(B1)13 =
−1

840
(878, 2264, 380)δn1 , (B1)21 =

1

840
(11944, 13528, 796)δn1 ,

(B1)22 =
1

840
(13528, 17920, 1408)δn1 , (B1)23 =

1

840
(796, 1408, 160)δn1 ,

(B1)31 =
1

840
(2596, 4828, 610)δn1 , (B1)32 =

1

840
(4828, 10624, 1600)δn1 ,

(B1)33 =
1

840
(610, 1600, 280)δn1 .

Multiply Eq. (22) by the weight function Bk(x), k = l − 1, l, l + 1, l + 2
and integrate by parts on the interval [xl, xl+1]. Because the overall con-
tribution of the terms Bi(x)Bj(x)Bk(x)|xl+1

xl and B′i(x)Bk(x)|xl+1
xl vanishes

in the assembled system, we exclude them from the final expression. Thus
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on the element [xl, xl+1] we have[
Al+1 +

∆t

2

(
Bl+1 + νCl+1

)]
· δn+1

l+1

=
[
Al+1 −

ν∆t

2
Cl+1

)]
· δnl+1 + Fn

l+1, (25)

where for l = 1, 2, . . . , N − 2, δnl+1 = (δnl−1, δ
n
l , δ

n
l+1, δ

n
l+2)

T ,

Fn
l+1 = ∆t



∫ xl+1

xl
F (x, n∆t)Bl−1(x)dx∫ xl+1

xl
F (x, n∆t)Bl(x)dx∫ xl+1

xl
F (x, n∆t)Bl+1(x)dx∫ xl+1

xl
F (x, n∆t)Bl+2(x)dx


+

(∆t)2

2



∫ xl+1

xl
Ft(x, n∆t)Bl−1(x)dx∫ xl+1

xl
Ft(x, n∆t)Bl(x)dx∫ xl+1

xl
Ft(x, n∆t)Bl+1(x)dx∫ xl+1

xl
Ft(x, n∆t)Bl+2(x)dx


,

Al+1 =
h

140


20 129 60 1
129 1188 933 60
60 933 1188 129
1 60 129 20

 , Cl+1 =
1

10h


18 21 −36 −3
21 102 −87 −36
−36 −87 102 21
−3 −36 21 18


and for i, j = 1, 2, 3, 4; (i, j)th element of matrix Bl+1, (Bl+1)ij is com-

puted by the formula

(Bl+1)ij =

(∫ xl+1

xl

Bj+l−2Bl−1B
′
i+l−2dx,

∫ xl+1

xl

Bj+l−2BlB
′
i+l−2dx,∫ xl+1

xl

Bj+l−2Bl+1B
′
i+l−2dx,

∫ xl+1

xl

Bj+l−2Bl+2B
′
i+l−2dx

)
δnl+1.

Thus the elements of matrix Bl+1 are

(Bl+1)11 = −1
840

(280, 1605, 630, 5)δnl+1, (Bl+1)12 = −1
840

(1605, 10830, 5349, 108)δnl+1,

(Bl+1)13 = −1
840

(630, 5349, 3468, 129)δnl+1, (Bl+1)14 = −1
840

(5, 108, 129, 10)δnl+1,

(Bl+1)21 = −1
840

(150, 1305, 792, 21)δnl+1, (Bl+1)22 = −1
840

(1305, 17640, 17541, 1314)δnl+1,

(Bl+1)23 = −1
840

(792, 17541, 25002, 2781)δnl+1, (Bl+1)24 = −1
840

(21, 1314, 2781, 420)δnl+1,

(Bl+1)31 = 1
840

(420, 2781, 1314, 21)δnl+1, (Bl+1)32 = 1
840

(2781, 25002, 17541, 792)δnl+1,

(Bl+1)33 = 1
840

(1314, 17541, 17640, 1305)δnl+1, (Bl+1)34 = 1
840

(21, 792, 1305, 150)δnl+1,

(Bl+1)41 = 1
840

(10, 129, 108, 5)δnl+1, (Bl+1)42 = 1
840

(129, 3468, 5349, 630)δnl+1,

(Bl+1)43 = 1
840

(108, 5349, 10830, 1605)δnl+1, (Bl+1)44 = 1
840

(5, 630, 1605, 280)δnl+1.

On multiplying (23) by the weight function Bk(x), k = N − 2, N − 1, N
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and integrating by parts on the interval [xN−1, xN ] we get

[
AN +

∆t

2

(
hn
N −BN + νCN

)]
· δn+1

N

=
[
AN −

∆t

2

(
hn+1
N + νCN

)]
· δnN + Sn

N + Fn
N , (26)

where δnN = (δnN−2, δ
n
N−1, δ

n
N )T ,

Sn
N =

140(g2(n∆t) − g2((n+ 1)∆t))

h

 1
40
49



+
∆t

2

{
ν(g2(n∆t) + g2((n+ 1)∆t))

10h

 3
54
51

− 2g2(n∆t)g2((n+ 1)∆t))

168

 1
70
97

}
,

Fn
N = ∆t



∫ xN
xN−1

F (x, n∆t)BN−2(x)dx

∫ xN
xN−1

F (x, n∆t)B1(x)dx

∫ xN
xN−1

F (x, n∆t)B2(x)dx

 +
(∆t)2

2



∫ xN
xN−1

Ft(x, n∆t)BN−2(x)dx

∫ xN
xN−1

Ft(x, n∆t)B1(x)dx

∫ xN
xN−1

Ft(x, n∆t)B2(x)dx

 ,

AN =
h

140

 20 128 56
128 1088 644
56 644 476

 , CN =
1

10h

 18 24 −24
24 192 108
−24 108 222

 ,

hn
N =

g2(n∆t)

840

 5 26 −1
98 1244 758
89 1586 1235

 ,
and for i, j = 1, 2, 3, (i, j)th element of matrix BN , (BN )ij is computed

by the formula

(BN )ij =

(∫ xN

xN−1

Bj+N−3BN−2B
′
i+N−3dx,

∫ xN

xN−1

Bj+N−3BN−1B
′
i+N−3dx,∫ xN

xN−1

Bj+N−3BNB
′
i+N−3dx

)
δnN .
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Thus the elements of matrix BN are

(BN )11 =
−1

840
(280, 1600, 610)δnN , (BN )12 =

−1

840
(1600, 10624, 4828)δnN ,

(BN )13 =
−1

840
(610, 4828, 2596)δnN , (BN )21 =

−1

840
(160, 1408, 796)δnN ,

(BN )22 =
−1

840
(1408, 17920, 13528)δnN , (BN )23 =

−1

840
(796, 13528, 11944)δnN ,

(BN )31 =
1

840
(380, 2264, 878)δnN , (BN )32 =

1

840
(2264, 13616, 4292)δnN ,

(BN )33 =
1

840
(878, 4292,−280)δnN .

Since φ−1(x) is zero on [xl, xl+1], l = 1, 2, · · · , N − 1, Rn
k , k = 2, 3, . . . , N

are zero vectors. Similarly φN+1(x) is zero on [xl, xl+1], l = 0, 1, . . . , N − 2,
and therefore Sn

k , k = 1, 2, . . . , N − 1 are zero vectors. Also for k =
2, 3, . . . , N − 1, hn

k are zero matrices. Combining the contributions from
Eqs. (24), (25) and (26) in usual way we obtain the system of (N + 1) ×
(N + 1) algebraic equations[

A+
∆t

2

(
hn −B + νC

)]
· δn+1

=
[
A− ∆t

2

(
hn+1 + νC

)]
· δn +Rn + Sn + F n, (27)

where δn = (δn0 , δ
n
1 , . . . , δ

n
N )T . The initial solution δ0 is obtained from

the initial condition (2). Since δ0 has (N + 1) components, the system of
(N+1) equations is obtained by evaluating (12) at distinct points x = yj ∈
(a, b), j = 0, 1, . . . , N and t = 0. Thus we have

u(yj , 0) = f(yj) = g1(0)φ−1(yj) + g2(0)φN+1(yj) +

N∑
i=0

δ0iBi(yj). (28)

The solution of this system of equations is the initial solution δ0. The
recurrence relation (27) generates δn+1 and the solution of Eqs. (1)-(3) at
t = tn+1 is given by (12) as

u(x, tn+1) = g1(tn+1)φ−1(x) + g2(tn+1)φN+1(x) +
N∑
i=0

δn+1
i Bi(x). (29)

3 Stability analysis

Since problem (1)-(3) is nonlinear, its discretization (7) and the algebraic
scheme (27) are nonlinear. To study the stability of scheme (27), the cor-
responding linearized scheme is considered for von Neumann analysis. The
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linearized form of (27) is obtained by assuming that the solution u in the
nonlinear term uux is locally constant and is equal to U . Thus the linear
system corresponding to scheme (27) is[
A+

U∆t

2
B∗+

ν∆t

2
C
]
· δn+1 =

[
A− ν∆t

2
C
]
· δn +Rn +Sn +F n, (30)

where B∗ is obtained by combining contributions from
∫ xl+1

xl
B′i(x)Bj(x)dx

in usual way. The error equation corresponding to above equation is[
A+

U∆t

2
B∗ +

ν∆t

2
C
]
· εn+1 =

[
A− ν∆t

2
C
]
· εn, (31)

where, εn is error in the solution at t = tn. Matrices A,B∗ and C are
septadiagonal matrices and general row of these matrices are

A :
h

140
(1, 120, 1191, 2416, 1191, 120, 1)

B∗ :
1

20
(1, 56, 245, 0,−245,−56,−1)

C :
−1

10h
(3, 72, 45,−240, 45, 72, 3)

The lth error equation in (31) is

α1ε
n+1
l−3 + α2ε

n+1
l−2 + α3ε

n+1
l−1 + α4ε

n+1
l + α5ε

n+1
l+1 + α6ε

n+1
l+2 + α7ε

n+1
l+3

= α8ε
n
l−3 + α9ε

n
l−2 + α10ε

n
l−1 + α11ε

n
l + α10ε

n
l+1 + α9ε

n
l+2 + α8ε

n
l+3 (32)

where εnj is the error in δj at t = n∆t, 0 ≤ j ≤ N, 4 ≤ l ≤ N − 3,

α1 = r1 + r2 − 3r3, α2 = 120r1 + 56r2 − 72r3,

α3 = 1191r1 + 245r2 − 45r3, α4 = 2416r1 + 240r3,

α5 = 1191r1 − 245r2 − 45r3, α6 = 120r1 − 56r2 − 72r3,

α7 = r1 − r2 − 3r3, α8 = r1 + 3r3, α9 = 120r1 + 72r3,

α10 = 1191r1 + 45r3, α11 = 2416r1 − 240r3,

r1 =
h

140
, r2 =

U∆t

40
, r3 =

ν∆t

20h
.

The Fourier growth factor is defined as

εnl = ξneilkh (33)
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where k is mode number and h is the length of finite element. Using (33)
Eq. (32) gives

[(a− c)− ib]ξn+1 = [a+ c]ξn, (34)

where

a = [2 cos(3kh) + 240 cos(2kh) + 2382 cos(kh) + 2416] r1,

b = [2 sin(3kh) + 112 sin(2kh) + 490 sin(kh)] r2,

c = [6 cos(3kh) + 144 cos(2kh) + 90 cos(kh)− 240] r3.

From Eq. (34) the amplification factor

ξ =
a+ c

(a− c)− ib
.

Since r3 > 0, c ≤ 0 and hence |ξ| ≤ 1 and therefore the linearized scheme
(30) is unconditionally stable.

4 Numerical experiments

In this section we illustrate seven test examples to support the method.
Mathematica 10.0 software is used to compute numerical solutions and
errors in it. The L2 and L∞ errors are defined as,

L2 =

√√√√h
N∑
j=0

|U exactj − unumerj |2, L∞ = max
1≤j≤N

|U exactj − unumerj |

where, U exactj and unumerj are exact and numerical solutions at x = xj
respectively.

Example 1. In this test example we consider Eq. (1) with the initial
condition u(x, 0) = sin(πx), boundary conditions u(0, t) = 0, u(1, t) = 0
and F (x, t) = 0. The exact solution of this problem is

u(x, t) = 2πν

∑∞
n=1 ane

−n2π2νtn sin(nπx)

a0 +
∑∞

n=1 ane
−n2π2νtn cos(nπx)

where the Fourier coefficients an, n = 0, 1, 2, . . . , are given by

a0 =

∫ 1

0
e−(2πν)

−1(1−cos(πx))dx,

an = 2

∫ 1

0
e−(2πν)

−1(1−cos(πx)) cos(nπx)dx.
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Table 1: Comparison of numerical and exact solution for ν = 0.01 of Ex-
ample 1.

x t [6] (CBGM) [7] Present Exact
∆t = 0.0001 ∆t = 0.0001 ∆t = 0.0001
h = 0.0125 h = 0.0125 h = 0.0125

0.25 0.4 0.34191 0.34192 0.34192 0.34191
0.6 0.26896 0.26897 0.26897 0.26896
0.8 0.22148 0.22148 0.22148 0.22148
1.0 0.18819 0.18819 0.18819 0.18819
3.0 0.07511 0.07511 0.07511 0.07511

0.50 0.4 0.66071 0.66071 0.66071 0.66071
0.6 0.52942 0.52942 0.52942 0.52942
0.8 0.43914 0.43914 0.43914 0.43914
1.0 0.37442 0.37442 0.37442 0.37442
3.0 0.15018 0.15018 0.15018 0.15018

0.75 0.4 0.91027 0.91027 0.91027 0.91026
0.6 0.76724 0.76725 0.76724 0.76724
0.8 0.64740 0.64740 0.64740 0.64740
1.0 0.55605 0.55605 0.55605 0.55605
3.0 0.22481 0.22483 0.22481 0.22481

The numerical solutions obtained by the proposed method, solutions
obtained in [6, 7, 12, 15] and the exact solution for ν = 0.01 and 0.1 are
shown in Table 1 and Table 2 respectively. From Table 1 and Table 2, it is
observed that the numerical solutions obtained by the proposed method are
compatible with numerical solutions available in the literature for ν = 0.01,
whereas for ν = 0.1 numerical solutions obtained by proposed method are
better than the solutions obtained in [6, 12, 15] even for large value of ∆t
and h.

Example 2. Consider Eq. (1) with initial condition u(x, 0) = 4x(1 − x)
and boundary conditions u(0, t) = 0; u(1, t) = 0 with F (x, t) = 0. The
numerical solution obtained by the proposed method, solution obtained
in [5, 12, 16] and exact solution for ν = 0.01 are listed in Table 3. It is
observed that the numerical solutions obtained by the proposed method
are better than the solutions obtained in [5,16] even for large values of ∆t
and h. The obtained numerical solutions are slightly less accurate than
solutions listed in [12] in the neighborhood of shock.
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Table 2: Comparison of numerical and exact solution for ν = 0.1 of Example
1.

x t [12] [15] [6] (CBGM) Present Exact
∆t = 0.0025 ∆t = 0.0001 ∆t = 0.0001 ∆t = 0.0025
h = 0.025 h = 0.0125 h = 0.0125 h = 0.025

0.25 0.4 0.30892 0.30752 0.30890 0.30889 0.30889
0.6 0.24077 0.24042 0.24074 0.24074 0.24074
0.8 0.19572 0.19555 0.19568 0.19568 0.19568
1.0 0.16261 0.16234 0.16257 0.16257 0.16256
3.0 0.02718 - 0.02720 0.02720 0.02720

0.50 0.4 0.56970 0.55953 0.56964 0.56963 0.56963
0.6 0.44729 0.44797 0.44721 0.44721 0.44721
0.8 0.35930 0.35739 0.35924 0.35924 0.35924
1.0 0.29195 0.29134 0.29191 0.29192 0.29192
3.0 0.04016 - 0.04020 0.04020 0.04021

0.75 0.4 0.62520 0.64561 0.62541 0.62544 0.62544
0.6 0.48694 0.48267 0.48719 0.48722 0.48721
0.8 0.37365 0.37533 0.37390 0.37392 0.37392
1.0 0.28724 0.28585 0.28746 0.28747 0.28747
3.0 0.02974 - 0.02977 0.02977 0.02977

Example 3. In this example we consider Eq. (1) with the initial condition

u(x, 0) = 2νπ sin(πx)
α+cos(πx) ; α > 1, boundary conditions u(0, t) = 0; u(1, t) = 0

and F (x, t) = 0. The exact solution of this problem is

u(x, t) =
2νπe−π

2νt sin(πx)

α+ e−π2νt cos(πx)
.

The numerical solutions and L2 and L∞ errors for α = 2, h = 0.025, ν =
1.0, 0.5, 0.2, 0.1 and ∆t = 0.0001 at t = 0.001 are shown in Table 4 and
Table 5. From Table 4 and Table 5, it is seen that for ν = 0.5, 1.0 the
numerical solutions obtained by the present method are much better than
solutions obtained in [12] whereas for ν = 0.1, 0.2 they are better than
solutions in [12].

Example 4. Consider Eq. (1) with the initial condition

u(x, 1) =
x

1 + e
1
4ν (x2 − 1

4)
,

and boundary conditions u(0, t) = u(1.2, t) = 0 and F (x, t) = 0. The exact
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Table 3: Comparison of numerical and exact solution for ν = 0.01 of Ex-
ample 2.

x t [12] [5] [16] Present Exact
∆t = 0.001 ∆t = 0.0001 ∆t = 0.0001 ∆t = 0.001
h = 0.025 h = 0.025 h = 0.0125 h = 0.025

0.25 0.4 0.36225 0.36225 0.36218 0.36226 0.36226
0.6 0.28202 0.28199 0.28197 0.28204 0.28204
0.8 0.23044 0.23039 0.23040 0.23045 0.23045
1.0 0.19468 0.19463 0.19465 0.19469 0.19469
3.0 0.07613 0.07611 0.07613 0.07613 0.07613

0.50 0.4 0.68368 0.68371 0.68364 0.68368 0.68368
0.6 0.54832 0.54835 0.54829 0.54832 0.54832
0.8 0.45371 0.45374 0.45368 0.45371 0.45371
1.0 0.38567 0.38568 0.38564 0.38568 0.38568
3.0 0.15218 0.15216 0.15217 0.15218 0.15218

0.75 0.4 0.92052 0.92047 0.92047 0.92044 0.92050
0.6 0.78300 0.78302 0.78297 0.78288 0.78299
0.8 0.66272 0.66276 0.66270 0.66267 0.66272
1.0 0.56932 0.56936 0.56930 0.56931 0.56933
3.0 0.22782 0.22773 0.22773 0.22774 0.22774

solution of this example is

u(x, t) =
(xt )

1 + ( tt0 )
1
2 e

x2

4νt

,

where t0 = e
1
8ν . The comparison of numerical solutions with exact so-

lutions for h = 0.005, ν = 0.005 and ∆t = 0.001 is given in the Table
6. The L2 and L∞ errors are computed for ν = 0.005, h = 0.005 and
∆t = 0.001 at different time levels and their comparison with [11, 12] is
shown in Table 7. In this example, Table 6 shows that solutions produced
by the present method are better than solutions in [12] and are much close
to exact solutions even for small value of ν. It is also observed from Ta-
ble 7 that, the L2 and L∞ errors by the proposed method are less than
the errors obtained in [11, 12]. We have computed the numerical solutions
for ν = 0.01, 0.001, N = 100, 300 and ∆t = 0.001 at different time levels.
These solutions have been depicted in Figure 1 and Figure 2. It is noted
that steepness in the solution curves increases as value of ν decreases and
for sufficiently small value of ν solutions becomes discontinuous.
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Table 4: Comparison of numerical and exact solutions for α = 2, h = 0.025
and ∆t = 0.0001 at t = 0.001 of Example 3.

x ν = 1 ν = 0.5

[12] Present Exact [12] Present Exact

0.1 0.653547 0.653544 0.653544 0.327870 0.327870 0.327870
0.2 1.305540 1.305533 1.305534 0.655071 0.655069 0.655069
0.3 1.949376 1.949363 1.949364 0.978416 0.978412 0.978413
0.4 2.565949 2.565924 2.565925 1.288469 1.288464 1.288463
0.5 3.110778 3.110738 3.110739 1.563074 1.563063 1.563064
0.6 3.492910 3.492665 3.492866 1.756654 1.756642 1.756642
0.7 3.549585 3.549595 3.549595 1.787204 1.787206 1.787206
0.8 3.049957 3.050138 3.050134 1.537649 1.537696 1.537696
0.9 1.816379 1.816666 1.816660 0.916786 0.916863 0.916860

L∞ × 104 2.85 0.056 - 0.744 0.030 -
L2 × 104 1.07 0.021 - 0.279 0.011 -

Table 5: Comparison of numerical and exact solutions for α = 2, h = 0.025
and ∆t = 0.0001 at t = 0.001 of Example 3.

x ν = 0.2 ν = 0.1

[12] Present Exact [12] Present Exact

0.1 0.131412 0.131412 0.131412 0.065750 0.065750 0.065750
0.2 0.262581 0.262581 0.262581 0.131383 0.131383 0.131383
0.3 0.392263 0.392262 0.392262 0.196281 0.196281 0.196281
0.4 0.516710 0.516709 0.516710 0.258576 0.258576 0.258576
0.5 0.627081 0.627079 0.627079 0.313850 0.313849 0.313849
0.6 0.705122 0.705120 0.705120 0.352972 0.352972 0.352972
0.7 0.717882 0.717882 0.717882 0.359443 0.359443 0.359443
0.8 0.618129 0.618137 0.618136 0.309579 0.309581 0.309580
0.9 0.368802 0.368815 0.368814 0.184751 0.184754 0.184754

L∞ × 105 1.22 0.123 - 0.308 0.063 -
L2 × 106 4.57 0.454 - 1.15 0.229 -

Example 5. Consider Burgers’ equation (1) with F (x, t) = kx
(2βt+1)2

, k > 0,

β ≥ 0 and the initial condition u(x, 0) = kx, k > β. The exact solution of
this problem for ν = 1 is obtained by Rao and Yadav [4] as follows

u(x, t) =
A0x

(2βt+ 1)
, A0 = β +

√
β2 + k.
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Figure 1: Numerical solutions of Example 4 for ν = 0.01,∆t = 0.001 and
N = 100.

Figure 2: Numerical solutions of Example 4 for ν = 0.001,∆t = 0.001 and
N = 300.

The boundary conditions are given from the exact solution. The numerical
solutions of this example obtained for k = 5, β = 2 in x ∈ [−1, 1] is
used to compute L2 and L∞ errors. The comparison of L2 and L∞ errors
obtained in [9] is given in Table 8. From Table 8 it is seen that, the
numerical solutions obtained by the present method are compatible with
solutions in [9]. We have computed L2 and L∞ errors in the solution for
N = 20, k = 100 and β = 1 at t = 1 for different values of ∆t. These errors
are listed in Table 9. It is observed that L2 and L∞ errors decreases with
decreasing value of ∆t. This shows that proposed scheme do not amplify
errors with increase in number of iterations and the scheme is numerically
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Table 6: Comparison of numerical and exact solutions for ν = 0.005,∆t =
0.001 and h = 0.005 of Example 4.

x t [12] Present Exact

0.2 1.7 0.1176452 0.1176452 0.1176452
2.5 0.0799990 0.0799990 0.0799990
3.0 0.0666658 0.0666658 0.0666658
3.5 0.0571422 0.0571422 0.0571422

0.4 1.7 0.2351690 0.2351677 0.2351677
2.5 0.1599771 0.1599769 0.1599769
3.0 0.1333211 0.1333209 0.1333209
3.5 0.1142780 0.1142779 0.1142779

0.6 1.7 0.2958570 0.2959101 0.2959097
2.5 0.2381299 0.2381207 0.2381207
3.0 0.1994839 0.1994806 0.1994805
3.5 0.1712257 0.1712242 0.1712242

0.8 1.7 0.0006381 0.0006465 0.0006465
2.5 0.1021325 0.1020955 0.1020957
3.0 0.2088032 0.2088360 0.2088359
3.5 0.2145938 0.2145869 0.2145869

Table 7: Comparison of L2 and L∞ errors for ν = 0.005,∆t = 0.001 and
h = 0.005 of Example 4.

t [11] β = 0.5 [12] Present
∆t = 0.01, h = 0.001 ∆t = 0.001, h = 0.005 ∆t = 0.001, h = 0.005

L∞ × 104 L2 × 104 L∞ × 104 L2 × 104 L∞ × 104 L2 × 104

1.7 13.47279 3.84209 0.994 0.252 0.006 0.0017
2.5 15.54700 4.91345 0.549 0.151 0.002 0.0008
3.0 15.52891 5.15077 0.414 0.118 0.023 0.0029
3.5 15.21961 5.25855 0.486 0.117 0.572 0.0754

stable.

Example 6. In this example, we consider the initial condition u(x, 0) = 0,
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Table 8: Comparison of L2 and L∞ errors for k = 5, β = 2,∆t = 0.01 and
N = 10 of Example 5.

L∞ L2

t = 5 t = 10 t = 5 t = 10

[9] IMQQI 2.816× 10−9 1.876× 10−10 2.020× 10−9 1.345× 10−10

Present 2.811× 10−9 1.872× 10−10 2.854× 10−9 1.901× 10−10

Table 9: Comparison of L2 and L∞ errors for k = 100, β = 1 and N = 20
at t = 1 of Example 5.

∆t 0.01 0.005 0.001

L2 2.88× 10−5 5.90× 10−6 1.41× 10−6

L∞ 2.85× 10−5 5.89× 10−6 1.39× 10−6

Figure 3: Numerical solutions of Example 7 for ν = 0.1,∆t = 0.01 and
N = 50.

boundary conditions u(0, t) = u(π, t) = 0 and F (x, t) = A sin(x); A > 0.
The exact solution of this example is obtained by [1]. The numerical solu-
tions obtained by the proposed method, exact solutions and solutions given
in [9] for ν = 1, A = 20 and ν = 0.1, A = 1 are listed in Table 10 and Table
11, respectively. The proposed method produces better solutions than so-
lutions obtained by DMQQI method and are compatible with the solutions
obtained by IMQQI method for ν = 1. For ν = 0.1 the solutions com-
puted by the proposed method are compatible with the solutions obtained
by DMQQI and IMQQI methods.
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Table 10: Comparison of numerical results for ν = 1, A = 20,∆t = 0.001
at t = 3.0 of Example 6.

x [9] IMQQI [9] DMQQI Present Exact

N = 20 N = 30 N = 20 N = 30

0.5 2.1481 2.1474 2.1481 2.1481 2.1481
1.0 4.1562 4.1558 4.1563 4.1563 4.1562
1.5 5.8928 5.8924 5.8928 5.8928 5.8928
2.0 7.2404 7.2400 7.2403 7.2404 7.2404
2.5 8.0358 8.0298 8.0307 8.0303 8.0302
3.0 4.5143 4.4965 4.5155 4.5125 4.5140

Table 11: Comparison of numerical results for ν = 0.1, A = 1,∆t = 0.001
at t = 3.0 of Example 6.

x [9] IMQQI [9] DMQQI Present Exact

N = 30 N = 60 N = 30 N = 60

0.5 0.4851 0.4851 0.4853 0.4853 0.4824
1.0 0.9392 0.9391 0.9392 0.9392 0.9331
1.5 1.3300 1.3320 1.3320 1.3320 1.3221
2.0 1.6271 1.6371 1.6372 1.6372 1.6222
2.5 1.8122 1.8322 1.8315 1.8323 1.8102
3.0 1.6207 1.6476 1.6633 1.6551 1.6155

Example 7. In this test problem we consider Eq. (1) with F (x, t) = 0,
initial condition u(x, 0) = sin 2πx, 0 ≤ x ≤ 1 and boundary conditions
u(0, t) = u(1, t) = 0. We have computed the numerical solutions for ν =
0.1, 0.01 and 0.001 at t = 0, 1, 2. These solutions are depicted in Figure
3, Figure 4, and Figure 5. Similar solutions are reported in [13]. It is
observed that when value of ν decreases, steepness of the curves increases
and eventually solution becomes discontinuous.

5 Conclusion

The cubic B-spline Galerkin finite element method is successfully imple-
mented to the one dimensional nonlinear forced Burgers’ equation. Cubic
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Figure 4: Numerical solutions of Example 7 for ν = 0.01,∆t = 0.01 and
N = 100.

Figure 5: Numerical solutions of Example 7 for ν = 0.001,∆t = 0.0001 and
N = 300.

B-splines are redefined to accommodate the boundary conditions. Burgers’
equation is discretized in time by using Taylors series expansion and then
Galerkin finite element method is constructed for discretized equation. The
Von Neumann stability analysis shows that the corresponding linearized
scheme is unconditionally stable. some numerical test examples are solved
to support the proposed method. It is seen that the method is efficient and
reliable for solving the one dimensional forced Burgers’ equation.
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