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Abstract. The occurrence of horseshoe chaos in Duffing oscillator with
fractional damping and multi-frequency excitation is analyzed by using an-
alytical and numerical techniques. Applying Melnikov method, analytical
threshold condition for the onset of horseshoe chaos is obtained. The effect
of damping exponent and the number of periodic forces on the dynam-
ics of the Duffing oscillator is also analyzed. Due to fractional damping
and multi-frequency excitation, suppression of chaos and various nonlinear
phenomena are predicted. Analytical predictions are demonstrated through
numerical simulations.
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1 Introduction and motivation

Horseshoe chaos is a very interesting nonlinear phenomena, and it has been
detected in a large number of nonlinear systems of various physical nature
[3,6,16,17,20,27]. Horseshoe is the occurrence of transverse intersection of
stable and unstable manifolds of a saddle fixed point in the Poincaré map,
and is a global phenomena. Its appearance can be predicted analytically
by employing the Melnikov technique. This technique essentially gives a
criterion for a transverse intersection of the stable and unstable manifolds of
homoclinic or heteroclinic orbits which imply horseshoe chaos. The essence
of this method is to calculate the so called Melnikov integral, which can
be used to identify the regions in the parameter space where horseshoe
chaos occurs. Recently, this method has been applied to certain nonlinear
systems to predict the occurrence of horseshoe chaos [17–21,25].

In the recent years there has been a great deal of interest in the study of
the effect of multi-frequency excitation in certain linearly damped nonlinear
systems [4, 5, 7–10, 15]. In the present paper we study the occurrence of
horseshoe chaos in Duffing oscillator with fractional damping and multi-
frequency excitation both analytical and numerical techniques.

The Duffing oscillator driven by multi-frequency excitation with frac-
tional damping is given as

ẍ+ α ẋ |ẋ|P−1 − ω2
0x+ βx3 =

k∑
i=1

fi sinωit, (1)

where x stands for the displacement from the equilibrium point, α > 0, β >
0 and ω2

0 > 0 are the damping coefficient, coefficient of stiffness and natural
frequency of the system respectively. P is the damping exponent, f and
ω are the amplitude and frequency of the external force. The motivation
for our interest in this system is that it is one of the simplest nonlinear
dissipative models with a wide range of complex behaivour. It is used
for the description of many real processes, such as mechanical and radio
physical oscillators (see [6,14] and references therein), plasma dynamics [12]
and others. The properties of the Duffing system have been widely analyzed
in particular using the Melnikov method [6, 11,13].

In Eq. (1) the fractional damping term is taken to be proportional to
the power of velocity ẋ in the form |ẋ|P−1. A similar nonlinear term was
previously used by many researchers [1,2,22–24,26]. The objective here is to
explore the occurrence of horseshoe chaos in the system (1) using analytical
and numerical techniques. In the present paper, we use Melnikov method to
study the influence of multi-frequency force and fractional damping term.
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The paper is organized as follows. In Section 2, we obtain the Melnikov
function for the system (1) by treating the damping term and external ex-
citation with weak perturbation. In Section 3, we analyze the occurrence of
horseshoe chaos and asymptotic chaos using Melnikov method. Numerical
results and its discussion are presented in Section 4. We show some exam-
ples of various nonlinear phenomena for some specific set of values of the
parameters. Finally, Section 5 contains the summary of the present work.

2 Melnikov function

In the section, we provide the details of the Melnikov analysis for the Duff-
ing oscillator with fractional damping driven by multi-frequency force. We
consider the perturbed Duffing oscillator with fractional damping term and
multi-frequency force in the form

ẋ = y, (2a)

ẏ = ω2
0 x− β x3 + ε

[
−α ẋ |ẋ|P−1 +

k∑
i=1

fi sinωit

]
, (2b)

where ε is a small parameter.

The fixed points and the phase portrait are derived corresponding to
the unperturbed system. If, we let ε = 0, the unperturbed system can be
written as:

ẋ = y, ẏ = α2x− βx3,

which corresponds to an integrable Hamiltonian system with the potential
function given by

V (x) = −1

2
α2x2 +

1

4
βx4.

Shape of the potential function is shown in Figure 1(a) and whose associated
Hamiltonian function is

H(x, y) =
1

2
y2 − 1

2
α2 x2 +

1

4
β x4.

By analyzing the unperturbed (ε = 0) part, the system (2) has one saddle
point (x∗, y∗) = (0, 0) and the center type fixed point (x∗, y∗) = (±

√
ω2
0/β,

0). The saddle point is connected to itself by two homoclinic orbits. The
two homoclinic orbits (W±(xh(τ), yh(τ))) connecting the saddle to itself
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Figure 1: (a) The two-well potential function for the unperturbed system
(2). (b) Phase trajectories of the unperturbed system (2). The stable (W±s )
and unstable (W±u ) parts of homoclinic orbits, connecting saddle to itself,
are indicated. The analytical expression for the homoclinic orbits is given
by Eqs. (3).

are given by

xh(τ) = ±

√
2ω2

0

β
, (3a)

yh(τ) = ∓ω2
0

√
2/β sech

(√
ω2
0τ

)
tanh

(√
ω2
0τ

)
, τ = t− t0. (3b)

For ε = 0, the stable and unstable branches of homoclinic orbits join
smoothly. When the dissipative perturbation is included, the stable man-
ifolds (W±s ) and unstable manifolds (W±u ) do not join. However, above
certain critical amplitude of the external periodic force, transverse inter-
sections of W±s and W±u occur. The presence of such intersections implied
the Poincaré map has the so called horseshoe chaos [6, 27]. This can be
conveniently obtained by the Melnikov function which measures the dis-
tance between stable and unstable manifolds. Stable manifolds (W±s ) and
unstable manifolds (W±u ) of homoclinic orbits are indicated in Figure 1(b).
Periodic orbits are nested within and outside the homoclinic orbits.

The Melnikov function for the system (2) along the homoclinic orbits
(Eq. (3)) could be computed as follows:

M(t0) = −α
∫ +∞

−∞
|yh|P+1dτ +

∫ +∞

−∞
yh

k∑
i=1

fi sinωi (τ + t0) dτ

= I1 + I2. (4)
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By the application of some algebraic techniques the integrals I1 and I2 can
be calculated as follows. The evaluation of the integrals I1 and I2 give the
following results.

I1 = −α
∫ ∞
−∞
| yh |P+1 dτ

= −α(ω2
0)P+ 1

2

(
2

β

)P+1
2

ß

[
P + 2

2
,
P + 1

2

]
.

Similarly, the integral I2 is worked out to be

I2 =

∫ +∞

−∞
yh

k∑
i=1

fi sinωi (τ + t0) dτ

=
k∑

i=1

fi cosωit0

∫ ∞
−∞

yh sinωiτdτ +
k∑

i=1

fi sinωit0

∫ ∞
−∞

yh cosωiτdτ

= I21 + I22.

Since I22 = 0, thus, the value of integral I21 is worked out to be

I2 = ∓π
√

2/β
k∑

i=1

fiωi sech

[
πωi

2
√
ω2
0

]
cosωit0. (5)

Then, the Melnikov function for the Duffing system subjected to fractional
damping and multi-frequency excitation term is

M±(t0) = −α(ω2
0)P+ 1

2

[
2

β

]P+1
2

ß

[
P + 2

2
,
P + 1

2

]
∓π
√

2/β

k∑
i=1

fiωi sech

[
πωi

2
√
ω2
0

]
cosωit0.

That is,

M±(t0) = A ∓B
k∑

i=1

fiωi sech

[
πωi

2
√
ω2
0

]
cosωit0, (6a)

where,

A = −α(ω2
0)P+ 1

2

[
2

β

]P+1
2

ß

[
P + 2

2
,
P + 1

2

]
, (6b)

B = π

√
2

β
. (6c)
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where ß(m,n) is the Euler Beta function dependent on arbitrary complex
arguments with real parts [Re[m] > 0 and Re[n] > 0] which is defined as

ß(m,n) =
Γ(m)Γ(n)

Γ(m+ n)
,

where, Γ(n) denotes the Euler Gamma function

Γ(n) =

∫ ∞
0

e−x xn−1 dx, where n > 0

3 Horseshoe chaos

In the section, the occurrence of horseshoe chaos in the system (2) driven
by multi-frequency force with fractional damping is analyzed. For k = 1,
we can write the threshold condition on the parameter f for the occurrence
of horseshoe chaos. For arbitrary values of ωi, i = 1, 2, . . . , k and for k > 1
threshold condition on f similar to the case k = 1 cannot be written for
the onset of horseshoe chaos. However, we can study the occurrence of the
horseshoe chaos numerically by measuring the time τM elapsed between the
two successive changes in the sign of M(t0). τM can be determined from
Eq. (6). we fix the parameters in Eq. (2) as α = 0.5, β = 1.0, ω2

0 = 1.0 and
ωi = iω1 with ω1 = 1.0.

Figure 2 shows the variation of 1/τ±M versus f for k = 1 and some values
of P . Continuous curve represents the inverse of first intersection time
(1/τ+M ) of stable and unstable branches of homoclinic orbits W+. Dashed
curve corresponds to the orbits of W−. Horseshoe dynamics does not occur
when 1/τ is zero and it occurs in the region when 1/τ > 0. In Figure 2(a),
for P = 0.1 and k = 1, both (1/τ+M ) and (1/τ−M ) are zero in the interval
0 < f < 0.7325. This implies that horseshoe chaos does not occur for
f < f±M = 0.7325. For f > f±M = 0.7325, both M+(t0) and M−(t0) oscillate
and hence 1/τ±M are nonzero. This implies that horseshoe chaos is possible
in this region. The variation of 1/τ±M versus f for P = 0.5, 1.0, 2.0 are shown
in Figure 2(b), Figure 2(c) and Figure 2(d). The Melnikov threshold values
for P = 0.5, 1.0, 2.0 are f±M = 0.524, 0.3685 and 0.2095, respectively. The
Figure 2 indicates that the Melnikov threshold for horseshoe (fM ) decreases
when P increases. The above analytical results are verified numerically.
The Figure 3 shows the variation of 1/τ±M versus f for k = 3 and few
values of P . For k = 3 and P = 0.1, (1/τ+M ) and (1/τ−M ) are zero for
f < f+M = 1.0402 and f < f−M = 0.4632 respectively. Horseshoe chaos does
not occur for f < f−M = 0.4632. For f values in the interval f−M < f < f+M ,
M−(t0) alone oscillate which implies that the horseshoe chaos can take
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Figure 2: Variation of 1/τM versus f for k = 1 and four values of P .
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Figure 3: Variation of 1/τM versus f for k = 3 and four values of P .

place only in the region x < 0. For f ≥ f+M horseshoe chaos can occur
in both the regions x < 0 and x > 0. The Melnikov threshold values for
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Figure 4: Variation of 1/τM versus f for k = 5 and four values of P .
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Figure 5: Variation of 1/τM versus f for k = 10 and four values of P .
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P = 0.5, we find f+M = 0.75 and f−M = 0.33; for P = 1.0, f+M = 0.53 and
f−M = 0.24 and for P = 2.0, f+M = 0.32 and f−M = 0.13. The results are also
verified numerically.

The variation of 1/τ±M versus amplitude of the force f for k = 5 and
k = 10 with P = 0.1, 0.5, 1.0, 2.0 are shown in the Figure 4 and Figure 5.
For k = 5 and k = 10 the Melnikov threshold values (f±M ) are almost the
same. That is, for k ≥ 5, the variation of (f±M ) is negligible. So inclusion of
higher-order frequencies does not have a strong influence on the threshold
values of horseshoe chaos, which is clearly evident in the Figure 4 and
Figure 5. In the Figure 4 and Figure 5, the Melnikov threshold values for
P = 0.5, k = 5 and k = 10, we find f+M = 1.09, f−M = 0.45; for P = 1.0,
f+M = 0.55, f−M = 0.23 and P = 2.0, f+M = 0.32, f−M = 0.13. Here again the
values of onset of horseshoe chaos decrease when the damping exponent
(P ) increases from small values.

4 Numerical Simulations

In this section, we verify the analytical prediction by direct numerical sim-
ulation of the system (1). As an example, Figure 6 shows the numerically
computed W s and W u of the saddle in the Poincaré map for P = 0.5 and
P = 2.0 with k = 3. The unstable manifolds are obtained by integrating
the Eq. (1) in the forward time for a set of 200 initial conditions chosen
around the perturbed saddle point. The stable manifolds are obtained by
integrating the equation of motion in reverse time. For clarity only part of
the manifolds are shown. Left side of the Figures 6(a-c) show the part of
stable and unstable orbits in the Poincaré map for three values of f chosen
in Figure 3(b) with P = 0.5 and k = 3. Transverse intersections of stable
and unstable branches of both the homoclinic orbits are seen in Figure 6(c)
for f = 1.0 (which is above the threshold value f+M = 0.75). For f = 0.5
(which is in between f−M and f+M ) we see the transverse intersections of W−s
and W+

s orbits alone at two places, which is clearly evident in Figure 6(b).
The stable and unstable orbits are well separated in Figure 6(a) for f = 0.2
(which is below f−M ). Horseshoe chaos does not occurs in this region. Right
side of the Figures 6(d-f) show the part of stable and unstable orbits in the
Poincaré map for three values of f chosen in the Figure 3(d) with k = 3
and P = 2.0. Transverse intersections of stable and unstable branches of
both the homoclinic orbits are seen in Figure 6(d) for f = 0.5 (which is
above the threshold value f+M = 0.32). For f = 0.2 (which is in between f−M
and f+M ) we see the transverse intersections of W−u and W+

u orbits alone at
two places, which is clearly evident in Figure 6(e). The stable and unstable
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Figure 6: Stable and unstable manifolds of the saddle of the system (2) for
three values of f chosen in the Figure 3(b) and Figure 3(c). Left side of
the figures for k = 3 and P = 0.5. Right side of the figures for k = 3 and
P = 2.0.

orbits are well separated in Figure 6(f) for f = 0.1 (which is below f−M ).
Horseshoe chaos does not occurs in this region.

In order to know the nature of attractors of the system near the horse-
shoe threshold curve, we have further numerically studied the Eq. (2)
using Runge-kutta IV order method. We fix the values of parameters as
α = 0.5, β = 5.0, P = 2.0, ω2

0 = 1.0 and few values of k. Figure 7(a)
shows the bifurcation diagram for k = 1. As f is increased from zero, a
stable period-T orbit occurs which persists upto fc = 0.2512 and then it
loses its stability giving birth to a chaotic orbit. When the parameter f
is further increases from fc one finds that the chaotic orbits persist for a
range of f values interspersed periodic windows, period-doubling windows,
and intermittency route to chaos. At f = 0.98521, chaotic motion suddenly
disappears and the long time motion settles to a periodic motion. Similar
dynamics is also observed for k = 3 in Figure 7(b). The bifurcation pattern
for P = 1.0 with some values of k is shown in Figure 8. The bifurcation pat-
terns for k ≥ 5 are almost identical. This is evident from the Figures 7(c-d)
and Figures 8(c-d).
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Figure 7: Bifurcation diagrams for the system (1) for some values of k with
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5 Conclusion

In the present paper, we have performed a numerical and analytical predic-
tions of horseshoe chaos in duffing oscillator with fractional damping term
and multi-frequency force. For multi-frequency excitation, we obtained the
Melnikov threshold condition for onset of horseshoe chaos as f−m = f+m for
k = 1. That is onset of horseshoe chaos is obtained at the same value of f
in the left- and right-wells. But, for k > 1 (that is higher order frequencies),
we have f−m 6= f+m, when f−m < f+m the horseshoe chaos occurs only in the
region x < 0 for f ∈ [f−m, f

+
m] and f−m > f+m horseshoe chaos occurs in the

x > 0 region. We demonstrated the effect of fractional damping on the dy-
namics of the system. When the damping exponent increases, the threshold
for onset of horseshoe chaos decreases. The influence of the higher-order
frequencies (k ≥ 5) does not have a strong influence on the onset of horse-
shoe chaos, that is, the dynamics of the system is almost the same. We
verified the analytical prediction through numerical simulation. It is im-
portant to analyze the fractional damping and multi-frequency excitation
on certain nonlinear resonance like stochastic and vibrational resonances.
These will be investigated in the future.
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