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Abstract. In the present paper, we have used moving least squares (MLS)
method to solve the integral form of the Emden-Fowler equations with ini-
tial conditions. The Volterra integral form of the Emden-Fowler equations
overcomes their singular behavior at x = 0, and the MLS method leads to
a satisfactory solution for the equation. The convergence of the method
is investigated and finally its applicability is displayed through numerical
examples.
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1 Introduction

The Emden-Fowler equation with the general following form

u’(x) + %/(96) +of(u(@))g(z) =0, u(0) =4, «'(0)=0, (1)

is a model for various phenomena in physics, chemistry, mechanics, etc. in
which f(u) and g(z) are functions of u and z respectively, k is a shape factor
and « and f are constants. For & = 1 and g(z) = 1 the equation in
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with different f(u)s will be changed into Lane-Emden equation which can
be observed in a number of phenomena in mathematical physics specially
astrophysics and quantum mechanics. For details on these models, their
physical structure and the calculation of their answers refer to [1},5, 7,8, 11}
131|14}/16].

Our aim in this research is to transform the Emden-Fowler equation to
its Volterra integral form in order to overcome its singular point in z = 0
and then to solve it with the MLS method.

A number of ways have been proposed to solve the Emden-Fowler equa-
tion including Adomian decomposition method (Wazwaz et al.) [33], Varia-
tional iteration method (Shang et al.) |26], homotopy perturbation method
(Chowdhury and Hashim) [8] and Hybrid function method (Tabrizidooz et
al.) [28].

2 The integral form of Emden-Fowler equation

In this section, in order to overcome the singularity of the equation, its
Volterra integral form will be presented. This form has been offered by
Wazwaz et al. to solve the Lane-Emden equation in their article [36].

According to Eq. , if k 2 1, in order to transform it to integral form
we set

tkfl

w=- 725 [ - T &)

By two times derivating of Eq. and applying the Leibniz’s rule we will
have

r 4k
1M@=—aA<tﬁwwmwﬁ,

xk

T tk
u'(z) = —af (u(z))g(z) +a/0 k() f(u(®)g(t)dt.

By multiplying the «/(x) in % and adding the result to u”(x) the general
form of Emden-Fowler equation is achieved. If k = 1 the integral form will
be as the following

u=p+a [ tm)g, Q

which Eq. can be obtained in the limit as k — 1 where the L’ Hopital’s
rule has been used. Therefore, the integral form of Emden-Fowler equation
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is as the following

B+a / "L f(u(t)g(t)t, =1,
0 X
u(z) = (4)
x tk—l
8- 1£1/0 t(1— F)f(“(t))g(t)dt, k>0, k#1.

3 A summary of MLS method

The MLS, as an approximation method, has been introduced by Shepard
[27] in the lowest order case and has been generalized to a higher degree
by Lancaster and Salkauskas [13]. The use of MLS in solving PDEs was
pioneered by several authors [5],20,21].

Suppose that the discrete values of a function u are given at certain data
sites X = {z1,z2,...,zy} C Q C R. In the MLS method, approximating
function in each certain data site x € €) is written according to the value of
functions which are local data sites, and in order to determine the influence
of each data point, a weight function w : 2 x  — R is used which the
further it goes from data site x, the more the value tends towards zero and
for data sites x,y €  which |z — y| is greater than a certain threshold, it
is zero. Let P, be the space of polynomials of maximum degree ¢, ¢ < N
and g < s, and suppose {po, p1, ..., Ppm} are basis for P,, where m = ¢ [37].
The MLS approximation 4(z) of u(z), Vo € Q, can be defined as

i(z) = p (w)a(z), Vo e, (5)
where pT'(z) = [po(),p1(z),...,pm(z)] and a(z) is a vector with compo-
nents a;(x),7 = 0,1,...,m. We can use different basis such as monomials,

Chebyshev and Legendre polynomials for this method, but the MLS ap-
proximation can be implemented in a more stable fashion, if a shifted and
scaled polynomial basis function is used as a basis for P,. In this paper,
we use the basis

(z; — )"
1077(:1;):{7h77 }, n=20,1,...,m,
X,0

where the fill distance is hx o = sup,co mini<;<p |z — x;|. Components of
the vector a(z) are achieved by functional minimizing as follows

T(@) =) wn (e —z) (P (z:)a@) - u;)’
i=1

= [pa(z) —u" W.[p.a(z) — u], (6)
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where wp,, (x — ;) is the weight function associated with the node i, n is the
number of nodes in Q for which the weight function wy,(z — x;) > 0 and
u; are the fictitious nodal values, but not the nodal values of the unknown
trial function u(x), i.e. 4(z;) # u;. In this study, we use the Gaussian
weight functions

exp(—(2)%)—exp(—(%)?)

<d; < h;
l—exp(—(2£)?) 0=dih,
Wh; (‘73 - xl) =
0, d; > hy,
where d; = |z — x;|, v is a constant controlling the shape of the weight

function wp, (x — x;) and h; is the size of the support domain. The matrices
P and W are defined

p’ (x1)
p’(z2) .
P = . ’ W:dlag(whl(x_x1)7wh2(x_xQ)a“-awhn(x_wn))'

p’ (mn)

From functional solution of J with regard to a(z), the linear relation be-
tween a(z) and u is achieved as follows

A(z)a(z) = B(x)u, (7)

where matrices A(x) and B(z) are defined as follows

A(z) = P"WP = B(z)P = thi (z — z)p(z)p" (2:),
i=1
B(z) = PTW
= [wh1 (I - xl)p(xl))whz (l‘ - 372)13(332)7 ..., Wh, (IIT - xn)p(l'n)]

The matrix A is often called the moment matrix and its size equals (m +
1) x (m + 1). If we select the nodal points such that A(z) is non-singular,
then Eq. has the unique solution

a(z) = A7} (2)B(z)u, (8)

by putting a(z) in Eq. we get

i(z) = p (@) A (@)Ble)u =) pi(x)ui, z€Q, (9)
1=1
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where
pi(z) = pi(@)[A () B(z)l;i,
=0

are called the shape functions of the MLS approximation, corresponding to
nodal point ;. If wp, (x —z;) € C"(Q) and pj(z) € C*(), i=1,2,...,n,
j=0,1,...,m, then p;(z) € C™""3)(Q).

4 The details of the suggested method

As already introduced in Section [l} and with regard to the information in
Section |3 the Volterra integral form of the Eq. for k > 0, k # 0 is
written as follows

a T tk_l

u@) = - [ H1 = ) fw®)g(tdt, @ € [0,1]
0 z

Now, by changing the variable t — ux the above Volterra integral form is
transformed to Fredholm integral form

Oé$2

k—1
To apply the MLS method, at first N evaluation points {z;} are selected

on the interval [0, 1] where 0 < 21 < 23 < -+ < xxy < 1. The distribution
of nodes could be selected regularly or randomly. Then we can replace u

by 4 = Zf\il vi(x)u;. So Eq. becomes

ulr) = -

1
Amrwﬂmwmwm,mmu (10)

N

N 041'2 1
S wleu == 72 [ u = I eugtude, - (11)
i=1 =1

for z € [0,1]. Since for N — n nodes ¢;(z) = 0, n is replaced by N in Eq.
. Now, by replacing x with the evaluation points of x1,xo,...,xN in
the Eq. , the following system of equations will be achieved

041‘2

n 2 1 n
> eile)ui+ /0 p(1 = OO i) g(pay)dp = B, (12)
=1

1 ,
=1

using an ni-point quadrature formula with the coefficients {7y} and weights
{wy} in the interval [0, 1] for numerically solving the integration in Eq.
yields

n a$2~ ni - n
; i) + ﬁ ;TZ(l — 7" pilremi i) g (o Jwe = B.

i=1
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Here, ;s are an estimate for the u;s and by using the Levenberg-Marquardt
algorithm, @ is finally achieved. Then the values of u(x) at any point of
x € [0, 1] can be approximated by Eq. @D as

N
u(a) 2 uy(z) = gil)i, € 0,1]. (13)
=1

5 Convergence analysis

This section covers the convergence analysis of the proposed method. At
first, the error estimate of MLS approximation is presented in terms of the
parameter R which plays the role of the mesh-size. In [15] Levin analyzed
the MLS method for a particular weight function obtaining error estimate
in the uniform norm for the approximation of a regular function in N
dimensions. In [3] Armentano and Duran proved error estimates in L
for the function and its derivatives in the one-dimensional case. In |[2]
Armentano obtained the error estimates in L™ and L? norms for one and
higher dimensions. In [41] Zuppa proved error estimates for approximation
of the function and the first and second order derivatives in L°° norm.
The error estimate of the method, proposed in this work is based on those
obtained in [16,/41] for the one-dimensional cases.

Let 2 be an open bounded domain in R and Qpy denotes an arbitrarily
chosen set of N points z; € Q referred to as nodes Qn = {x1,22,...,7N},
x; € Q. Let Iy := {T,}fil denotes a finite open covering of Q consisting
N clouds Y; such that z; € T; and Y; is centered around z; in some way,
and Q C Uf\il T;. Define the radius h; of T; as max,ear,{|x — x| }.

A function u is said of class C%! in Q if and only if u is of class C?
in Q and the partial derivatives D*u of u of order ¢(|s| = ¢) are Lipschitz

continuous in 2. The semi-norm | . |, is defined as [41]
Du(x) — D%u(y —
s =sup{‘ e RS T aar =q}.

In order to have the MLS approximation well defined we need the mini-
mization problem to have a unique solution at every point z € Q and this is
equivalent to the non-singularity of matrix A(x). In [41] the error estimate
was obtained with the following assumption about the system of nodes and
weight functions {Qn, S = {wn, }1V,}.

Proposition 1. ( [41]) For any z € Q, the matriz A(z) defined in (@ is
non-singular.
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Definition 1. Given x € Q, the set ST (z) = {i : wp, (z — x;) # 0} will be
called the star of x.

Theorem 1. ([{1]) A necessary condition for the Property to be satisfied
is that for any x € §,

n = card(ST(x)) > card(Py) = m + 1.

For a sample point ¢ € Q, if ST (c) = {i1, i2,...,1s}, the mesh-size of the
star ST (c) is defined by the number h(ST (¢)) := max{h;,, hi,, ..., i}

Assumptions 1. Consider the following global assumptions about param-
eters. There exist

1. An upper bound of the overlap of clouds:

E = sup {card(ST(c)) }

ceQ
2. Upper bounds of the condition number:

CBy = sup {CNq (87'(0)) }, qg=1,2,

ceN

where the numbers C'N, (ST (¢)) are computable measures of the qual-
ity of the star ST (¢) which is defined in theorem 7 of [41].

3. An upper bound of the mesh-size of stars:

R = sup {h(ST(c)) }

ceﬁ

4. A uniform bound of the derivatives of {wp,}, that is the constant
Ggq >0, ¢g=1,2, such that

G
s q
HD CL)hiHLoo < R‘S"

1< s <gq.

5. There exists the number v > 0 such that any two points z,y € {2 can
be jointed by a rectifiable curve I' in  with length |T'| < |z — y|.

Assuming all these conditions, Zuppa [41] proved:
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Theorem 2. There exist constants Cy, ¢ = 1 or 2,
Cy =Ci(v,d, E,G1,CBy), Cy = Cy(v,d, E,G2,CBy,CBs),
such that for each u € C41(Q),
ID*u = D*it]| (o) < CuRT Mllulr, 0< s < q. (14)

As highlighted in [41], the number CN2(S7 (¢)) can be very high near
the boundary points. This drawback can degrade appreciatively the global
error estimate when ¢ = 2.

Now we write Eq. in an abstract form as

A—Flu =g, (15)
where
Fu= | k.t
Similarly, Eq. can be written as
(A= Fli =y, (16)

Assume that F is a compact operator (for more details about the compact
integral operators see chapter 1 of [4]).

Lemma 1. If Eq. is uniquely solvable and |ju—1|| — O then Eq. (16)

1s uniquely solvable.
Proof. See [16, lemma 4.1]. O

Suppose that

M
Fyuu = Z k(x, i)u(xr;)w;,
i=1

then
M

| Farl| = I:?eas%{; |\k(x, 7 )w).
1=

At the first view, the error analysis of method depends on showing ||F —
Fuml|l — 0 as M increases. This can not be done here; and in fact [4]
|F — Full > || F||-We begin by looking at quantities which do converge to
zero as M — oo.
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Lemma 2. Let §2 be a closed, bounded set in R, and let k(x, p) be contin-
wous for x,u € Q. Let the quadrature scheme

M
[ = sl
0 i=1

be convergent for all continuous functions on 2. Define

env(z,pu) = / k(x,v)k(v, p)dv — Zk(m,yi)k(yi,,u)wi, x,ueQ, M>1,
Q

i=1
as the numerical integration error for the integrand k(x,.)k(., ). Then for
u € C(Q),
(F - Fa)Fulz) = /Q e pu(yea)
(F — Fu)Fuu(z ZeM x, 7 )u(zT; )w;.
In addition,
I(F — Fn) 7| = max / ear (e, 0l

I(F = Fa)Furll = mg; lear (. mi)i.

Finally, the numerical integration error converges to zero uniformly on €,

lim max |ey(z, )| =0,

M—00 z,u€Q
and thus
1(F = Fu)Fll, [(F = Fa)Fumll = 0as M — oo. (17)
Proof. See [4, chapter 4, lemma 4.1.1]. O

To carry out an error analysis, we need the following perturbation the-
orem.

Theorem 3. Let X be a Banach space, let S, T be bounded operators on
X to X, and let S be compact. For given A # 0, assume A—T : X — X is
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one to one and onto, which implies (A —T)~! exists as a bounded operator
on X to X. Finally, assume that

Al

(T = 8)SI < =71

Then (A — S)~! exists and is bounded on X to X, with

L+ [|(A =) HllIS]
A=A =T)=HIINT = S)SI

IfAN=T)w=g and (A\—8)z =g, then

1A =87 <

lo =zl < |(A = &) HIITw — Swll.
Proof. See [4, chapter 4, theorem 4.1.1]. O

Finally the following theorem completes the convergence analysis of the
method in L* norm. Before that, we note that the approximation scheme
in one dimension could be written in compact form as

(A= Fm)uny = g.

Theorem 4. Let u € C%1(Q) (¢ = 1,2) where Q be a closed, bounded set
in R; and let k(z,u) be continuous for x,u € Q. Assume the quadrature
scheme is convergent for all continuous functions on . Further, assume
that the integral equation is uniquely solvable for given g € C()
with X # 0. Moreover take a suitable approximation @ of u. Then for all
sufficiently large M, the approzimate inverses (A — Far)~! exist and are
uniformly bounded,

L+ [|(A = F) Ml Ful <0
AL =l = F)HIIF = Fa) Faell =

1A= Fan) M| <
with a suitable constant Q < oo. For the equations (A — F)u = g and

(A= Fum)un = g, we have

||lu — UNHLOO(Q) < CqRq+1|u|q71(1 + 9|(F — .FM)HLOO(Q))
H(F = Far) ool oo ()

where 4, R and Cy are introduced in Theorem @

Proof. See [16, theorem 4.4]. O
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Remark. Note that in this paper the mesh-sizes h; are taken constant
for all nodes (= R). The size of support domain in the MLS approximation
should be large enough to accommodate a sufficiently large number of nodes
covered in the domain of definition of point x to ensure the regularity of
the matrix A(x). A necessary condition is presented in Theorem as
n = card(ST (z)) > card(Py) = m + 1. The role of this size is played by
R in Theorem Otherwise for convergence of 4 to u from , R must
be a small real number. To overcome these two opposite phenomena, we
must take R as a small real number and increase the density of nodes in
the support domain.

6 Numerical experiments

In this section, some examples are provided to show the strength of the pro-
posed method in approximating the solution of Emden-Fowler equations.
For computational details and the numerical implementation of the method
we take h; = 2/(N — 1) and v = 0.6/(N — 1) for all of them to ensure the
invertibility of the matrix A in MLS method. Also in our computations we
use the 7-point Gauss-Legendre quadrature rule for numerical integration.

First, a special form of the Emden-Fowler equation which has been well
studied before, will be considered

u(z) + %u'(:v) +ou’zt =0, u(0) =1, «'(0)=0. (18)

As was mentioned before, for £ = 0 the above equation will transform to
Lane-Emden with the index of v. It was phisically shown that interesting
values of v lie in the interval [0, 5], moreover, the exact answer has been
available only for v = 0,1,5 and for the other values of v series solutions
are available [9,31].

It is important to note that Eq. for v = 0,1 is linear and for the
other values of v it is nonlinear. According to Section [2] since & = 2 the
integral form of Eq. will be as follows

u(x) =1-— a/ t(1— E)u”tgdt,
0 x

after replacing v = £ = 0 the above equation will be transformed to the
following
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Table 1: Maximum error for different m (number of basis), N (points num-

ber), a = 1.
11 74x107® 3.08x107*% 9.91x107°
21 2.3x107%  4.01x107°% 7.50x 1076
41 26x107*  947x1077 4.05x 1077
201 80x107% 1.7x107°8 1.27 x 10710
1 Hg
**\*& % Numerical
*\* — — — Exact
*
*
“x
0.95 - \*K
A
_ X
X
Y
09Ff \*
\
*
\
X
\
*
0.85 . . ! ! ! ! ! ! !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 1: Numerical approximation with 201 points.

after solving that equation, we will come up with the exact answer of the
2
u(x) ax

3

For » =1 and &£ = 0 we have

(),

u(x)zla/omt(l

which has been solved with the MLS method. The results of the pro-
cess and the comparison of its answer with the exact answer of u(z)
sin(y/ax)/\/azx can be found in Table |1 and Figures 1] and Also for

v =>5 and £ = 0 we have:

ww) =1=a [ =2y,
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0 0.1 0.2 03 04 0.5 0.6 07 08 0.9 1

X

Figure 2: The MLS approximation error of degree 3 with 201 points.

Table 2: Error calculation with Euclidean norm for different m and N.
N m=1 m =2 m=3
11 2.08x1072 894x10™% 352x107°
21 1.03x1072 456x107° 2.32x107¢
51 4.19x107% 143 x107® 7.54x 1077

Its exact answer is u(x) = (1 + O‘TI?) 2 . We have achieved the following
answers using the MLS method through comparisons with the exact answer.
Refer to Table 2| and Fiqure [3| for details. In general, for v = 0, we can
obtain the exact solution of the problem for every real £ and £ # —2, -3
by solving the following integral equation [33]

y(z) = 1— a/oxt(l = Dytar,

X

Now, consider the following Emden-Fowler equation:
2
u'(z) + ~u/(2) + @ =0, u(0) =0, ' (0)=0. (19)

This equation models the distribution of mass in an isothermal sphere |17].
In order to solve Eq. , first its integral form is considered,

() = — /Ozt(l _ Byentnngy,

T
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x10°

Figure 3: The MLS approximation error of degree 3 with 51 points.

Table 3: Error calculation with Euclidean norm for different m and N.
N m=1 m = 2 m=3
11 251x1072 121x1072 1.01x107°
21 1.32x1072  6.01x107% 1.32x 1076
51 555x107% 1.88x107% 6.71x 1077

Now, by applying the MLS method, we will solve it and compare the results
with the following series answer achieved through the Adomian Decompo-
sition Method (ADM) [31]. See Table |3| and Figure
x? ot 825 12228 4087210 19
w@) =gty T aa o asan A9
Similarly, acceptable results can be achieved for the following equation:

2
u(z) + ;u'(aj) +e @) =0, u(0)=0, «(0)=0,

that is used in Richardson’s theory [25] of thermionic currents which is
related to the emission of electricity from hot bodies.
Now, consider the following equation as another example:

k
u”(z) + ;u/(az) —a(6 +42%)u(z) = 0, u(0) =B, «'(0) =0,
here we will solve a special form of the equation as referred to in [26]

o (z) + %u/(az) + (64 42%)u(z) = 0, u(0) =1, w/(0) =0,



Solving the general form of the Emden-Fowler equations . .. 245

x10°

Error

Figure 4: The MLS approximation error of degree 3 with 51 points com-
pared to solution of ADM.

Table 4: Error calculation with Euclidean norm for different m and N.
21 1.81 x 107  9.95x 1072 3.81x107*
51 861 x 1072 364x1072 254x107°
101 3.81x1072 861x107% 7.54x%x10°°

its integral form equals

1
u(z) =1+ 22 / (1 — 1) (6 + A(pia) i) dp.

After comparing the answer of the above equation with MLS, the result
will be compared with the exact solution u(z) = e**. The results can be
seen in Table [ and Figure

And the last example is expressed in [206]

u”(z) + %u'(ac) — 6u(z) — 4u(x) In(u(z)) =0, u(0) =1, u'(0)=0.

the integral form of which is as follows

1
u(@) =1+ 22 /0 (1 = 1) (Gu(paz) + 4u(p) In(u(pez)))dpe.
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x10°

Figure 5: The MLS approximation error of degree 3 with 101 points com-
pared to the exact solution.

Table 5: Error calculation with Euclidean norm for different m and N.
N m=1 m =2 m=3
21 1.83x 1071  992x1072 3.81x107*
51 854x 1072 3.60x 1072 249x107°
101 3.89x1072 7.75x107% 7.83x10°°

In the following, the result achieved through MLS for this example will be
compared with the exact solution u(z) = e**. The results are shown in
Table [5 and Figure [6]

7 Conclusion

In this paper, the MLS method was used to solve the integral form of
the Emden-Fowler equations in various forms and at the end an acceptable
level of accuracy in answering the equation was achieved. First, the Emden-
Fowler equation has been investigated in multiple occasions, then different
approaches have been offered to solve it. In this article, we came to a new
approach to solve it more efficiently.
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x10°

Figure 6: The MLS approximation error of degree 3 with 101 points com-
pared to Exact solution.
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