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BASIS OF A MULTICYCLIC CODE AS AN IDEAL IN
Fq[X1, . . . , Xs]/〈Xρ1

1 − 1, . . . , Xρs
s − 1〉

R. M. LALASOA, R. ANDRIAMIFIDISOA∗, AND T. J. RABEHERIMANANA

Abstract. First, we apply the method presented by Zahra Sep-
asdar in the two-dimensional case to construct a basis of a three
dimensional cyclic code. We then generalize this construction to a
general s-dimensional cyclic code.

1. Introduction

Multicyclic codes are cyclic codes of dimension s, or s-D cyclic codes,
where s > 2 is an integer. Two-dimensional cyclic codes have been in-
tensively studied ([2, 3, 7, 8, 9, 10, 11]). There are much less results
about general s-D cyclic codes, where s > 3 . Because of their rich
mathematical structure, as in [6], involving Algebraic Geometry or in
[5, 9, 10, 11], using group algebra and Galois Theory or ideals in a
polynomial quotient ring, multicyclic codes are of great importance.

A fundamental problem in coding theory is the construction of a
generator matrix, which allows to find parameters of the code and to
encode messages. The representation of a 2-D cyclic code as an ideal
in a polynomial quotient ring makes the construction of a generator
matrix possible, since it can be deducted from a basis of the ideal
([9, 10, 11]).
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Sepasdar, in [9, 11] presented a method which allowed to construct
an ideal basis of a 2-D cyclic code, which is represented as an ideal
in a two-variables polynomial quotient ring. Her method is based on
an “elimination principle”, and the fact that the coefficients of two-
variate polynomials in the ideals are also polynomials in one variable,
which belongs to principal ideals, and therefore, already have a “gen-
erator polynomial”. From these generator polynomials, one then can
construct a basis of the code, as a vector space.

In the present paper, we apply Sepasdar’s method first to the 3-D
case and then to the general s-D case (s > 2). It is organized as follows :

In Section 2, we give a brief description of multicyclic codes, as ideals
in a polynomial quotient ring. Then we describe the structure of these
polynomial quotient rings. Finally, we describe an auxiliary polyno-
mial quotient ring which will allow us to apply Sepasdar’s method to
higher-dimensional cases

In Section 3, we first describe 2-D cyclic codes while applying what
we saw in Section 2 to the 2-D case. We also present Sepasdar’s result.

In Section 4, we state and prove our main Theorem 4.1. This give the
construction of a basis of a 3-D code, as an ideal in a three-variables
polynomial quotient ring. We prove it by using Sepasdar’s method
with ideals in two variables, a modification of the method and more
calculation to the 3-D case.

In the last Section 5, we state and prove Theorem 5.1, which is the
generalization of Theorem 4.1 to the s-D case, by induction.

2. Multicyclic codes

Throughout this paper, Fq denotes the Galois Field with q elements
(where q is a power of a prime number). Let s > 2 be an inte-
ger, X1, . . . , Xs distinct letters (or variables) and ρ1, . . . , ρs > 1 in-
tegers. Let Fq[X1, . . . , Xs] the ring of the polynomials in the variables
X1, . . . , Xs with coefficients in Fq. An element of this ring is of the
form

d(X1, . . . , Xs) =
∑

(α1,...,αs)∈Ns
dα1,...,αsX

α1
1 · · ·Xαs

s (2.1)
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where dα1,...,αs ∈ Fq, the sum being finite.

A multicyclic code, or more precisely, an s-dimensional cyclic code
(s-D multicyclic code), is an ideal I in the quotient ring (and also an
F-algebra)

R = Fq[X1, . . . , Xs]/〈Xρ1
1 − 1, . . . , Xρs

s − 1〉. (2.2)

For σ = 1, . . . , s, let xσ be the residue class of Xσ modulo the ideal
〈Xρ1

1 − 1, . . . , Xρs
s − 1〉 :

xσ = Xσ + 〈Xρ1
1 − 1, . . . , Xρs

s − 1〉. (2.3)

We then have

xρσσ = 1. (2.4)

We will need some supplementary notations :

• Let Z /ρσ Z = {0, 1, . . . , ρσ − 1} be the set of the residue classes of
the integers modulo ρσ. for σ = 1, . . . , s. Now, construct the abelian
groups

Gs = Z /ρ1 Z× . . .× Z /ρs Z,
Gs−1 = Z /ρ1 Z× . . .× Z /ρs−1 Z .

(2.5)

• Let Fq[x1, . . . , xs] be the set of polynomials in the variables x1, . . . , xs.
Using (2.4), we have

Fq[x1, . . . , xs] ={
∑

(α1,...,αs)∈Gs

rα1,...,αsx
α1
1 · · ·xαss | rα1,...,αs ∈ Fq

for (α1, . . . , αs) ∈ Gs}.
(2.6)

• In the same manner, we define

Fq[x1, . . . , xs−1] ={
∑

(α1,...,αs−1)∈Gs−1

rα1,...,αs−1x
α1
1 · · ·x

αs−1

s−1 | rα1,...,αs−1 ∈ Fq

for (α1, . . . , αs−1) ∈ Gs−1}.
(2.7)

Note that the set Fq[x1, . . . , xs] (resp. Fq[x1, . . . , Xs−1]) is finite and
has cardinality qρ1···ρs (resp. qρ1···ρs−1) since it can be identified with
the set of mappings from Gs (resp. Gs−1) to Fq.
• Let S be the quotient ring

S = Fq[X1, . . . , Xs−1]/〈Xρ1
1 − 1, . . . , X

ρs−1

s−1 − 1〉. (2.8)

The following proposition gives another representation of the ring R :
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Proposition 2.1. With the preceding notations, the rings
R = Fq[X1, . . . , Xs]/〈Xρ1

1 − 1, . . . , Xρs
s − 1〉 and Fq[x1, . . . , xs] are iso-

morphic.

Proof. Let ϕs be the ring homomorphism defined by

ϕs : Fq[X1, . . . , Xs] −→ Fq[x1, . . . , xs]

Xi 7−→ xi
(2.9)

for i = 1, . . . , s. Let d(X1, . . . , Xs) ∈ Fq[X1, . . . , Xr] as in (2.1). Using
(2.4), we then have

ϕs(d(X1, . . . , Xs)) =
∑

(α1,...,αs)∈Ns
dα1,...,αsx

α1 mod ρ1
1 · · ·xαs mod ρs

s

where “ασ mod ρσ” designs the remainder of ασ by the euclidean di-
vision of ασ by ρσ, Moreover, ϕs is surjective and its kernel is the ideal
〈Xρ1

1 − 1, . . . , Xρs
s − 1〉. Therefore, by the first isomorphism theorem

for rings ([4]), there is an isomorphism ϕ̄ which makes the following
diagram commutative :

Fq[X1, . . . , Xs] Fq[x1, . . . , xs]

Fq[X1, . . . , Xs]/〈Xρ1
1 − 1, . . . , Xρs

s − 1〉

ϕs

πs
ϕ̄s

where πs is the canonical surjection. This proves the proposition.
�

The following proposition gives another representation of the ring S:

Proposition 2.2. With the preceding notations the rings
S = Fq[X1, . . . , Xs−1]/〈Xρ1

1 − 1, . . . , X
ρs−1

s−1 − 1〉 and Fq[x1, . . . , xs−1] are
isomorphic.

Proof. We define the homomorphism ψs by

ψs : Fq[X1, . . . , Xs−1] −→ Fq[y1, . . . , ys−1]

Xi 7−→ yi = Xi + 〈Xρ1
1 − 1, . . . , X

ρs−1

s−1 − 1〉
(2.10)

(It is not the same as ϕs−1 defined by (2.9). Here, yi is the residue
class of Xi modulo the ideal 〈Xρ1

1 − 1, . . . , X
ρs−1

s−1 − 1〉). Using the same
arguments as for the mapping ϕs in (2.9), there exists an isomorphism
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ψ̄s which makes the following diagram commutative :

Fq[X1, . . . , Xs−1] Fq[y1, . . . , ys−1]

Fq[X1, . . . , Xs−1]/〈Xρ1
1 − 1, . . . , X

ρs−1

s−1 − 1〉,

ψs

πs−1
ψ̄s

(2.11)
where πs−1 is the canonical projection. Now define the homomorphism
θ by

θ : Fq[y1, . . . , ys−1] −→ Fq[x1, . . . , xs−1]

yi 7−→ xi.
(2.12)

for i = 1, . . . , s. The mapping θ is obviously surjective and since its
domain and codomain have the same cardinality (see the remark next to
(2.7)), it follows that it is bijective, hence a ring isomorphism. Going
back to the commutative diagram (2.11), we have that the mapping
θ ◦ ψ̄s is an isomorphism between S and Fq[x1, . . . , xs]. �

From the propositions 2.1 and 2.2, we then can make the following
identifications:

R = Fq[X1, . . . , Xs]/〈Xρ1
1 − 1, . . . , Xρs

s − 1〉 = F[x1, . . . , xs]

and

S = Fq[X1, . . . , Xs−1]/〈Xρ1
1 − 1, . . . , X

ρs−1

s−1 − 1〉 = F[x1, . . . , xs−1].
(2.13)

We directly deduce the following corollary :

Corollary 2.3. Using the notations in (2.13), we have

R = Fq[x1, . . . , xs−1][xs] = S[xs]. (2.14)

Remark 2.4. For d(X1, . . . , Xs) ∈ Fq[X1, . . . , Xs], by the division al-
gorithm ([1, 5]) of d(X1, . . . , Xs) by Xρσ

σ − 1, for σ = 1, . . . s, we can
write

d(X1, . . . , Xs) =
s∑

σ=1

qσ(X1, . . . , Xs)(X
ρσ
σ − 1) + r(X1, . . . , Xs), (2.15)

with qσ, r ∈ Fq[X1, . . . , Xs] and r being of the form

r(X1, . . . , Xs) =
∑

(α1,...,αs)

rα1,...,αsX
α1
1 · · ·Xαs

s (2.16)

where ασ 6 ρσ − 1 for σ = 1, . . . s. Therefore, a representative of the
residue class of d(X1, . . . , Xs) modulo the ideal 〈Xρ1

1 − 1, . . . , Xρs
s − 1〉

is r(X1, . . . , Xs). Using this, we can find the result of Proposition 2.1 :
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the class of d(X1, . . . , Xs) is the same of that of r(X1, . . . , Xs), which
is

r(x1, . . . , xs) =
∑

(α1,...,αs)∈Gs

rα1,...,αsx
α1
1 · · ·xαss ,

and immediately deduce that

R = {
∑

(α1,...,αs)∈Gs

rα1,...,αsx
α1
1 · · ·xαss | rα1,...,αs ∈ Fq} = Fq[x1, . . . , xs].

Similar considerations also allow to show that S = Fq[x1, . . . , xs−1].

Using Corollary 2.14, an element f(x1, . . . , xs) ∈ R can be uniquely
written under the form

f(x1, . . . , xs) =

ρs−1∑
i=0

fi(x1, . . . , xs−1)xis, (2.17)

where fi(x1, . . . , xs−1) ∈ S for i = 0, . . . , ρs − 1.

3. Two dimensional cyclic codes

Let l, n > 1 be integers, X, Y two letters or variables, Fq[X, Y ] the
ring of polynomials in X, Y with coefficients in Fq and R the quotient
ring

R = Fq[X, Y ]/〈X l − 1, Y m − 1〉.
and S the quotient ring

S = Fq[X]/〈X l − 1〉.
According to (2.3), let

x = X + 〈X l − 1, Y m − 1〉
y = Y + 〈X l − 1, Y m − 1〉

the residue classes of X and Y modulo the ideal 〈X l − 1, Y m − 1〉. A
two dimensional (2-D) cyclic code is an Ideal I in R. Using (2.13), we
can write

R = Fq[x, y] = {
∑

(α,β)∈G2

dα,βx
αyβ | dα,β ∈ Fq},

where G2 = Z /lZ×Z /mZ and

S = Fq[x] = {
∑

α∈Z /lZ

cαx
α | cα ∈ Fq}.

Here is Sepasdar’s result :

Result 3.1 (Sepasdar, [9, 11]). An ideal in Fq[X, Y ]/〈X l−1, Y m−1〉,
i.e. a two-dimensional cyclic code has a finite basis.
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If I is an ideal in R = Fq[X, Y ]/〈X l − 1, Y m − 1〉, this result states
that there exist elements p1(x, y), . . . , pk(x, y) ∈ R (where k > 1 is an
integer) such that an element c(x, y) ∈ I may be written as

c(x, y) =
k∑
i=1

ui(x, y)pi(x, y)

with ui(x, y) ∈ R for i = 1, . . . , k.

4. Ideal basis of a three-dimensional cyclic code

Now, applying what we saw in Section 2 for s = 3, A 3-D cyclic code
is then an Ideal I in R = Fq[X l, Y m, Zn]/〈X l − 1, Y m− 1, Zn− 1〉. By
(2.8),

S = Fq[X, Y ]/(X l − 1, Y m − 1).

According to (2.3), let

x = X + 〈X l − 1, Y m − 1, Zn − 1〉,
y = Y + 〈X l − 1, Y m − 1, Zn − 1〉,
z = Z + 〈X l − 1, Y m − 1, Zn − 1〉

the residue classes X, Y and Z modulo the ideal 〈X l−1, Y m−1, Zn−1〉.
Using (2.13), we can write

R = Fq[x, y, z] = {
∑

(α,β,γ)∈G3

dα,β,γx
αyβzγ | dα,β,γ ∈ Fq},

S = F[x, y] = {
∑

(α,β)∈G2

cα,βx
αyβ | cα,β ∈ Fq},

where G3 = Z /lZ×Z /mZ×Z /nZ and G2 = Z /lZ×Z /mZ. By
(2.17), an element f(x, y, z) ∈ R can be uniquely written under the
form

f(x, y, z) =
n−1∑
i=0

fi(x, y)zi (4.1)

where fi(x, y) ∈ S for i = 0, . . . , n− 1.
Using the equality zn = 1, we have

zf(x, y, z) = fn−1(x, y) + f0(x, y)z + · · ·+ fn−2(x, y)zn−1,

z2f(x, y, z) = fn−2(x, y) + fn−1(x, y)z + · · ·+ fn−3(x, y)zn−1,

...

zn−1f(x, y, z) = f1(x, y) + f2(x, y)z + · · · f0(x, y)zn−1.

(4.2)

The main task in this section is to prove our main theorem:
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Theorem 4.1. Using the preceding notations, let I be an ideal of
R = Fq[X l, Y m, Zn]/〈X l− 1, Y m− 1, Zn− 1〉. For j = 0, . . . , n− 1, let
Ij be the following set

Ij = {gj(x, y) ∈ S | ∃g(x, y, z) ∈ I with g(x,y, z) =
n−1∑
i=j

gi(x, y)zi

where gi ∈ S for i = j, . . . , n− 1}.
(4.3)

Then the following hold:

(1) The Ij’s are ideals of S, generated by elements p
(j)
1 , . . . , p

(j)
rj ∈ S,

i.e.

Ij = 〈p(j)
1 , p

(j)
2 , . . . , p(j)

rj
〉 = {

rj∑
µ=1

p(j)
µ (x, y)qµ(x, y) | qµ ∈ S}.

(2) There exist elements p
(j)
1 (x, y, z), . . . , p

(j)
rn−1(x, y, z) ∈ I, such that

p(j)
µ (x, y, z) =

n−1∑
i=j

p
(j)
iµ (x, y)zi, (4.4)

for j = 0, . . . , n − 1, i = j, . . . , n − 1, where p
(j)
iµ (x, y) ∈ S, with

p
(j)
jµ (x, y) = p

(j)
µ (x, y) for µ = 1, . . . , ri.

(3) The elements p
(j)
1 , . . . , p

(j)
rj , j = 1, . . . , n− 1 generate I, i.e.

I = 〈p(0)
1 , . . . , p(0)

r1
, p

(1)
1 , . . . , p(1)

r1
, . . . , p

(j)
1 , . . . , p(j)

rj
, . . . , p

(n−1)
1 , . . . , p(n−1)

rn−1
〉.

Proof. We see that that all the Ij’s are non-empty since they contains
the zero polynomial.

(1) Fix an element j ∈ {0, . . . , n − 1}. If g0(x, y) ∈ Ij, there exists
g(x, y, z) ∈ I such that

g(x, y, z) =
n−1∑
i=j

gj(x, y)zi.

First, we have xg0(x, y), yg0(x, y) ∈ Ij since I is an ideal of R and

xg(x, y, z) =
n−1∑
i=j

xgi(x, y)zi, yg(x, y, z) =
n−1∑
i=j

ygi(x, y)zi

are elements of I. Second, for g(x, y, z) and g′(x, y, z) ∈ I, we have
g(x, y, z) + g′(x, y, z) ∈ I since I is an ideal. Thus, with obvious nota-
tions, g0(x, y) + g′0(x, y) ∈ Ij, for g0(x, y) and g′0(x, y) ∈ Ij and, Ij is
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indeed an ideal of S = Fq[X, Y ]/(X l−1, Y m−1). By Result 3.1, it has

a basis {p(j)
1 , p

(j)
2 , . . . , p

(j)
rj } (where rj ∈ N∗), as stated in the theorem.

The ideal I0 will be of special interest:

I0 = {g0(x, y) ∈ S | ∃g(x, y, z) ∈ I with g(x,y, z) =
n−1∑
i=0

gi(x, y)zi

where gi ∈ S for i = 0, . . . , n− 1}.
(4.5)

By (4.2), it follows that

zif(x, y, z) ∈ I0, (4.6)

which yields that fi(x, y) ∈ I0 for i = 0, . . . , n− 1.

(2) The assertion results from the fact that p
(j)
µ (x, y) is an element

of S for j = 0, . . . , n − 1 and µ = 1, . . . , ri and the definition of Ij in
(5.2).

By (4.2) and (4.6), where we replace f by p(j), we have, by appro-

priate choices of k, zkp
(j)
µ (x, y, z) ∈ I, which implies that p

(j)
iµ ∈ I0 for

i = 0, . . . , n− 1. This latter being generated by p
(0)
1 , . . . , . . . , p

(0)
r0 , there

exist t
(j)
iµν(x, y) ∈ S such that

p
(j)
iµ (x, y) =

r0∑
ν=1

p(0)
ν (x, y)t

(j)
iµν(x, y) (4.7)

for j = 0, . . . , n − 1 and µ = 1, . . . , ri. Using (5.3) and (4.7), we then
have

p(j)
µ (x, y, z) =

n−1∑
i=j

r0∑
ν=1

p(0)
ν (x, y)t

(j)
iµν(x, y)zi. (4.8)

Now, consider an element f(x, y, z) ∈ I of the form (4.1). Since

f0(x, y) ∈ I0, there exist q
(0)
µ (x, y) ∈ S, µ = 1, . . . , r0 such that

f0(x, y) =

r0∑
µ=1

p(0)
µ (x, y)q(0)

µ (x, y). (4.9)

Using (4.7) for j = 0 and the fact that p
(0)
0µ (x, y) = p

(0)
µ (x, y), from (2),

Theorem 4.1, it follows that

f0(x, y) =

r0∑
µ=1

r0∑
ν=1

p(0)
ν (x, y)t

(0)
0µν(x, y)q(0)

µ (x, y). (4.10)
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Put

h1(x, y, z) = f(x, y, z)−
r0∑
µ=1

p(0)
µ (x, y, z)q(0)

µ (x, y). (4.11)

We have

h1(x, y, z) =
n−1∑
i=0

fi(x, y)zi −
n−1∑
i=0

r0∑
µ=1

r0∑
ν=1

p(0)
ν (x, y)t

(0)
iµν(x, y)q(0)

µ (x, y)zi

(by (4.8) for j = 0),

= (f0(x, y) +
n−1∑
i=1

fi(x, y)zi)−
n−1∑
i=1

r0∑
µ=0

r0∑
ν=1

(p(0)
ν (x, y)t

(0)
iµν(x, y)q(0)

µ (x, y)zi,

= (f0(x, y)−
r0∑
µ=1

r0∑
ν=1

p(0)
ν (x, y)t

(0)
0µν(x, y)q(0)

µ (x, y)) +
n−1∑
i=1

fi(x, y)zi

−
n−1∑
i=1

(

r0∑
µ=1

r0∑
ν=1

p
(0)
iµ (x, y)t

(0)
iµν(x, y)q(0)

µ (x, y))zi,

=
n−1∑
i=1

fi(x, y)zi −
n−1∑
i=1

(

r0∑
µ=1

p(0)
µ (x, y)q(0)

µ (x, y))zi

(by (4.10) and (4.7) for j = 0).
(4.12)

Since f and p
(0)
µ are elements of I which is an ideal of R, the polynomial

h1 is also an element of I. We remark that

h1(x, y, z) =
n−1∑
i=1

h
(1)
i (x, y)zi

where h
(1)
i ∈ S for i = 1, . . . , n − 1. In other words, h

(1)
1 (x, y) ∈ I1.

Therefore, there exists q
(1)
µ ∈ S, µ = 1, . . . , r1 such that

h
(1)
1 (x, y) =

r1∑
µ=1

p(1)
µ (x, y)q(1)

µ (x, y).

Using (4.7), for j = 1, and the fact that p
(1)
1µ (x, y) = p

(1)
µ (x, y), from

(2), Theorem 4.1, it follows that

h
(1)
1 (x, y) =

r1∑
µ=1

r0∑
ν=1

p(0)
ν (x, y)t

(1)
iµν(x, y)q(1)

µ (x, y). (4.13)
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Put

h2(x, y, z) = h1(x, y, z)−
r1∑
µ=1

p(1)
µ (x, y, z)q

(1)
1µ (x, y). (4.14)

We have

h2(x, y, z) =
n−1∑
i=1

h1(x, y, z)zi −
r1∑
µ=1

r0∑
ν=1

n−1∑
i=1

p(0)
ν (x, y)t

(1)
iµν(x, y)q

(1)
1µ (x, y)zi

(by (4.8) for j = 1),

= (h
(1)
1 (x, y)z +

n−1∑
i=2

h1
i (x, y)zi −

r1∑
µ=1

r0∑
ν=1

(p(0)
ν (x, y)t

(1)
1µν(x, y)q

(1)
1µ (x, y))z

−
n−1∑
i=1

(

r1∑
µ=1

r0∑
ν=1

p(0)
ν (x, y)t

(1)
iµν(x, y)q

(1)
1µ (x, y))zi

=
n−1∑
i=2

h
(1)
i (x, y)zi −

n−1∑
i=1

r1∑
µ=1

r0∑
ν=1

p(0)
ν (x, y)t

(1)
iµν(x, y)q(1)

µ (x, y)zi

=
n−1∑
i=2

h1
i (x, y)zi −

n−1∑
i=1

r1∑
µ=1

p
(0)
iµ (x, y)q

(1)
1µ (x, y))zi

(by (4.13) and (4.7) for j = 1).
(4.15)

(3) Since h1(x, y, z) and p
(1)
µ (x, y, z) are elements of I which is an ideal

of R, the polynomial h2(x, y, z) is also in I and can be written in the
form

h2(x, y, z) =
n−1∑
i=2

h
(2)
i (x, y)zi

where h
(2)
i (x, y) ∈ S. In other words, h2(x, y, z) ∈ I2. Therefore there

exist q
(2)
µ (x, y) ∈ S, µ = 1, . . . , r2 such that

h
(2)
2 (x, y) =

r2∑
µ=1

p(2)
µ (x, y)q(2)

µ (x, y). (4.16)

Using (4.7), for j = 2, and the fact that p
(2)
2µ (x, y) = p

(2)
µ (x, y), from

(2), Theorem 4.1, it follows that

h
(2)
2 (x, y) =

r2∑
µ=1

r0∑
ν=1

p(0)
ν (x, y)t

(2)
iµν(x, y)q(2)

µ (x, y). (4.17)
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Put

h3(x, y, z) = h2(x, y, z)−
r2∑
µ=1

p(2)
µ (x, y, z)q(2)

µ (x, y). (4.18)

We then have

=
n−1∑
i=2

h
(2)
i (x, y, z)zi −

r2∑
µ=1

n−1∑
i=2

r0∑
ν=1

p(0)
ν (x, y)t

(2)
iµν(x, y)q(2)

µ (x, y)zi

(by (4.8) for j = 2),

= (h
(2)
2 (x, y)y)z2 +

n−1∑
i=3

h2
i (x, y)zi −

r2∑
µ=1

r0∑
ν=1

(p(0)
ν (x, y)t

(2)
2µνq

(2)
µ (x, y))z2

−
r2∑
µ=1

(
n−1∑
i=3

r0∑
ν=1

p(0)
ν (x, y)t

(2)
iµν(x, y)q

(2)
1µ (x, y))zi

=
n−1∑
i=3

h
(2)
i (x, y)zi −

n−1∑
i=3

r2∑
µ=1

r0∑
ν=1

p(0)
ν (x, y)t

(2)
iµν(x, y)q(2)

µ (x, y)zi

=
n−1∑
i=3

h
(2)
i (x, y)zi −

n−1∑
i=3

r2∑
µ=1

p
(2)
iµ (x, y)q(2)

µ (x, y)zi

(by (4.17) and (4.7) for j = 2).
(4.19)

Since h2(x, y, z) and p
(2)
µ (x, y, z) are elements of I which is an ideal of

R, the polynomial h3(x, y, z) is also in I and can be written in the form

h3(x, y, z) =
n−1∑
i=3

h
(3)
i (x, y)zi, (4.20)

with h
(3)
i (x, y) ∈ S.

Applying the preceding methods, we get polynomials

h4(x, y, z), . . . , hn−2(x, y, z),

q(3)
µ (x, y, z)16µ6r3 , . . . , q

(n−2)
µ (x, y, z)16µ6rn−2

of S. Finally, put

hn−1(x, y, z) = hn−2(x, y, z)−
rn−1∑
µ=1

p(n−2)
µ (x, y, z)q(n−2)

µ (x, y). (4.21)



BASIS OF A MULTICYCLIC CODE 75

Then hn−1(x, y, z) is a polynomial of I of the form hn−1
n−1(x, y)zn−1. In

other words, h
(n−1)
n−1 (x, y) ∈ In−1. Therefore, there exist q

(n−1)
µ (x, y) ∈ S,

µ = 1, . . . , rn−1 such that

h
(n−1)
n−1 (x, y) =

rn−1∑
µ=1

p(n−1)
µ (x, y)q(n−1)

µ (x, y), (4.22)

which yields

hn−1(x, y, z) = (

rn−1∑
µ=0

p(n−1)
µ (x, y)q(n−1)

µ (x, y))zn−1

=

rn−1∑
µ=0

p(n−1)
µ (x, y, z)q(n−1)

µ (x, y).

For an arbitrary element f(x, y, z) ∈ I we then have shown the follow-
ing equalities :

h1(x, y, z) = f(x, y, z)−
r0∑
µ=1

p(0)
µ (x, y, z)q(0)

µ (x, y),

h2(x, y, z) = h1(x, y, z)−
r1∑
µ=1

p(1)
µ (x, y, z)q(1)

µ (x, y),

h3(x, y, z) = h2(x, y, z)−
r1∑
µ=1

p(2)
µ (x, y, z)q(2)

µ (x, y),

· · ·

hn−1(x, y, z) = hn−2(x, y, z)−
rn−2∑
µ=1

p(n−2)
µ (x, y, z)q(n−2)

µ (x, y),

=

rn−1∑
µ=1

p(n−1)
µ (x, y, z)q(n−1)

µ (x, y)
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and finally have

f(x, y, z) =

r0∑
µ=1

p(0)
µ (x, y, z)q(0)

µ (x, y) + h1(x, y),

=

r0∑
µ=1

p(0)
µ (x, y, z)q(0)

µ (x, y) +

r1∑
µ=1

p(1)
µ (x, y, z)q(1)

µ (x, y) + h2(x, y),

= · · · ,

=

r0∑
µ=1

p(0)
µ (x, y, z)q(0)

µ (x, y) + · · ·+
rn−1∑
µ=1

p(n−1)
µ (x, y, z)q(n−1)

µ (x, y),

and conclude that

I = 〈p(0)
1 , . . . , p(0)

r1
, p

(1)
1 , . . . , p(1)

r1
, . . . , p

(i)
1 , . . . , p

(i)
ri
, . . . , p

(n−1)
1 , . . . , p(n−1)

rn−1
〉.

�

5. Basis for an s-dimensional cyclic code

Now, we generalize Theorem 4.1 for general s-D multicyclic codes
(s > 2). Let

R = Fq[X1, . . . , Xs]/〈Xρ1
1 − 1, . . . , Xρs

s − 1〉,

as in (2.2) and S the quotient ring

S = Fq[X1, . . . , Xs−1]/〈Xρ1
1 − 1, . . . , X

ρs−1

s−1 − 1〉.

In section 2, by (2.13) and (2.14), we know that if xi denotes the residue
class of Xi modulo the ideal 〈Xρ1

1 − 1, . . . , Xρs
s − 1〉, then

S = Fq[x1, . . . , xs−1], R = Fq[x1, . . . , xs] = S[xs]. (5.1)

Theorem 5.1. Let I be an ideal of the quotient ring
R = Fq[X1, . . . , Xs]/〈Xρ1

1 − 1, . . . , Xρs
s − 1〉. For j = 0, . . . , ρs − 1, let

Ij be the following set

Ij = {gj(x1, . . . , xs−1) ∈ S |∃g(x1, . . . , xs) ∈ I with

g(x1, . . . , xs) =

ρs−1∑
i=j

gi(x1, . . . , xs−1)xis

where gi ∈ S for i = j, . . . , ρs − 1}.
(5.2)
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Then the following hold:

(1) The Ij’s are ideals of S, generated by elements p
(j)
1 , . . . , p

(j)
rj ∈ S,

i.e.

Ij = 〈p(j)
1 , p

(j)
2 , . . . , p(j)

rj
〉 = {

rj∑
µ=1

p(j)
µ (x1, . . . , xs−1)qµ(x1, . . . , xs−1) | qµ ∈ S}.

(2) There exist elements p
(j)
1 (x1, . . . , xs), . . . , p

(j)
rρs−1(x1, . . . , xs) ∈ I, such

that

p(j)
µ (x1, . . . , xs) =

ρs−1∑
i=j

p
(j)
iµ (x1, . . . , xs−1)xis, (5.3)

for j = 0, . . . , n−1, i = j, . . . , ρs−1, where p
(j)
iµ (x1, . . . , xs−1) ∈ S, with

p
(j)
jµ (x1, . . . , xs−1) = p

(j)
µ (x1, . . . , xs−1) for µ = 1, . . . , ri.

(3) The elements p
(j)
1 , . . . , p

(j)
rj , j = 1, . . . , ρs − 1 generate I, i.e.

I = 〈p(0)
1 , . . . , p(0)

r1
, p

(1)
1 , . . . , p(1)

r1
, . . . , p

(j)
1 , . . . , p(j)

rj
, . . . , p

(ρs−1)
1 , . . . , p(ρs−1)

rρs−1
〉.

Proof. We prove by induction on s: the case s = 2 was treated by
Sepasdar and the case s = 3 in Section 4. Now, suppose the theorem
is true for s − 1, where s > 4. Let I be an s-dimensional ideal in the
quotient ring R = Fq[X1, . . . , Xs]/〈Xρ1

1 − 1, . . . , Xρs
s − 1〉. By (5.1), we

have R ∼= S[xs]. Using the representation S = Fq[X1, . . . , Xs−1]/〈Xρ1
1 −

1, . . . , X
ρs−1

s−1 −1〉, by the induction hypothesis, each of the Ij’s as in the

theorem have a basis {p(j)
µ (x1, . . . , xs−1)}, since they are ideals of S. As

we have done in Section 4, there are also polynomials p
(j)
µ (x1, . . . , xs)

whose set is a basis of I. Thus, the result is true for s and, therefore,
by induction, for all s ∈ N∗. �
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