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PRIME EXTENSION DIMENSION OF A MODULE

T. DURAIVEL, S. MANGAYARCARASSY, AND K. PREMKUMAR∗

Abstract. We have that for a finitely generated module M over a
Noetherian ring A any two RPE filtrations of M have same length.
We call this length as prime extension dimension of M and de-
note it as pe.dA(M). This dimension measures how far a module
is from torsion freeness. We show for every submodule N of M ,
pe.dA(N) ≤ pe.dA(M) and pe.dA(N)+pe.dA(M/N) ≥ pe.dA(M).
We compute the prime extension dimension of a module using the
prime extension dimensions of its primary submodules which oc-
curs in a minimal primary decomposition of 0 in M .

1. Introduction

Throughout this paper all rings are commutative, Noetherian with
identity and all modules are finitely generated and unitary. For stan-
dard reference and notations see [5]. Let A be a ring and M be an
A-module. Then we can have a filtration

F : 0 = M0 ⊂M1 ⊂ · · · ⊂Mn−1 ⊂Mn = M

of submodules of M . If Mi/Mi−1 ∼= A/pi for some prime ideal pi for
i = 1, . . . , n, then F is called a prime filtration of the module M .
Various kinds of filtrations are studied in [1], [3] and [4]. In [2] Prime
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extension filtration for a finitely generated module over a Noetherian
ring is defined and studied. We say a submodule K of M is p-prime
extension of a proper submodule N of M , if N is prime submodule of
K with (N : K) = p, that is K/N is a A/p-torsion free module.

In [2], it is shown that, p-prime extension of a proper submodule N
of M exists if and only if p ∈ Ass(M/N). A filtration of submodules
N = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M of M is called a prime extension
filtration of M over N , if each Mi is a prime extension of Mi−1 in M .
Clearly, a prime filtration of a module M is a prime extension filtration
of M over 0. If N = 0, a prime extension filtration of M is called as
weak prime decomposition of M by Dress [1]. Further, if each Mi is a
maximal pi-prime extension of Mi−1 in M, then the filtration is called
a maximal prime extension (MPE) filtration of M over N and it is
proved that {p1, . . . , pn} = Ass(M) (see [2, Theorem 14]).

A submodule K is a regular prime extension of N , if K is maximal
p-prime extension of N in M and p is a maximal element in Ass(M/N).

A prime extension filtration 0
p1
⊂M1 ⊂ · · · ⊂Mn−1

pn
⊂Mn = M is called

a regular prime extension (RPE) filtration, if for each i, 1 ≤ i ≤ n, Mi

is regular pi-prime extension of Mi−1 in M . So we have that pi 6⊂ pj,
for 1 ≤ i < j ≤ n.

In [2, Theorem 22], it is proved that every module M has a RPE fil-
tration and any two RPE filtration have same length. So this length is a
numerical invariant for the module M. In this article we call it as prime
extension dimension of M and we denote it as pe.dA(M). This dimen-
sion measures, how far a module is from torsion freeness. We have that
M is torsion free A/ann(M)-module if and only if pe.dA(M) = 1 and
therefore A is an integral domain if and only if pe.dA(A) = 1. For a
submodule L of M we prove pe.dA(L) ≤ pe.dA(M) and pe.dA(M) ≤
pe.dA(L) + pe.dA(M/L). We show that the prime extension dimension
of a module is infimum of the lengths of prime extension filtrations of
the module and we deduce that if M is a finite length module then
pe.dA(M) ≤ l(M), the length of the module. We also compute the
prime extension dimension of a module using the prime extension di-
mensions of its primary submodules which occur in a minimal primary
decomposition of 0 in M .

2. Prime Extension Dimension of a Submodule

We begin with a summary of the following result that will be useful
in the following sections.

Proposition 2.1. [2, Theorem 22]
Let N be a proper submodule of M . For any prime ideal p of A the
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number of times p occurs in any two RPE filtration of M over N are
equal, and hence any two RPE filtration of M over N have same length.

From the above proposition we have the following definitions.

Definition 2.2. Let M be a nonzero A-module. The prime extension
dimension (PE dimension) of M is the length of a RPE filtration of
M , and we denote it as pe.dA(M). We define the prime extension
dimension of the zero module is 0.

Definition 2.3. Let M be an A-module. For a prime ideal p of A, the
p-prime extension dimension of M is the number of times p-occurs in
a RPE filtration of M and we denote it as p-pe.dA(M).

Proposition 2.4. Let M be an A-module. Then

pe.dA(M) =
∑

p∈Spec(A)

p-pe.dA(M) =
∑

p∈Ass(M)

p-pe.dA(M)

Proof. The first equality follows from the definition of RPE filtration
and Proposition 2.1. By [2, Corollary 15], the prime ideal p occurs in an
RPE filtration of M if and only if p ∈ Ass(M). That is p-pe.dA(M) 6= 0
if and only if p ∈ Ass(M). This proves the second equality. �

Remark 2.5. If 0
p1
⊂ M1

p2
⊂ M2 ⊂ · · · ⊂ Mn−1

pn
⊂ Mn = M is a RPE

filtration of M and pi1 , . . . , pin is a permutation of p1, . . . , pn satisfying
the condition that pij 6⊂ pik , where 1 ≤ j < k ≤ n, then we can have a

RPE filtration 0
pi1⊂ M ′

1 ⊂ · · · ⊂M ′
n−1

pin⊂ M ′
n = M of M . In particular,

if p is a minimal element in Ass(M), with pe.dA(M) = r, then we can
have a RPE filtration

0 ⊂M1 ⊂ · · · ⊂Mn−r
pn−r+1

⊂ Mn−r+1 ⊂ · · ·
pn
⊂Mn = M

where pi = p for i = n− r + 1, . . . , n.

Remark 2.6. PE dimension of a module measures how far the module
is from torsion-freeness. Note that pe.dA(M) = 1 if and only if ann(M)
is a prime ideal and M is torsion free A/ann(M)-module.

For pe.dA(M) = 1⇔ 0 ⊂ M is a RPE filtration of M ⇔ 0 is prime
submodule of M with (0 : M) is a prime ideal ⇔ M is torsion free
A/ann(M)-module. In particular, a ring A is integral domain if and
only if pe.dA(A) = 1.

Example 2.7. Consider the Z-module Z/prZ for some prime p and
positive integer r. Then

0
pZ
⊂ pr−1Z

prZ
⊂ · · · ⊂ pZ

prZ
pZ
⊂ Z

prZ
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is a RPE filtration of Z/prZ and hence pe.dZ(Z/prZ) = r. More gen-
erally, if n = pr11 · · · p

rk
k is the prime factorization of an integer n, then

pe.dZ(Z/nZ) = r1 + · · ·+ rk.

Next we show PE dimension of a submodule of M is less than or
equal to PE dimension of M . We need the following lemma.

Lemma 2.8. Let N be a proper submodule of an A-module M . If K
is a p-prime extension of N in M , then for any submodule L of M ,
either L∩N = L∩K or L∩K is a p-prime extension of L∩N in L.
Further, if K is regular p-prime extension of N , then L∩K is regular
p-prime extension of L ∩N in L, when L ∩N 6= L ∩K.

Proof. Assume L ∩ N 6= L ∩ K. Then (N : K) = (L ∩ N : L ∩ K).
For, if a ∈ (N : K), then a(L ∩K) ⊆ aL ∩ aK ⊆ L ∩ N this implies
a ∈ (L ∩ N : L ∩ K). Conversely, let a ∈ (L ∩ N : L ∩ K). For
x ∈ L ∩K \ L ∩N , ax ∈ L ∩N ⊂ N . Since K is a p-prime extension
of N and x /∈ N , a ∈ (N : K). Hence (L ∩N : L ∩K) = (N : K) = p.

Suppose ax ∈ N ∩ L for some x ∈ K ∩ L and a ∈ A. If x /∈ N ∩ L,
then x ∈ L implies x /∈ N . Since ax ∈ N , a ∈ p = (N ∩L : K ∩L). So
K ∩ L is a p-prime extension of N ∩ L in L.

Now we assume K is regular p-prime extension of N and L ∩ N 6=
L∩K. Since L/(N ∩L) ∼= (N +L)/N ⊆M/N , p is a maximal element
in Ass(L/N ∩ L). Suppose K ∩ L is not a maximal p-prime extension
of N ∩ L. Then there exists a submodule L′ of L, such that L′ is the
unique maximal p-prime extension of N ∩ L in L. Let x ∈ L′. Then
px ⊆ N ∩ L, this implies p ⊆ (N : x). Since p is a maximal element
in Ass(M/N) and by [2, Theorem 11], x ∈ K. That is x ∈ K ∩ L and
therefore K ∩ L is a maximal p-prime extension of N ∩ L in L. �

Theorem 2.9. Let L be any submodule of an A-module M and 0 ⊂
M1 ⊂ · · · ⊂ Mn = M be an RPE filtration of M . Then the filtration
obtained from the chain 0 ⊆M1∩L ⊆ · · · ⊆Mn∩L = L by removing the
equalities is an RPE filtration of L and therefore pe.dA(L) ≤ pe.dA(M).

Proof. Let 0 ⊂ M1 ⊂ · · · ⊂ Mn = M be a RPE filtration of M
with length n. Now intersecting L with this filtration we have a chain
0 ⊆ L ∩M1 ⊆ · · · ⊆ L ∩Mn = L of submodules of L. After removing
the equalities in the above chain we get a filtration of L in which
each extension is regular prime extension by Lemma 2.8. That is, we
have a RPE filtration of L of length less than or equal to n. Hence
p-pe.dA(L) ≤ p-pe.dA(M) for every prime ideal p and pe.dA(L) ≤
pe.dA(M). �
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3. Prime Extension Dimension of a Quotient Module

Next we give two important lemma which is useful to prove the
subsequent results.

Lemma 3.1. Let N = M0

p1
⊂M1 ⊂ · · · ⊂Mi−1

pi⊂Mi ⊂ · · ·
pn
⊂Mn = M

be a RPE filtration of M over N . Then Mi = {x ∈M | p1 · · · pix ⊆ N}.

Proof. Proof by induction on i. For i = 1, the result is true by [2,
Theorem 11]. Now assume this result is true for i− 1, that is Mi−1 =
{x ∈ M | p1 · · · pi−1x ⊆ N}. Let x ∈ Mi. Then pix ⊆ Mi−1 and
by induction assumption p1 · · · pi−1(pix) ⊆ N . Conversely, suppose
x /∈ Mi. Since Mi is a regular pi-prime extension of Mi−1, there exists
an element a ∈ pi, such that ax /∈Mi−1. This gives p1 · · · pi−1(ax) * N ,
and so p1 · · · pix * N . �

Lemma 3.2. Let 0 ⊂ M1 ⊂ · · · ⊂ Mi−1
pi⊂ Mi ⊂ · · · ⊂ Mn = M be

a RPE filtration of M and N be a any submodule of M . If for some
i, N ∩Mi−1 = N ∩Mi, then (N : x) ⊆ pi, for every x ∈Mi \Mi−1.

Proof. Let x ∈ Mi \ Mi−1. Then (Mi−1 : x) = pi. If x ∈ N , then
x ∈ N∩Mi = N∩Mi−1, this implies x ∈Mi−1 which is a contradiction,
so x /∈ N . Let a ∈ (N : x). Then ax ∈ N implies ax ∈ N ∩Mi =
N ∩Mi−1, that is ax ∈ Mi−1, this implies a ∈ (Mi−1 : x) = pi. Hence
(N : x) ⊆ pi. �

Proposition 3.3. Let M be an A-module and N
p
⊂ K be a p-prime

extension in M . Then pe.dA(K) ≤ pe.dA(N) + 1.

Proof. Let

0
p1
⊂ K1 ⊂ · · · ⊂ Ki−1

pi⊂ Ki ⊂ · · · ⊂ Kn−1
pn
⊂ Kn = K (3.1)

be a RPE filtration of K. Suppose N ∩ Ki−1 = N ∩ Ki. We claim
pi = p. Let x ∈ Ki \ Ki−1. Then clearly x /∈ N and since K is a p-
prime extension of N , (N : x) = p. Suppose the prime ideal pi occurs
l times in the sequence p1, p2, . . . , pi. Since (3.1) is RPE filtration,
if j < i and pj 6= pi, then pj * pi and therefore we can choose a
pj ∈ pj \ pi and p denotes their product, that is p =

∏
j<i pj. Since

p /∈ pi and x /∈ Ki−1, we have that px /∈ Ki−1. Note px /∈ N , otherwise
px ∈ Ki ∩ N = Ki−1 ∩ N ⊂ Ki−1, a contradiction. So (N : px) = p.
Now by Lemma 3.1 pli(px) = 0 ∈ N , this implies pli ⊆ (N : px) = p,
that is pi ⊆ p. Also, by Lemma 3.2, p = (N : x) ⊆ pi. Hence pi = p.
Next we show that two equalities can not occur on

0 ⊆ K1 ∩N ⊆ · · · ⊆ Kn ∩N = N (3.2)
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Suppose an equality occur at the ith place and the next equality occur
at jth place in (3.2). That is N∩Ki−1 = N∩Ki and N∩Kj−1 = N∩Kj

for i < j. Then by above claim p = pi = pj. Since for i ≤ r < j,
N ∩ Kr−1 6= N ∩ Kr, pr 6= p and because (3.2) is a RPE filtration,
pr * p. Let y ∈ Kj \ Kj−1. If j = i + 1, choose p′ = 1. Suppose
j > i+1, let p′ = pi+1 · · · pj−1, for some pr ∈ pr \p, i < r < j. In either
case p′y /∈ Kj−1. Consider the RPE filtration

Ki

pi+1

⊂ Ki+1 ⊂ · · ·
pj
⊂ Kj ⊂ · · · ⊂ Kn = K

of K over Ki. Applying Lemma 3.1 to this filtration we have that
pi+1pi+2 · · · pj−1pjy ⊆ Ki, since y ∈ Kj. Then p′ ∈ pi+1pi+2 · · · pj−1
implies that pp′y ⊆ Ki. Suppose pp′y ⊆ N , then pp′y ⊆ Ki ∩ N =
Ki−1 ∩N ⊆ Ki−1. Therefore p ⊆ (Ki−1 : p′y) and by [2, Theorem 11],
p′y ∈ Ki ⊆ Kj−1, which is not the case. Hence p * (N : p′y). This is a
contradiction to the fact that K is a p-prime extension of N . Therefore
two equalities can not occur on 0 ⊂ N ∩ K1 ⊂ · · · ⊂ N ∩ Kn = N .
Hence by Theorem 2.9, pe.dA(K) ≤ pe.dA(N) + 1. �

Proposition 3.4. If N is a submodule of M which occurs in a RPE
filtration of M , then pe.dA(M/N) + pe.dA(N) = pe.dA(M).

Proof. Let 0 ⊂ M1 ⊂ · · · ⊂ Mn = M be a RPE filtration of M
with pe.dA(M) = n and N = Mi is a submodule which occur in
RPE filtration of M for some i. Then clearly pe.dA(N) = i and
pe.dA(M/N) = n− i. �

Example 3.5. Converse of the Proposition 3.4 is not necessarily true.
Let A = Z and M = Z/4Z ⊕ Z/6Z, N = 2Z/4Z ⊕ 2Z/6Z. Then

clearly pe.dA(M/N) + pe.dA(N) = pe.dA(M), but N does not occur
on any RPE filtration of M .

Theorem 3.6. Let M be an A-module and N be any submodule of M .
Then pe.dA(N) + pe.dA(M/N) ≥ pe.dA(M).

Proof. The proof is by induction on pe.dA(M/N). If pe.dA(M/N) = 1,
then N ⊂M is a RPE filtration of M over N . By Proposition 3.3,

pe.dA(M) ≤ pe.dA(N) + 1 = pe.dA(N) + pe.dA(M/N)

Now assume that this result is true for pe.dA(M/N) ≤ n. Suppose
pe.dA(M/N) = n + 1, then we have a RPE filtration N ⊂M1 ⊂ · · · ⊂
Mn+1 = M of M over N . Since pe.dA(M/M1) = n = pe.dA(M/N)− 1



PRIME EXTENSION DIMENSION OF A MODULE 103

and N ⊂M1 is a prime extension, by induction assumption we have

pe.dA(M/N)− 1 = pe.dA(M/M1) ≥ pe.dA(M)− pe.dA(M1)

pe.dA(M/N)− 1 ≥ pe.dA(M)− (pe.dA(N) + 1) (by Proposition 3.3)

pe.dA(M/N) ≥ pe.dA(M)− pe.dA(N).

Hence pe.dA(N) + pe.dA(M/N) ≥ pe.dA(M). �

Next corollary shows that PE dimension of a module is less than or
equal to the length of any prime extension filtration of that module.

Corollary 3.7. Let M be an A-module and 0 ⊂M1 ⊂ · · · ⊂Mn = M
be a prime extension filtration of M . Then pe.dA(M) ≤ n.

Proof. Proof by induction on n. For n = 1, it is trivial. Now assume
this result is true for any A-module having prime extension filtration
of length n− 1. Then by induction assumption pe.dA(M/M1) ≤ n− 1.
Since pe.dA(M1) = 1 and by Theorem 3.6, pe.dA(M) ≤ pe.dA(M/M1)+
pe.dA(M1) ≤ n. �

Remark 3.8. By the above corollary and the fact that RPE filtrations
are prime extension filtrations, PE dimension of a module is infimum
of all length of prime extension filtrations of a module.

Corollary 3.9. PE dimension of an A-module M is less than or equal
to the length of the module M .

Proof. It is trivial if length of M is not finite. So we assume that M
is of finite length. Since a composition series of M is a prime filtration
of M and prime filtrations are prime extension filtrations, by Corollary
3.7, length of M is greater than or equal to PE dimension of M . �

4. Prime Extension Dimension of Primary Submodules

Next we show that we can compute the PE dimension of a module
using the PE dimension of primary submodule of M which occurs in a
minimal primary decomposition of 0 in M .

Theorem 4.1. Let N be a p-primary submodule of an A-module M
which occur in a minimal primary decomposition of 0 in M . Then
pe.dA(N) = pe.dA(M)− p-pe.dA(M).

Proof. Let N1 ∩ · · · ∩ Nr = 0 be a minimal primary decomposition of
0 in M and let N = N1. Since we have the injective homomorphism

N → M

N2 ∩ · · · ∩Nr

, Ass(N) ⊆ Ass
(

M
N2∩···∩Nr

)
= {p2, . . . , pr}. That is
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p1 /∈ Ass(N). Now consider a RPE filtration 0
p1
⊂ M1 ⊂ · · · ⊂ Mi−1

pi⊂
Mi ⊂ · · ·

pn
⊂ Mn = M of M . Then by intersecting this filtration with

N we have a chain of submodules of N ,

0 ⊆M1 ∩N ⊆ · · · ⊆Mi−1 ∩N ⊆Mi ∩N ⊆ · · · ⊆Mn ∩N = N (4.1)

Now we claim p = pi if and only if Mi−1 ∩N = Mi ∩N . We have that
p /∈ Ass(N) if and only if p does not occur on (4.1) by [2, Corollary 15].
By Theorem 2.9, after removing the equalities in the chain (4.1) we have
a RPE filtration of N . Therefore, whenever p = pi, Mi−1∩N = Mi∩N .
Conversely, assume p 6= pi and we show Mi−1 ∩N 6= Mi ∩N .

Case(i) p * pi. Let p ∈ p \ pi and x ∈ Mi \ Mi−1. Since p ∈
p =

√
(N : M), there exists a positive integer m such that pmM ⊆ N .

In particular pmx ∈ N and so pmx ∈ Mi ∩ N . Since pm /∈ pi and
x /∈ Mi−1, we have that pmx /∈ Mi−1, that is pmx /∈ Mi−1 ∩ N . Hence
Mi−1 ∩N 6= Mi ∩N .

Case(ii) p ⊂ pi. By definition of RPE filtration, pt * p, for 1 ≤ t ≤ i.
Let pt ∈ pt\p for t = 1, . . . , i and let p′ = p1 · · · pi. Let x ∈Mi. Then by
Lemma 3.1, p′x = 0 ∈ N . Since N is p-primary submodule of M and
p′ /∈ p, we have that x ∈ N . That is Mi ⊆ N . If Mi−1 ∩N = Mi ∩N ,
then Mi−1 = Mi a contradiction. Hence Mi−1 ∩N 6= Mi ∩N .

So we prove that Mi−1 ∩N = Mi ∩N if and only if p = pi. That is
the number of equalities in (4.1) is exactly equal to the number of times
p occurs in the RPE filtration of M , that is p-pe.dA(M). So, the RPE
filtration of N obtained from (4.1) by removing equalities has length
n− p-pe.dA(M). That is pe.dA(N) = pe.dA(M)− p-pe.dA(M). �

Corollary 4.2. Let N1 ∩ · · · ∩Nr = 0 be a minimal primary decompo-

sition of 0 in M . Then (r − 1) pe.dA(M) =
r∑

i=1

pe.dA(Ni).

Proof. Let Ni be a pi-primary submodule of M and Ass(M) = {p1, . . . , pr}.
Then by Theorem 4.1,

r∑
i=1

pe.dA(Ni) =
r∑

i=1

(pe.dA(M)− pi-pe.dA(M))

= r · pe.dA(M)−
r∑

i=1

pi-pe.dA(M).

This implies (r− 1) pe.dA(M) =
r∑

i=1

pe.dA(Ni) by Proposition 2.4. �
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Theorem 4.3. Let p be a minimal element in Ass(M). Suppose N
is a p-primary submodule of M which occur in a minimal primary
decomposition of 0 in M , then pe.dA(M/N) = p-pe.dA(M).

Proof. Let p be a minimal element in Ass(M) with p-pe.dA(M) = r.
Then by Remark 2.5, there exists an RPE filtration

0 ⊂M1 ⊂ · · · ⊂Mn−r
pn−r+1

⊂ Mn−r+1 ⊂ · · · ⊂Mn−1
pn
⊂Mn = M (4.2)

of M , with pi = p for i = n−r+1, . . . , n. Applying the argument in the
proof of the Theorem 4.1, to the chain 0 ⊂M1∩N ⊂ · · · ⊂Mn∩N = N
of N , we have that Mn−r ∩ N = · · · = Mn ∩ N = N . This implies
Mn−r ⊇ N . Next we show Mn−r ⊂ N . By the assumption on RPE
filtration (4.2), pi * p for i = 1, . . . , n−r. For each 1 ≤ i ≤ n−r choose
pi ∈ pi \ p. If x ∈ Mn−r, then by Lemma 3.1, p1 · · · pn−rx = 0 ∈ N .
Since N is p-primary submodule of M and p1 · · · pn−r /∈ p, we have
x ∈ N . Therefore Mn−r ⊆ N . So Mn−r = N and by Proposition 3.4
and Theorem 4.1, pe.dA(M/N) = r = p-pe.dA(M). �

Corollary 4.4. Let N1 ∩ · · · ∩ Nr = 0 be a minimal primary de-
composition of 0 in M . Suppose all the pi-primary component of 0
are minimal (that is, all the elements of Ass(M) are minimal). Then

pe.dA(M) =
r∑

i=1

pe.dA(M/Ni).

Proof. pe.dA(M) =
∑

p∈Ass(M)

p-pe.dA(M) =
r∑

i=1

pe.dA(M/Ni),

by Theorem 4.3. �
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