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PRIME EXTENSION DIMENSION OF A MODULE
T. DURAIVEL, S. MANGAYARCARASSY, AND K. PREMKUMAR*

ABSTRACT. We have that for a finitely generated module M over a
Noetherian ring A any two RPE filtrations of M have same length.
We call this length as prime extension dimension of M and de-
note it as pe.d4(M). This dimension measures how far a module
is from torsion freeness. We show for every submodule N of M,
pe.d4(N) < pe.dy (M) and pe.d4(N)+pe.d,(M/N) > pe.d,(M).
We compute the prime extension dimension of a module using the
prime extension dimensions of its primary submodules which oc-
curs in a minimal primary decomposition of 0 in M.

1. INTRODUCTION

Throughout this paper all rings are commutative, Noetherian with
identity and all modules are finitely generated and unitary. For stan-
dard reference and notations see [5]. Let A be a ring and M be an
A-module. Then we can have a filtration

F:0=MycMyC---CM,_ .CM,=M

of submodules of M. If M;/M; ; = A/p; for some prime ideal p; for
i = 1,...,n, then F is called a prime filtration of the module M.
Various kinds of filtrations are studied in [1], [3] and [!]. In [2] Prime
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extension filtration for a finitely generated module over a Noetherian
ring is defined and studied. We say a submodule K of M is p-prime
extension of a proper submodule N of M, if N is prime submodule of
K with (N : K) = p, that is K/N is a A/p-torsion free module.

In [2], it is shown that, p-prime extension of a proper submodule N
of M exists if and only if p € Ass(M/N). A filtration of submodules
N =MycC M, C ---C M, = M of M is called a prime extension
filtration of M over N, if each M; is a prime extension of M;_; in M.
Clearly, a prime filtration of a module M is a prime extension filtration
of M over 0. If N = 0, a prime extension filtration of M is called as
weak prime decomposition of M by Dress [1]. Further, if each M; is a
maximal p;-prime extension of M;_; in M, then the filtration is called
a maximal prime extension (MPE) filtration of M over N and it is
proved that {py,...,p,} = Ass(M) (see [2, Theorem 14]).

A submodule K is a regular prime extension of N, if K is maximal
p-prime extension of N in M and p is a maximal element in Ass(M/N).

A prime extension filtration 0 ‘E M, C---C M, an M, = M is called
a regular prime extension (RPE) filtration, if for each i, 1 < i < n, M;
is regular p;-prime extension of M;_; in M. So we have that p; Z p,,
for1 <i<j<n.

In [2, Theorem 22, it is proved that every module M has a RPE fil-
tration and any two RPE filtration have same length. So this length is a
numerical invariant for the module M. In this article we call it as prime
extension dimension of M and we denote it as pe.d4 (M ). This dimen-
sion measures, how far a module is from torsion freeness. We have that
M is torsion free A/ann(M )-module if and only if pe.d,(M) = 1 and
therefore A is an integral domain if and only if pe.d,(A) = 1. For a
submodule L of M we prove pe.d (L) < pe.d (M) and pe.d,(M) <
pe.dy(L)+pe.dy(M/L). We show that the prime extension dimension
of a module is infimum of the lengths of prime extension filtrations of
the module and we deduce that if M is a finite length module then
pe.dy (M) < I(M), the length of the module. We also compute the
prime extension dimension of a module using the prime extension di-
mensions of its primary submodules which occur in a minimal primary
decomposition of 0 in M.

2. PRIME EXTENSION DIMENSION OF A SUBMODULE

We begin with a summary of the following result that will be useful
in the following sections.

Proposition 2.1. [2, Theorem 22
Let N be a proper submodule of M. For any prime ideal p of A the
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number of times p occurs in any two RPE filtration of M over N are
equal, and hence any two RPF filtration of M over N have same length.

From the above proposition we have the following definitions.

Definition 2.2. Let M be a nonzero A-module. The prime extension
dimension (PE dimension) of M is the length of a RPE filtration of
M, and we denote it as pe.d,(M). We define the prime extension
dimension of the zero module is 0.

Definition 2.3. Let M be an A-module. For a prime ideal p of A, the
p-prime extension dimension of M is the number of times p-occurs in
a RPE filtration of M and we denote it as p-pe.d(M).

Proposition 2.4. Let M be an A-module. Then
pe.dy (M) = Z p-pe.dy (M) = Z p-pe.d, (M)

peSpec(A) peAss(M)
Proof. The first equality follows from the definition of RPE filtration
and Proposition 2.1. By [2, Corollary 15], the prime ideal p occurs in an
RPE filtration of M if and only if p € Ass(M). That is p-pe.d,(M) # 0
if and only if p € Ass(M). This proves the second equality. O

Remark 25. 10 C My & My C -+ C M,y C M, = M is a RPE
filtration of M and p;,,...,p;, is a permutation of py,...,p, satisfying
the condition that p;; & p;,, where 1 < j < k <n, then we can have a

RPE filtration 0 & M| C -~ C M’_,'& M! = M of M. In particular,
if p is a minimal element in Ass(M), with pe.d (M) = r, then we can
have a RPE filtration

Pn—rt1 Pn

ocMyc---CcM,, C My, 1C---CM,=M
where p; =pfori=n—r+1,...,n.

Remark 2.6. PE dimension of a module measures how far the module
is from torsion-freeness. Note that pe.d (M) = 1 if and only if ann(M)
is a prime ideal and M is torsion free A/ann(M )-module.

For pe.dy(M) =1« 0 C M is a RPE filtration of M < 0 is prime
submodule of M with (0 : M) is a prime ideal < M is torsion free
A/ann(M )-module. In particular, a ring A is integral domain if and
only if pe.d,(A) = 1.

Example 2.7. Consider the Z-module Z/p"Z for some prime p and
positive integer r. Then
vz p" 7 pZ vZ 7

0 .
C 7z - Cp”Z - 77
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is a RPE filtration of Z/p"Z and hence pe.d,(Z/p"Z) = r. More gen-
erally, if n = pi* - - p;* is the prime factorization of an integer n, then
pe.dy(Z/nZ) =1+ - + 1y

Next we show PE dimension of a submodule of M is less than or
equal to PE dimension of M. We need the following lemma.

Lemma 2.8. Let N be a proper submodule of an A-module M. If K
15 a p-prime extension of N in M, then for any submodule L of M,
either LON = LNK or LN K is a p-prime extension of LN N wn L.
Further, if K is reqular p-prime extension of N, then L N K is reqular
p-prime extension of LNAN in L, when LN N # LN K.

Proof. Assume LNN # LNK. Then (N : K) = (LNN : LNK).
For, if a € (N : K), then (LN K) C aL NaK C LN N this implies
a € (LNN :LNK). Conversely, let a € (LN N : LNK). For
re€LNK\LNN,ax € LNN C N. Since K is a p-prime extension
of Nandz ¢ N,a€ (N :K). Hence (LNN:LNK)=(N:K)=p.

Suppose axr € NN L forsomez € KNLanda€ A. Ifx ¢ NN L,
then € L implies ¢ N. Sinceaz € Nyaep=(NNL: KNL). So
K N L is a p-prime extension of N N L in L.

Now we assume K is regular p-prime extension of N and L NN #
LNK. Since L/(NNL) = (N+L)/N C M/N, p is a maximal element
in Ass(L/N N L). Suppose K N L is not a maximal p-prime extension
of NN L. Then there exists a submodule L’ of L, such that L’ is the
unique maximal p-prime extension of NN L in L. Let x € L. Then
pr C N N L, this implies p C (N : x). Since p is a maximal element
in Ass(M/N) and by [2, Theorem 11|, x € K. That is x € K N L and
therefore K N L is a maximal p-prime extension of NN L in L. 0

Theorem 2.9. Let L be any submodule of an A-module M and 0 C
M, C --- C M, = M be an RPFE filtration of M. Then the filtration
obtained from the chain 0 C MiNL C --- C M,NL = L by removing the
equalities is an RPE filtration of L and therefore pe.d (L) < pe.d,(M).

Proof. Let 0 € My C --- C M, = M be a RPE filtration of M
with length n. Now intersecting L with this filtration we have a chain
0CLNM C---CLNM,=L of submodules of L. After removing
the equalities in the above chain we get a filtration of L in which
each extension is regular prime extension by Lemma 2.8. That is, we
have a RPE filtration of L of length less than or equal to n. Hence
p-pe.d (L) < p-pe.d, (M) for every prime ideal p and pe.d,(L) <
pe.d,(M). O
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3. PRIME EXTENSION DIMENSION OF A QUOTIENT MODULE

Next we give two important lemma which is useful to prove the
subsequent results.

Lemma 3.1. Let N = My C My C -+ C My & M; C -+ & M, = M
be a RPE filtration of M over N. Then M; = {x € M | p1---p;x C N}.

Proof. Proof by induction on i. For ¢ = 1, the result is true by [2,
Theorem 11]. Now assume this result is true for ¢ — 1, that is M;_; =
{I e M | pr---piiz C N} Let + € M;. Then p;x C M;_; and
by induction assumption pq---p;—1(p;z) € N. Conversely, suppose
x & M,;. Since M; is a regular p;-prime extension of M; i, there exists
an element a € p;, such that ax ¢ M;_;. This gives py - --p;_1(azx) € N,
and so py---p;x € N. O

Lemma 3.2. Let 0 C My C --- C M;_4 g M, C---C M, =M be
a RPE filtration of M and N be a any submodule of M. If for some
i, NN M;_y = NN M, then (N : x) C p;, for every x € M; \ M;_;.

PTOOf. Let z € Mz \ Mifl. Then (Mifl : x‘) = P;. If z € N, then
xr € NNM; = NNM,;_4, this implies x € M;_; which is a contradiction,
sox ¢ N. Let a € (N : x). Then axz € N implies ax € NN M; =
N N M,;_q, that is ax € M;_1, this implies a € (M;_; : ) = p;. Hence
(N :x) Cp;. O

Proposition 3.3. Let M be an A-module and N & K be a p-prime
extension in M. Then pe.d,(K) < pe.dy(N)+ 1.

Proof. Let

O%Klc---CKH%KicmcKn,lpc"Kn:K (3.1)

be a RPE filtration of K. Suppose N N K;,_; = N N K;. We claim
p;, = p. Let z € K; \ K;_1. Then clearly z ¢ N and since K is a p-
prime extension of N, (N : x) = p. Suppose the prime ideal p; occurs
[ times in the sequence pq,po,...,p;. Since (3.1) is RPE filtration,
if j <4 and p; # p;, then p; € p; and therefore we can choose a
pj € pj \ pi and p denotes their product, that is p = [[,_;p;. Since
p ¢ p; and x ¢ K; 1, we have that pr ¢ K; ;. Note pr ¢ N, otherwise
pr € K;NN =K, 1NN C K,;_1, a contradiction. So (N : pz) = p.
Now by Lemma 3.1 pl(pz) = 0 € N, this implies p. C (N : pz) = p,
that is p; C p. Also, by Lemma 3.2, p = (N : z) C p;. Hence p; = p.
Next we show that two equalities can not occur on

0CKiNNC---CK,NN=N (3.2)
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Suppose an equality occur at the ith place and the next equality occur
at ]th place in (32) That is NﬂKZ’,1 = NﬂKl and Nij,1 = NﬂKJ
for 7 < j. Then by above claim p = p; = p;. Since for i < r < j,
NNK,1 # NN K,, p, # p and because (3.2) is a RPE filtration,
pr € p. Lety € K; \ K;_4. If j =i+ 1, choose p’ = 1. Suppose
Jj>i+1,let p’ =pip1---pj_q, for some p, € p, \p, i <7 < j. In either
case p'y ¢ K;_;. Consider the RPE filtration

Pit1 pj
K, C Ki_:,_lC"'CKjC"'CKn:K

of K over K;. Applying Lemma 3.1 to this filtration we have that
Pit1Pir2 - Pj—1bjy C K, since y € K;. Then p' € piapiya---pj
implies that pp'y C K;. Suppose pp'y C N, then pp'y C K; NN =
K; 1NN C K;_4. Therefore p C (K;_; : p'y) and by [2, Theorem 11],
p'y € K; C K;_4, which is not the case. Hence p ¢ (N : p'y). This is a
contradiction to the fact that K is a p-prime extension of N. Therefore
two equalities can not occur on 0 C NN K, C --- C NNK, = N.
Hence by Theorem 2.9, pe.d,(K) < pe.d (N) + 1. O

Proposition 3.4. If N is a submodule of M which occurs in a RPE
filtration of M, then pe.d, (M /N) + pe.d,(N) = pe.d,(M).

Proof. Let 0 ¢ M; C --- C M, = M be a RPE filtration of M
with pe.d (M) = n and N = M, is a submodule which occur in
RPE filtration of M for some i. Then clearly pe.d,(N) = i and
pe.d,(M/N)=n —1i. O

Example 3.5. Converse of the Proposition 3.4 is not necessarily true.

Let A=7Z and M = Z/AZ & 7Z/6Z, N = 2Z/AZ & 27, /6Z. Then
clearly pe.d,(M/N) + pe.d,(N) = pe.d, (M), but N does not occur
on any RPE filtration of M.

Theorem 3.6. Let M be an A-module and N be any submodule of M.
Then pe.d4(N) + pe.dy(M/N) > pe.d,(M).

Proof. The proof is by induction on pe.d,(M/N). If pe.d4,(M/N) =1,
then N C M is a RPE filtration of M over N. By Proposition 3.3,

pe.d, (M) < pe.dy(N)+1=rped,y(N)+ped,u(M/N)

Now assume that this result is true for pe.d,(M/N) < n. Suppose
pe.dy(M/N) =n+ 1, then we have a RPE filtration N C M; C --- C
M1 = M of M over N. Since pe.d,(M/M;) =n = pe.dy(M/N)—1
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and N C M, is a prime extension, by induction assumption we have

pe.dy(M/N)—1 = pedy(M/M;) > pe.d (M) —pe.dy (M)

pe.dy(M/N)—1 > pedy(M)— (pe.dy(N)+ 1) (by Proposition 3.3)
pe.d (M/N) > ped, (M) —pedy(N).

Hence pe.d4(N) + pe.d4(M/N) > pe.d,(M). O

Next corollary shows that PE dimension of a module is less than or
equal to the length of any prime extension filtration of that module.

Corollary 3.7. Let M be an A-module and 0 C M; C --- C M, =M
be a prime extension filtration of M. Then pe.d, (M) < n.

Proof. Proof by induction on n. For n = 1, it is trivial. Now assume
this result is true for any A-module having prime extension filtration
of length n — 1. Then by induction assumption pe.d ,(M/M;) < n—1.
Since pe.d 4(M;) = 1 and by Theorem 3.6, pe.d 4, (M) < pe.d,(M/M;)+
pe.dy (M) <n. O

Remark 3.8. By the above corollary and the fact that RPE filtrations
are prime extension filtrations, PE dimension of a module is infimum
of all length of prime extension filtrations of a module.

Corollary 3.9. PE dimension of an A-module M is less than or equal
to the length of the module M.

Proof. 1t is trivial if length of M is not finite. So we assume that M
is of finite length. Since a composition series of M is a prime filtration
of M and prime filtrations are prime extension filtrations, by Corollary
3.7, length of M is greater than or equal to PE dimension of M. [

4. PRIME EXTENSION DIMENSION OF PRIMARY SUBMODULES

Next we show that we can compute the PE dimension of a module
using the PE dimension of primary submodule of M which occurs in a
minimal primary decomposition of 0 in M.

Theorem 4.1. Let N be a p-primary submodule of an A-module M
which occur in a minimal primary decomposition of 0 in M. Then
pe.d(N) = pe.d (M) — p-pe.d,(M).

Proof. Let Ny N---N N, =0 be a minimal primary decomposition of

0 in M and let N = N;. Since we have the injective homomorphism

M
N — ]\fgﬂ—m\[’ ASS(N> - Ass <—N2ﬁj-\-/{ﬁNq~> = {pg, R ,pr}, That is
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p1 ¢ Ass(N). Now consider a RPE filtration 0 & MyC--C My ¢

M; C - an M, = M of M. Then by intersecting this filtration with
N we have a chain of submodules of NV,

0CMNANC--CM_  NNCMANNC---CM,NN=N (4.1)

Now we claim p = p; if and only if M; 1 NN = M; N N. We have that
p ¢ Ass(N) if and only if p does not occur on (4.1) by [2, Corollary 15].
By Theorem 2.9, after removing the equalities in the chain (4.1) we have
a RPE filtration of N. Therefore, whenever p = p;, M; 1NN = M;NN.
Conversely, assume p # p; and we show M; 1NN # M; N N.

Case(i) p € pi. Let p € p\'p; and x € M; \ M,;_;. Since p €
p=+/( N : M ), there exists a positive integer m such that p™M C N.
In particular p™x € N and so p™z € M; N N. Since p™ ¢ p; and
x ¢ M,;_1, we have that p"x ¢ M;_4, that is p”x ¢ M;_1 N N. Hence
M; 1NN # M;NN.

Case(il) p C p;. By definition of RPE filtration, p; € p, for 1 < ¢ <.
Let py € p\pfort =1,...,iandlet p' = p;---p;. Let & € M;. Then by
Lemma 3.1, p’z = 0 € N. Since N is p-primary submodule of M and
p ¢ p, we have that € N. That is M; C N. If M; ;NN =M;NN,
then M; 1 = M; a contradiction. Hence M; 1NN # M; N N.

So we prove that M; 1 NN = M; N N if and only if p = p;. That is
the number of equalities in (4.1) is exactly equal to the number of times
p occurs in the RPE filtration of M, that is p-pe.d4(M). So, the RPE
filtration of N obtained from (4.1) by removing equalities has length

— p-pe.d4(M). That is pe.d4(N) = pe.d4 (M) — p-pe.d,(M). O

Corollary 4.2. Let NyN---N N, =0 be a mz’m’mal primary decompo-
sition of 0 in M. Then (r — 1) pe.d (M ZpedA

Proof. Let N; be a p;-primary submodule of M and Ass(M) = {py,...,p.}.

Then by Theorem 4.1,

Zpe.dA(Ni) = Z(pe'dA(M)_pi‘pe'dA(M))

=1

= r-pedy(M)— Zpi—pe.dA(M

This implies (r — 1) pe.d 4 (M Z pe.d 4(V;) by Proposition 2.4. O
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Theorem 4.3. Let p be a minimal element in Ass(M). Suppose N
15 a p-primary submodule of M which occur in a minimal primary
decomposition of 0 in M, then pe.d,(M/N) = p-pe.d,(M).

Proof. Let p be a minimal element in Ass(M) with p-pe.d (M) = r.
Then by Remark 2.5, there exists an RPE filtration

OCMC--CcM,_, & My yir C o C My &My =M (4.2)
of M, with p; = p fori =n—r+1,...,n. Applying the argument in the
proof of the Theorem 4.1, to the chain0 ¢ M\NN C --- C M,NN =N
of N, we have that M,, , "N = .- = M, N N = N. This implies
M,_,. O N. Next we show M, _, C N. By the assumption on RPE
filtration (4.2), p; g_ pfori=1,...,n—r. Foreach 1 <i < n—r choose
pi € pi \p. If x € M,_,, then by Lemma 3.1, p;---p,_,x =0 € N.
Since N is p-primary submodule of M and p;---p,—, ¢ p, we have
x € N. Therefore M, ., C N. So M,,_, = N and by Proposition 3.4
and Theorem 4.1, pe.d,(M/N) = r = p-pe.d,(M). O

Corollary 4.4. Let Ny N ---N N, = 0 be a minimal primary de-
composition of 0 in M. Suppose all the p;-primary component of 0
are minimal (that is, all the elements of Ass(M) are minimal). Then

pe.d,y(M) = " pe.d,(M/N;).

i=1

Proof. pe.d,(M) = > p-ped,y(M) = pe.d,(M/N;),
peAss(M) i=1
by Theorem 4.3. 0
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